Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23271
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如
dc.contributor.authorYi-Hung Linen
dc.contributor.author林奕宏zh_TW
dc.date.accessioned2021-06-08T04:50:55Z-
dc.date.copyright2009-07-30
dc.date.issued2008
dc.date.submitted2009-07-27
dc.identifier.citation[1.1] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol., vol. 22, no. 11, pp. 2582-2591, 2004.
[1.2] H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067-1069, 2000.
[1.3] K. Y. Park, J. S. Baik, and C. H. Lee, “Wavelength-locked Fabry-Perot laser diodes,” J. Opt. Soc. Korea, vol. 9, no. 2, pp. 1-4, 2005.
[1.4] K. Y. Park, S. G. Mun, K. M. Choi, and C. H. Lee, “A theoretical model of a wavelength-locked Fabry-Perot laser diode to the externally injected narrow-band ASE,” IEEE Photon. Technol. Lett., vol. 17, no.9, pp. 1797-1799, 2005.
[1.5] E. H. Lee, Y. C. Bang, J. K. Kang, Y. C. Keh, D. J. Shin, J. S. Lee, S. S. Park, I. Kim, J. K. Lee, Y. K. Oh, and D. H. Jang, “Uncooled C-band wide-band gain lasers with 32-channel coverage and -20-dBm ASE injection for WDM-PON,” IEEE Photon. Technol. Lett., vol. 18, no.5, pp. 667-669, 2006.
[1.6] H. Lin and C. H. Chang, “High power C+L-band erbium ASE source using optical circulator with double-pass and bidirectional pumping configuration,” Opt. Express, vol. 12, no. 25, pp. 6135-6140, 2004.
[1.7] D. J. Shin, Y. C. Keh, J. W. Kwon, E. H. Lee, J. K. Lee, M. K. Park, J. W. Park, Y. K. Oh, S. W. Kim, I. K. Yun, H. C. Shin, D. Heo, J. S. Lee, H. S. Shin, H. S. Kim, S. B. Park, D. K. Jung, S. T. Hwang, Y. J. Oh, D. H. Jang, and C. S. Shim, “Low-cost WDM-PON with colorless bidirectional transceivers,” J. Lightwave Technol., vol. 24, no.1, pp. 158-165, 2006.
[1.8] P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett., vol. 37, no. 19, pp. 1181-1182, 2001.
[1.9] H. Kim, S. Kim, S. Hwang, and Y. Oh, “Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers,” J. Lightwave Technol., vol. 24, no. 2, pp. 775-785, 2006.
[1.10] S.-C. Lin, S.-L. Lee, and C.-K. Liu, “Simple approach for bidirectional performance enhancement on WDM-PONs with directmodulation lasers and RSOAs” Opt. Express, vol. 16, no. 6, pp. 3636-3643, 2008.
[1.11] C. K. Chan, L. K. Chen, and C. Lin, “WDM-PON for next-generation optical broadband access networks,” in Proc. OECC, 5E2-1-1, Kaohsiung, Taiwan, 2006.
[1.12] P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Reflective SOAs for spectrally sliced WDM-PONs,” in Proc. Opt. Fiber Commun., WWW4, Anaheim, California, USA, pp. 352-353, 2002.
[1.13] Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection locked Fabry-Pérot laser diodes,” Opt. Express, vol. 15, no. 6, pp. 2953-2962, 2007.
[2.1] H. D. Kim, S. Kang, and C. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon.Technol. Lett., vol. 12, no. 8, pp. 1067-1069, 2000.
[2.2] S. L. Woodward, P. P. lannone, K. C. Reichmann, and N. J. Frigo,“A spectrally sliced PON employing Fabry-Pérot lasers,” J. Lightwave Technol., vol. 10, no. 9, pp. 1337-1339, 1998.
[2.3] K.-Y. Park, and C.-H. Lee, “Intensity noise in a wavelength-locked Fabry–Perot laser diode to a spectrum sliced ASE” IEEE J. Quantum Electron., vol. 44, no. 3, pp. 209-215, 2008.
[2.4] A. McCoy, P. Horak, B. C. Thomsen, M. Isben, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems,” J. Lightwave Technol., vol. 23, no. 8, pp. 2399-2409, 2005.
[2.5] S. Kim, J. Han, and J. Lee, “Intensity noise suppression in spectrum-sliced incoherent light communication systems using a gain-saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 1042-1044, 1999.
[2.6] M. Zhao, G. Morthier, and R. Baets, “Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 14, no. 13, pp. 390-392, 2002.
[2.7] X. Cheng, Y. J. Wen, Y. Dong, Z. Xu, X. Shao, Y. Wang, and C. Lu “Optimization of spectrum-sliced ASE source for injection-locking a Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett., vol.18, no.18, pp. 761-763, 2006.
[2.8] D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson., “Filtering effects in a spectrum-sliced WDM system using SOA-based noise reduction,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 680-682, 2004.
[2.9] G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol. 25, no. 11, pp. 2297-2306, 1989.
[2.10] G. P. Agrawal, Fiber-Optic Communication Systems, (Third Ed.), New York: Wiley, chapter 4-6, 2002.
[2.11] Y.-C. Chang, Y.-H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express, vol. 12, no. 19, pp. 4449-4456, 2004.
[2.12] L. Li, “Static and dynamic properties of injection-locked semiconductor lasers,” IEEE J. Quantum Electron. vol. 30, no. 8, pp. 1701-1708, 1994.
[2.13] K. Petermann, Laser Diode Modulation and Noise, Publishers Dordrecht, The Nitherlands: Kluwer Academic, chapter 2, 1998.
[2.14] S. Gee, F.Quinlan, S. Ozharar, and P. J. Delfyeet, “Two-mode beat phase noise of actively modelocked lasers,” Opt. Express, vol. 13, no. 11, pp. 3977-3982, 2005.
[2.15] J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458-1467, 1993.
[3.1] S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon, and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett., vol. 17, no.17, pp. 1579-1581, 2005.
[3.2] D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Oh Y. C. Shim., “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol., vol. 23, no. 1, pp. 187-195, 2005.
[3.3] K. Lee, S. B. Kang, D. S. Lim, H. K. Lee, W. V. Sorin, “Fiber link loss monitoring scheme in bidirectional WDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp. 523-525, 2006.
[3.4] E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett., vol. 42, no. 5, pp. 299-301, 2006.
[3.5] H. C. Kwon, Y. Y. Won, and S. K. Han, “A self-seeded reflective SOA-based optical network unit for optical beat interference robust WDM/SCM-PON link,” IEEE Photon. Technol. Lett., vol. 18, no. 17, pp. 1852-1854, 2006.
[3.6] J. M. Kang, T. Y. Kim, I. H. Choi, S. H. Lee, and S. K. Han, “Self-seeded reflective semiconductor optical amplifier based optical transmitter for up-stream WDM-PON link,” IEEE Proc. Optoelectron., vol. 1, no. 2, pp.77-81, 2007.
[3.7] W. Hung, C. K. Chan, L. K. Chen and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and up-stream re-modulated OOK data using injection-locked FP laser,” in Proc. Opt. Fiber Commun., TuR2, Atlanta, Georgia, USA, 2003.
[3.8] G. W. Lu, N. Deng, C. K. Chan, and L. K. Chen, “Use of downstream inverse-RZ signal for upstream data re-modulation in a WDM passive optical network,” in Proc. Opt. Fiber Commun., OFI8, Anaheim, California, USA, 2005.
[3.9] W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2460-2462, 2005.
[3.10] A. A. M. Saleh and I. M. I. Habbab, “Effects of semiconductor-optical-amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems,” IEEE Trans. Commun., vol. 38, no.6, pp. 839-846, 1990.
[3.11] K. Inoue, Semiconductor laser amplifiers, New York: Wiley, charpter 3, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23271-
dc.description.abstract隨著人口的增加,高位元率的傳輸越來越受到重視,應用分波多功的被動光纖網路在光纖到家的系統中,顯然是一個可行又相當便宜的方法。 為了降低分波多功的被動光網路系統的成本,已經有很多應用在分波多功光網路的光源被提出來,如光譜很寬的發光二極體、單模雷射、利用放大後的自發幅射光源注入鎖模費比布洛雷射、雙相注入鎖模的反射性半導體光放大器等等。 儘管利用單模雷射可以使傳輸表現良好,但是因為應用在分波多功光纖網路的單模雷射製造波長沒有辦法控制精準,因此製造成本相當昂貴,且波長會隨溫度的改變而飄移,需要溫度控制器來固定溫度,因此我們使用自發幅射光源注入費比布洛雷射的傳訊器為光網路單位,探討這樣子的分波多功的被動光纖網路系統。 本篇論文討論在200億赫頻寬的陣列波導分波多功器被動光網路系統中,以端面1%反射率的弱共振腔法布里-珀羅雷射為上傳傳訊器,使用223-1 偽隨機二進位序列並以2.488億位元/秒直接調變共振腔法布里-珀羅雷射,分別分析在單向上傳系統以及雙向傳輸系統中,受到自發幅射寬頻光源經過陣列波導濾波器注入鎖模後弱共振腔法布里-珀羅雷射的傳輸表現。
在單向上傳系統中:利用自發幅射光源注入雷射達成無色操作時,注入光源的相對強度雜訊以及光源的端面、連接面反射影響傳輸表現甚巨,因此改在光網路單位端使用頻譜切割的自發幅射光源配合一增益飽和之半導體光放大器可有效地分別降低注入光源的相對強度雜訊4.5分貝、端面反射量6.3分貝,可將上傳訊號的消光比從8.9提升到9.6分貝、訊雜比從5.9 提升到6.3分貝。 在這樣的單向上傳系統中,誤碼率為10-9的接收功率在背靠背的傳輸狀態下可達到-26分貝毫瓦,即使經過25公里光纖傳輸,誤碼率為10-9的接收功率仍可達到-24.8分貝毫瓦。 另外,對於弱共振腔法布里-珀羅雷射在自發幅射光源注入鎖模後的增益飽和狀態下,提出訊雜比對於注入功率變化的理論模型,並進一步探討上傳訊號訊雜比與消光比對於誤碼率為10-9的接收功率之影響,可發現對於誤碼率為10-9的接收功率,訊雜比比消光比扮演著更重要的角色。
在雙向傳輸系統中:為了可達到波長可獨立操作,不受溫度或外在因素影響,以及降低雙向分波多功的被動光纖網路系統的光源成本,在通訊局端機房使用結合200億赫頻寬的陣列波導分波多功器頻譜切割和增益飽和半導體光放大器濾波技術之自發幅射光源,將其以2.488億位元/秒外部調變後做為下傳訊號;在光網路單位端,藉由另一顆半導體光放大器增益飽和特性搭配弱共振腔法布里-珀羅雷射被注入鎖模後增益飽和之特性,將下傳訊號抹平成近乎連續波光源,用來當作注入光源,然後以2.488億位元/秒直接調變注入鎖模之弱共振腔法布里-珀羅雷射當作上傳訊號,以達到下傳光源的再利用。 在此雙向傳輸系統中,下傳訊號誤碼率為10-9的接收功率在經過25公里光纖傳輸的傳輸狀態下可達到-27.5分貝毫瓦;上傳誤碼率為10-9的接收功率在經過25公里光纖傳輸仍可達到-21.8分貝毫瓦。 同時,探討半導體光放大器操作電流以及下傳訊號功率大小對於抹平後的訊號消光比與過激量之影響,更進一步分析以抹平後的訊號當作注入光源,其消光比與過激量對於上傳訊號品質之響應,可發現抹平後訊號的消光比過激量更能對上傳訊號訊雜比產生影響。
關鍵字:弱共振腔法布里-珀羅雷射、分波多功被動光纖網路、半導體光放大器、增益飽和、注入鎖模、光纖光通訊、半導體雷射
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T04:50:55Z (GMT). No. of bitstreams: 1
ntu-97-R96941045-1.pdf: 1249811 bytes, checksum: a87f9e71024e7a1a64c3de62d58751ac (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 1
1.3 Structure 3
Chapter 2 Compromised Extinction and Signal-to-Noise Ratios of WRC-FPLD Transmitter Injection-Locked by AWG Sliced and SOA Bleached ASE Source 4
2.1 Introduction 4
2.2 Experiments 5
2.3 Results and Discussions 7
2.3.1 Effects of SOA and WRC-FPLD operating conditions on the up-stream transmitted data performances (BER, SNR, and ER) 7
2.3.2 Theoretical and experimental analyses on the ASE injection power dependent SNR, ER, and BER of WRC-FPLD up-stream data 14
2.3.3 Distinguishing the influence of SNR and ER to the BER performance of the WRC-FPLD transmitted up-stream data 19
2.4 Summary 23
Chapter 3 Injection-Locking of WRC-FPLD Up-stream WDM-PON Transmitter Using the Down-stream AWG Sliced ASE Data Amplitude Squeezing by Gain-saturated SOA 24
3.1 Introduction 24
3.2 Experiments 25
3.3 Results and Discussions 27
3.3.1 Relative Intensity Noise and Signal-to-Noise Ratio of the Down-stream ASE Source Filtered by Gain-Saturated SOA 27
3.3.2 Extinction Ratio of the down-stream transmitted data amplitude squeezed by gain-saturated SOA 29
3.3.3 Distinguished influence of amplitude-squeezed signal to the SNR and BER performances of the WRC-FPLD transmitted up-stream data 34
3.3.4 The BER performances of the bi-directional data transmission 37
3.5 Summary 42
Chapter 4 Conclusion 44
4.1 Conclusion 44
REFERENCE 47
作者簡介 53
dc.language.isoen
dc.subject弱共振腔法布里-珀羅雷射zh_TW
dc.subject半導體雷射zh_TW
dc.subject光纖光通訊zh_TW
dc.subject注入鎖模zh_TW
dc.subject增益飽和zh_TW
dc.subject半導體光放大器zh_TW
dc.subject分波多功被動光纖網路zh_TW
dc.subjectWDM-PONen
dc.subjectgain-saturationen
dc.subjectSOAen
dc.subjectWRC-FPLDen
dc.subjectSemiconductor lasersen
dc.subjectfiber optics communicationsen
dc.subjectinjection-lockingen
dc.title以增益飽和光放大器濾波之自發放大光源注入弱共振腔二極體雷射為分波多工被動光網路發信機zh_TW
dc.titleInjection-locking of Weak-resonant-cavity Laser Diode by Using Gain-saturation SOA Filtered Spectrally Sliced ASE Source for DWDM-PON Transmissionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭木海,呂海涵,廖顯奎
dc.subject.keyword弱共振腔法布里-珀羅雷射,分波多功被動光纖網路,半導體光放大器,增益飽和,注入鎖模,光纖光通訊,半導體雷射,zh_TW
dc.subject.keywordWRC-FPLD,WDM-PON,SOA,gain-saturation,injection-locking,fiber optics communications,Semiconductor lasers,en
dc.relation.page55
dc.rights.note未授權
dc.date.accepted2009-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved