Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23259
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為
dc.contributor.authorChao-Yun Laien
dc.contributor.author賴昭昀zh_TW
dc.date.accessioned2021-06-08T04:50:15Z-
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citationReferences
[1] F. Arnaud, B. Duriez, B. Tavel, L. Pain, J. Todeschini, M. Jurdit, Y. Laplanche, F. Boeuf, F. Salvetti, D. Lenoble, J. P. Reynard, F. Wacquant, P. Morin, N. Emonet, D. Barge, M. Bidaud, D. Ceccarelli, P. Vannier, Y. Loquet, H. Leninger, F. Judong, C. Perrot, I. Guilmeau, R. Palla, A. Beverina, V. DeJonghe, M. Broekaart, V. Vachellerie, R. A. Bianchi, B. Borot, T. Devoivre, N. Bicaïs, D. Roy, M. Denais, K. Rochereau, R. Difrenza, N. Planes, H. Brut, L. Vishnobulta, D. Reber, P. Stolk, and M. Woo, “Low cost 65 nm CMOS platform for low power and general purpose applications,” in VLSI Symp. Tech. Dig., 2004, pp. 10–11.
[2] F. M. Bufler and W. Fichtner, “Hole and electron transport in strained Si: Orthorhombic versus biaxial tensile strain,” Appl. Phys. Lett., vol. 81, no. 1, pp. 82–84, Jul. 2002.
[3] V. Moroz, N. Strecker, X. Xu, L. Smith, and I. Börk, “Modeling the impact of stress on silicon processes and devices,” Mater. Sci. Semicond. Process., vol. 6, no. 1–3, pp. 27–36, Feb.–Jun. 2003.
[4] C. Ortolland, S. Orain, J. Rosa, P. Morin, F. Arnaud, M. Woo, A. Poncet, and P. Stolk, “Electrical characterization and mechanical modeling of process induced strain in 65 nm CMOS technology,” in Proc. ESSDERC, 2004, pp. 137–140.
[5] J. L. Egley and D. Chidambarrao, “Strain effect on device characteristics: Implementation in drift-diffusion simulators,” Solid State Electron., vol. 36, no. 12, pp. 1653–1664, Dec. 1993.
[6] H. M. Nayfeh, “Investigation of scaling methodology for strained Si n-MOSFETs using a calibrated transport model,” in IEDM Tech. Dig., 2003, pp. 475–478.

[7] Momose, H.S.; Morimoto, T.; Yamabe, K.; Iwai, H., “Relationship between mobility and residual-mechanical-stress as measured by Raman spectroscopy for nitrided-oxide-gate MOSFETs,” in IEDM Tech. Dig., 1990, pp. 65–68.
[8] Welser, J.; Hoyt, J.L.; Gibbons, J.F., “NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures,” in IEDM Tech. Dig., 1992, pp. 1000-1002.
[9] C. K. Maiti, L. K. Bera, S. Chattopadhyay, “Strained-Si heterostructure field effect transistors,” Semicond. Sci. Technol., vol. 13, p1225, 1998.
[10] Mizuno, T.; Sugiyama, N.; Kurobe, A.; Takagi, S.-i., “Advanced SOI p-MOSFETs with strained-Si channel on SiGe-on-insulator substrate fabricated by SIMOX technology,” IEEE Trans. Elec. Devices, vol. 48, p.1612, 2001
[11] Jeff Wu, Xin Wang, “Stress Engineering for 32nm CMOS Technology Node,” Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on
[12] An Steegen, Karen Maex, “Silicide-induced stress in Si: origin and consequences for MOS technologies,” Materials Science and Engineering: R: Reports Volume 38, Issue 1, 4 June 2002, Pages 1-53
[13] P. Paduschek, C.H. Ho¨ pfl, H. Mitlehner, “HYDROGEN-RELATED MECHANICAL STRESS IN AMORPHOUS,” SILICON AND PLASMA-DEPOSITED SILICON NITRIDE,” Thin Solid Films 110 (1983) 291.
[14] Kuo-Shen Chena, , Xin Zhangb, Shih-Yuan Lin, “Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling,” Thin Solid Films 434 (2003) 190–202
[15] ANSYS Reference Manual.
[1] F. Arnaud, B. Duriez, B. Tavel, L. Pain, J. Todeschini, M. Jurdit, Y. Laplanche, F. Boeuf, F. Salvetti, D. Lenoble, J. P. Reynard, F. Wacquant, P. Morin, N. Emonet, D. Barge, M. Bidaud, D. Ceccarelli, P. Vannier, Y. Loquet, H. Leninger, F. Judong, C. Perrot, I. Guilmeau, R. Palla, A. Beverina, V. DeJonghe, M. Broekaart, V. Vachellerie, R. A. Bianchi, B. Borot, T. Devoivre, N. Bicaïs, D. Roy, M. Denais, K. Rochereau, R. Difrenza, N. Planes, H. Brut, L. Vishnobulta, D. Reber, P. Stolk, and M. Woo, “Low cost 65 nm CMOS platform for low power and general purpose applications,” in VLSI Symp. Tech. Dig., 2004, pp. 10–11.
[2] F. M. Bufler and W. Fichtner, “Hole and electron transport in strained Si: Orthorhombic versus biaxial tensile strain,” Appl. Phys. Lett., vol. 81, no. 1, pp. 82–84, Jul. 2002.
[3] V. Moroz, N. Strecker, X. Xu, L. Smith, and I. Börk, “Modeling the impact of stress on silicon processes and devices,” Mater. Sci. Semicond. Process., vol. 6, no. 1–3, pp. 27–36, Feb.–Jun. 2003.
[4] C. Ortolland, S. Orain, J. Rosa, P. Morin, F. Arnaud, M. Woo, A. Poncet, and P. Stolk, “Electrical characterization and mechanical modeling of process induced strain in 65 nm CMOS technology,” in Proc. ESSDERC, 2004, pp. 137–140.

[5] J. L. Egley and D. Chidambarrao, “Strain effect on device characteristics: Implementation in drift-diffusion simulators,” Solid State Electron., vol. 36, no. 12, pp. 1653–1664, Dec. 1993.
[6] H. M. Nayfeh, “Investigation of scaling methodology for strained Si n-MOSFETs using a calibrated transport model,” in IEDM Tech. Dig., 2003, pp. 475–478.
[7] Stéphane Orain, Vincent Fiori, Davy Villanueva, Alexandre Dray, and Claude Ortolland, “Method for Managing the Stress Due to the Strained Nitride Capping Layer in MOS Transistors,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 4, APRIL 2007.
[1] Ota, K. Sugihara, K. Sayama, H. Uchida, T. Oda, H. Eimori, T. Morimoto, H. Inoue, Y., “Novel locally strained channel technique for high performance 55nm CMOS,” Electron Devices Meeting, 2002. IEDM 2002. Digest. International pp.27-30, 2002.
[2] Kuan-Lun Cheng, C. C. Wu, Y. P. Wang, D. W. Lin, C. M. Chu, Y. Y. Tamg, S. Y. Lu, S. J. Yang, M. H. Hsieh, C. M. Liu, S. P. Fu, J. H. Chen, C. T. Lin, W. Y. Lien, H. Y. Huang, P. W. Wang, H. H. Lin, D. Y. Lee, M. J. Huang, C. F. Nieh, L. T. Lin, C. C. Chen, W. Chang, Y. H. Chiu, M. Y. Wang, C. H. Yeh, F. C. Chen, C. M. Wu, Y. H. Chang, S. C. Wang, H. C. Hsieh, M. D. Lei, K. Goto, H. J. Tao, M. Cao, H. C. Tuan, C. H. Diaz, and Y. J. Mii, “A Highly Scaled, High Performance 45nm Bulk Logic CMOS Technology with 0.242 μm2 SRAM Cell,” IEDM Tech. Dig., pp.243, 2007.
[3] T. Miyashita, K. Ikeda, Y S. Kim, T. Yamamoto, Y Sambonsugi, H. Ochimizu, T. Sakoda, M. Okuno, H. Minakata, H. Ohta, Y Hayami, K. Ookoshi, Y Shimamune, M. Fukuda A. Hatada , K. Okabe, T. Kubo, M. Tajima, T. Yamamoto, E. Motoh, T. Owada, M. Nakamura, H. Kudo, T. Sawada, J. Nagayama, A. Satoh, T. Mori, A. Hasegawa, H. Kurata 1K. Sukegawa, A. Tsukune, S. Yamaguchi, K. Ikeda, M. Kase, T. Futatsugi, S. Satoh, and T. Sugii, “High-Performance and Low-Power Bulk Logic Platform Utilizing FET Specific Multiple-Stressors with Highly Enhanced Strain and Full-Porous Low-k Interconnects for 45-nm CMOS Technology,” IEDM Tech. Dig., pp.251, 2007.
[4] M. Goto1, K. Tatsumura2, S. Kawanaka1, K. Nakajima3, R. Ichihara2, Y. Yoshimizu3, H. Onoda4, K. Nagatomo1, T. Sasaki3, T. Fukushima3, A. Nomachi3, S. Inumiya3, H. Oguma3, K. Miyashita4, H. Harakawa3, S. Inaba1, T. Ishida1, A. Azuma1, T. Aoyama3, M. Koyama2, K. Eguchi3, Y. Toyoshima1, “Impact of Tantalum Composition in TaC/HfSiON Gate Stack on Device Performance of Aggressively Scaled CMOS Devices with SMT and Strained CESL,” Symp. VLSI Tech. Dig., pp. 132, 2008.

[5] C. Auth, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass, T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi, J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris, N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren%, V. Souw, K. Tone, F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn, C. Wallace, J. Wiedemer, C. Wiegand, “45nm High-k + Metal Gate Strain-Enhanced Transistors,” Symp. VLSI Tech. Dig., pp. 128, 2008.
[6] L.S. Adam, C. Chiu, M. Huang, X. Wang, Y. Wang, S. Singh, Y. Chen, H. Bu, J. Wu, “Phenomenological model for 'stress memorization' effect from a capped-poly process,” SISPAD, pp.139-142, 2005.
[7] Jeff Wu1, Xin Wang, “Stress Engineering for 32nm CMOS Technology Node,” Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, pp. 113-116, 2008.
[8] T. Miyashita, T. Owada*, A. Hatada*, Y. Hayami, K. Ookoshi*, T. Mori*, H. Kurata, and T. Futatsugi, “Physical and Electrical Analysis of the Stress Memorization Technique (SMT) using Poly-Gates and its Optimization for Beyond 45-nm High-Performance Applications,” IEDM Tech. Dig., pp.1-4, 2008.
[1] T. Guillaume, M. Mouis, S. Maîtrejean, A. Poncet, M. Vinet, and S. Deleonibus, “Evaluation of strain-induced mobility variation in TiN metal gate SOI n-MOSFETs,” in Proc. ESSDERC, 2004, pp. 393–396.
[2] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, M. Iwai, M. Saito, F.Matsuoka, N. Nagashima, and T. Noguchi, “Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design,” in IEDM Tech. Dig., 2004, pp. 217–220.
[3] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, and K. Hashimoto, “A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films,” in IEDM Tech. Dig., 2004, pp. 213–216.
[4] S. M. Cea, M. Armstrong, C. Auth, T. Ghani, M. D. Giles, T. Hoffmann, R. Kotly, P. Matagne, K. Mistry, R. Nagisetty, B. Obradovic, R. Shaheed, L. Shifren, M. Stettler, S. Tyagi, X. Wang, C. Weier, and K. Zawadzki, “Front end stress modeling for advanced logic technologies,” in IEDM Tech. Dig., 2004, pp. 963–966.

[5] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase, K. Hashmoto, and T. Suigi, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node,” in VLSI Symp. Tech. Dig., 2004, pp. 54–55.
[6] Kuo-Shen Chena, , Xin Zhangb, Shih-Yuan Lin, “Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling,” Thin Solid Films 434 (2003) 190–202
[7] Stéphane Orain, Vincent Fiori, Davy Villanueva, Alexandre Dray, and Claude Ortolland, “Method for Managing the Stress Due to the Strained Nitride Capping Layer in MOS Transistors,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 4, APRIL 2007.
[8] Ohta, H. Tamura, N. Fukutome, H. Tajima, M. Okabe, K. Hatada, A. Ikeda, K. Ohkoshi, K. Mori, T. Sukegawa, K. Satoh, S. Sugii, T., “High Performance Sub-40 nm Bulk CMOS with Dopant Confinement Layer (DCL) technique as a Strain Booster,” in IEDM Tech. Dig., 2007, pp. 289–292.
[9] Jeff Wu1, Xin Wang, “Stress Engineering for 32nm CMOS Technology Node,” Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, pp. 113-116, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23259-
dc.description.abstract利用電晶體的微縮來改善互補式金屬氧化層半導體場效電晶體的性能已經至少三十年了,由於元件的微縮已經幾乎達到了物理的極限,工業界與研究團體開始積極的找尋一些非傳統的解決方法。 其中藉由改變矽通道內的應變與應力來達到元件性能的改善,是一個已經廣泛被運用在現行製程技術中的解決方法。
接觸蝕刻停止層是其中一種應變與應力工程,自九十奈米的技術開始,接觸蝕刻停止層就開始被用來改善互補式金屬氧化層半導體場效電晶體的性能,而這個接觸蝕刻停止層是由氮化物所組成,原本是用於金屬接觸的蝕刻停止。
另一種應變與應力工程是應力記憶技術,這是少數對N型場效電晶體的性能可以改善的技術之一,而這項技術也是現今製程中不可或缺的技術之一,它不只用在傳統的多晶矽閘極,也用在金屬嵌入多晶矽閘極還有金屬閘極的技術中。有兩個主要的理論支持著應力記憶技術,一個是朔性變形模型,另一個是多晶矽閘極的體積膨脹。
最後,我們討論一些其他能改善元件性能的應力與應變的模擬,如接觸蝕刻停止層厚度對元件的影響,多晶矽閘極之間的距離對元件的影響,對本質應力成份的分解,參雜物限制層技術,多重的應力記憶技術,源極與汲極中的應力記億技術,絕緣暈用於防止淺溝渠隔離層的效應。
zh_TW
dc.description.abstractTransistor scaling down has been the principal factor in driving CMOSFET performance improvement for more than thirty years. Approaching the fundamental limits of transistor scaling leads the industry and the research community to actively search for alternative solutions. The use of strained Si obtained by stress engineering seems to be one solution to achieve transistor performance improvements.
One of stress engineering is contact etch stop layer (CESL), since the 90nm CMOS technology node, the CESL is used as a stress-engineering booster that enables transistor improvement, and the CESL consists in a nitride layer used to stop the etching of the metallic contact.
The other one of stress engineering is stress memorization technique (SMT), the SMT is one of the few strain techniques for N-FET performance enhancement, and it has been a necessary technique in recent high-performance technology not only for conventional poly-gates, but also for MIPS (Metal Inserted Poly-silicon Stack) and metal gates. There are two major theory support SMT, one is plastic deformation model and the other one is poly-gate volume expansion.
Finally, other simulations for strain enhancement techniques are discussed. Such as the influence of CESL thickness and poly spacing, decomposition of the intrinsic stress, the Dopant Confinement Layer (DCL) technique, Multi-SMT, SMT in source and drain, the insulating halo for shallow trench isolation (STI).
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:50:15Z (GMT). No. of bitstreams: 1
ntu-98-R96943011-1.pdf: 4282283 bytes, checksum: 030fa9cc574727bf7abacda903ba7fae (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
List of Figures VII
Chapter 1 Introduction
1.1 Background and Motivation 1
1.2 Organization 2
1.3 Origin of stress 3
1.3.1 Epitaxial stress 3
1.3.2 Thermal stress 4
1.3.3 Intrinsic stress 5
1.4 The simulation tool 10
References 10

Chapter 2 The Strain and Stress Simulation of CESL (Contact Etch Stop Layer)
2.1 Introduction 13
2.2 Model Description 14
2.3 Assumptions 15
2.4 Long Channel device 17
2.5 Short channel device 19
2.6 Mechanism description 20
2.7 Direct effects 23
2.8 Indirect effects 29
2.9 Corner effect 34
2.10 Conclusion 42
References 42



Chapter 3 The Strain and Stress Simulation of SMT
(Stress Memorization Technique)
3.1 Introduction 44
3.2 History of stress memorization technique 46
3.3 Poly-gate volume expansion 47
3.3.1 Mechanism description 47
3.3.2 Modeling poly-gate volume expansion 50
3.4 Plastic deformation model 54
3.4.1 Mechanism description 54
3.4.2 Model description 57
3.5 Simulation for SMT 59
3.5.1 Assumption 59
3.5.2 The simulation procedure 61
3.6 Conclusion 64
Reference 64

Chapter 4 Other Simulations for Strain enhancement technique
4.1 Introduction 67
4.2 Other effects of contact etch stop layer 67
4.2.1 The influence of CESL thickness 67
4.2.2 The influence of poly spacing 69
4.2.3 Decomposition of intrinsic stress 70
4.3 Other effects of stress memorization technique 74
4.3.1 Dopant Confinement Layer (DCL) technique as a Strain Booster 74
4.3.2 Multi-SMT 79
4.3.3 Stress memorization technique in source/drain 81
4.4 Insulating halo 85
4.5 Conclusion 89
Reference 90
Chapter 5 Summary and Future Work
5.1 Summary 92
5.2 Future Work 93
dc.language.isoen
dc.subject應力記憶技術zh_TW
dc.subject絕緣暈zh_TW
dc.subject接觸蝕刻停止層zh_TW
dc.subject朔性變形模型zh_TW
dc.subject多晶矽閘極的體積膨脹zh_TW
dc.subject參雜物限制層技術zh_TW
dc.subject淺溝渠隔離層zh_TW
dc.subjectDCLen
dc.subjectSTIen
dc.subjectinsulating haloen
dc.subjectCESLen
dc.subjectSMTen
dc.subjectplastic deformation modelen
dc.subjectpoly-gate volume expansionen
dc.title45奈米以下之元件其應力與應變的模擬與分析zh_TW
dc.titleThe Strain and Stress Simulation for
45nm CMOS Technology Node and Beyond
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡銘進,陳其賢,汪大暉
dc.subject.keyword接觸蝕刻停止層,應力記憶技術,朔性變形模型,多晶矽閘極的體積膨脹,參雜物限制層技術,絕緣暈,淺溝渠隔離層,zh_TW
dc.subject.keywordCESL,SMT,plastic deformation model,poly-gate volume expansion,DCL,insulating halo,STI,en
dc.relation.page93
dc.rights.note未授權
dc.date.accepted2009-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved