Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23251
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳金洌(Jen-Leih Wu)
dc.contributor.authorPei-Yu Linen
dc.contributor.author林姵妤zh_TW
dc.date.accessioned2021-06-08T04:49:50Z-
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citationBlaser H, Eisenbeiss S, Neumann M, Reichman-Fried M, Thisse B, Thisse C, Raz E. 2005. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci 118:4027-4038.
Curado, S. et al. 2007. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev. Dyn. 236, 1025–1035.
Curado S, Stainier DY, Anderson RM. 2008. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc 3:948-954.
Dahm R, Geisler R. 2006. Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol (NY) 8:329-345.
Deshpande G, Calhoun G, Yanowitz JL, Schedl PD. 1999. Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell 99:271-281.
Draper BW, McCallum CM, Moens CB. 2007. nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 305:589-598.
Hu W, Li S, Tang B, Wang Y, Lin H, Liu X, Zou J, Zhu Z. 2007. Antisense for gonadotropin-releasing hormone reduces gonadotropin synthesis and gonadal development in transgenic common carp (cyprinus carpio). Aquaculture 271:498-506
Kawakami K. 2005. Transposon tools and methods in zebrafish. Dev Dyn 234:244-254.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203:253-310.
Kurita R, Sagara H, Aoki Y, Link BA, Arai K, Watanabe S. 2003. Suppression of lens growth by alphaA-crystallin promoter-driven expression of diphtheria toxin results in disruption of retinal cell organization in zebrafish. Dev Biol 255:113-127.
Lawrence, C., Ebersole, J.P., Kesseli, R.V., 2007. Rapid growth and out-crossing promote female development in zebrafish (Danio rerio). Environ. Biol. Fisches. 81, 239–246.
Maclean N, Rahman MA, Sohm F, Hwang G, Iyengar A, Ayad H, Smith A, Farahmand H. 2002. Transgenic tilapia and the tilapia genome. Gene 295:265-277.
Raz E. 2003. Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet 4:690-700.
Razak SA, Hwang GL, Rahman MA, Maclean N. 1999. Growth performance and gonadal development of growth enhanced transgenic Tilapia Oreochromis niloticus (L.) following heat-shock-induced triploidy. Mar Biotechnol (NY) 1:533-544.
Saito T, Goto-Kazeto R, Arai K, Yamaha E. 2008. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78:159-166.
Saraste M, Sibbald PR, Wittinghofer A. 1990. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430-434.
Selman K, Wallace RA, Sarka A, 1 XQ. 1993. Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218:203-224.
Shang EH, Yu RM, Wu RS. 2006. Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol 40:3118-3122.
Siegfried KR, Nusslein-Volhard C. 2008. Germ line control of female sex determination in zebrafish. Dev Biol 324:277-287.
Slanchev K, Stebler J, de la Cueva-Mendez G, Raz E. 2005. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102:4074-4079.
Thisse, B. et al. 2001. Expression of the zebrafish genome during embryogenesis (NIH R01 RR15402). ZFIN Direct Data Submission [online] <http://zfin.org/cgibin/webdriver?MIval=aa-xpatselect.apg>
Uchida D, Yamashita M, Kitano T, Iguchi T. 2002. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J Exp Biol 205:711-718.
Uzbekova S, Chyb J, Ferriere F, Bailhache T, Prunet P, Alestrom P, Breton B. 2000. Transgenic rainbow trout expressed sGnRH-antisense RNA under the control of sGnRH promoter of Atlantic salmon. J Mol Endocrinol 25:337-350.
Wan H, Korzh S, Li Z, Mudumana SP, Korzh V, Jiang YJ, Lin S, Gong Z. 2006. Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter. Exp Cell Res 312:1526-1539.
Wong AC, Van Eenennaam AL. 2008. Transgenic approaches for the reproductive containment of genetically engineered fish. Aquaculture 275:1-12
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23251-
dc.description.abstract過去數十年,全球基於增加水產養殖效率及生產量之目的,已將基因轉殖技術廣泛運用於各種經濟魚類,然而至今基因轉殖魚的商品化行銷除基因轉殖觀賞魚外仍受限制,主要原因是全球關注基因轉殖魚若流放到自然環境中可能會造成基因流佈或野生種的滅絕的議題。有鑑於此,基因轉殖魚的不孕控制成為解決此問題的重要技術。傳統魚類不孕控制技術如三倍體技術或用antisense RNA將生殖相關賀爾蒙剔除等方式均無法達成百分之百不孕之效果,此外若這些方法成功,則轉基因魚也無法維持保種,因此不孕平台的開發則須為誘導性。始基生殖細胞在魚類生殖上是卵巢或精巢之前驅細胞,本研究以斑馬魚為模式建立誘導性不孕控制平台技術,以始基生殖細胞專一性之nanos與kop啟動子分別表現NTR及螢光之融合蛋白,並分別建立Tg(Nanos:CFP-NTR)及Tg(Kop:NTR-GFP)基因轉殖魚,從大腸桿菌選殖而來之nitroreductase (NTR) 酵素能夠將無毒性的基質Mtz轉變為細胞毒素,導致細胞死亡,結果發現在一個細胞時期之胚胎及20天之幼魚時期開始持續不斷浸泡在5 mM Mtz會造成基因轉殖魚性腺發育有缺陷且生殖能力明顯下降,NTR/Mtz的系統會調控幼魚時期類卵母細胞的構造發生細胞凋亡而導致類卵母細胞的退化並發育成有缺陷的精巢,本結果提供作一模式平台,作為誘導性控制基因轉殖魚之不孕,並期望本模式平台未來在水產養殖上可提供經濟效益並應用於水產優質種苗的保種應用。zh_TW
dc.description.abstractIn the past decades, the transgenic fish of various species are being actively investigated worldwide for increasing efficiency of aquaculture production. However, the commercialization of genetically modified fish is restricted beside of transgenic ornamental fish. The global concern about ecological issue is genetically modified (GM) fish which may cause gene-flow and the threat of extinction of natural stock. In view of this issue, sterility control technology becomes important technology to solve this problem. Traditional sterility techniques such as polyploidy technology and knockdown of reproductive hormone by antisense RNA are not totally reliable. Furthermore, even through these sterile course are totally sterility, the fish stock can’t be inherited for maintenance; hence inducible sterile technology must be needed to develop for maintaining the fish stock. Nitroreductase (NTR), which is an enzyme with the ability to converse metronidazole substrate into cytotoxin and leading to cell death. In the present study, a 3 kb nanos promoter and a 5 kb askopos (kop) promoter were cloned and used to trigger NTR expression specifically in primordial germ cells (PGCs) which are germ cells give rise to gametes involved in reproduction. Through the consecutive immersion of 5 mM Mtz at early stage and juvenile gonad stage, the reproductive capacity of transgenic fish is reduced comparing to those without Mtz treatment. Our results also demonstrated that apoptosis of juvenile ovary mediated by NTR/Mtz system causes degeneration of juvenile ovary and lead to development of defective testis structure in all male fish. These results can provide as a model for inducible control the sterility of GM fish and we expected this model can offer economic benefits for maintenance of superior breeds in aquaculture purpose.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:49:50Z (GMT). No. of bitstreams: 1
ntu-98-R96b45028-1.pdf: 4704804 bytes, checksum: 2e1172c2d89f284bc420718a39eeb77a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
Acknowledgement………………………………………………………ⅰ
Chinese Abstract…………………………………………………ⅱ
English Abstract………………………………………………ⅲ
Contents…………………………………………………………ⅴ
Table contents………………………………………………………ⅶ
Figure contents………………………………………………………ⅷ
Appendix………………………………………………………………ⅹ
Ⅰ. Introduction……………………………………………………1
A. GMO concern in aquatic animals
B.Traditional approaches for sterile control of aquatic organism
C. Zebrafish reproductive system
D. PGCs-specific promoter
E. Cells ablation methods in zebrafish
Ⅱ. Rationale and Objective…………………………………10
Ⅲ. Materials and Methods……………………………………11
Ⅳ. Results………………………………………………………17
A. Construction of plasmids for injection
B. Establishment of Tg(Kop:NTR-GFP) and
Tg(Nanos:CFP-NTR)
C. NTR was PGCs-specific expression in transgenic line
D. Determination of optimal Mtz concentration for PGCs ablation
E. NTR/Mtz mediated specific PGCs ablation
F. Sex determination and evaluation of reproductive capacity
G. NTR/Mtz mediated degeneration of juvenile ovary via apoptosis
H. Degeneration of juvenile ovary lead to male phenotype and defect in testes
Ⅴ. Discussion………………………………………………………25
Ⅵ. References………………………………………………28
Table contents
Table 1. Primers designed for construction and RT-PCR……32
Figure contents
Fig. 1. Construction of expression plasmids…………33
Fig. 2. Detection of integrated efficiency of transponase mediated-injected constructs by transient embryo excision assay (TEEA)…………………..34
Fig. 3. Fluorescence expression in PGCs of F2 Tg (Kop:GFP), Tg (Kop:NTR- GFP) and Tg (Nanos:CFP-NTR) were observed under fluorescent microscope using bright field, FITC filter and merge…………………………………35
Fig. 4. Detection of NTR-GFP or CFP-NTR expression in transgenic line by RT-PCR…………………………………36
Fig. 5. Detection of PGCs at 3 dpf zebrafish by whole-mount in situ using vasa and ntr probe…………………………37
Fig. 6. Wild type zebrafish embryos were continuous immersed with different Mtz concentration (0~20 mM)…38
Fig. 7. The mortality and survival rate of zebrafish embryos after consecutive immersions in different Mtz concentration………………………………39
Fig. 8. Tg (Kop:GFP ) with Mtz treatment…………………40
Fig. 9. Ablation of PGCs in Tg (Kop:NTR-GFP ) by Mtz treatment…41
Fig. 10. Ablation of PGCs in Tg (Nanos:NTR-GFP) by Mtz treatment…………42
Fig. 11. Sex determination and evaluation of reproductive capacity by mortality rate of laid eggs……………………43
Fig. 12. Juvenile ovary at 30 dpf of Tg (Nanos:CFP-NTR) was observed under florescent microscope by HE staining……44
Fig. 13. Juvenile ovary at 30 dpf of Tg (Nanos:CFP-NTR) was observed under florescent microscope by TUNEL assay……45
Fig. 14. All Tg (Nanos:CFP-NTR) turn into male fish after 30 days post-immersion of 5 mM Mtz…………………………46
Fig. 15. Testis tissue of Tg (Nanos:CFP-NTR) at 50 dpf was observed under florescent microscope by HE staining……47
Fig. 16. Testis tissue of Tg (Nanos:CFP-NTR) at 50 dpf was observed under florescent microscope by HE staining……48
Fig. 17. Reproductive capacity was evaluated by mortality rate of laying eggs…49
Appendix
App. 1 Germ cells develop in zebrafish……………50
App. 2 The mechanism of NTR to induce apoptosis by converting the non-toxic prodrug Mtz into a cytotoxic metabolite…………………………………51
dc.language.isoen
dc.subject硝基還原&#37238zh_TW
dc.subject基因轉殖魚類zh_TW
dc.subject不孕控制zh_TW
dc.subject始基生殖細胞zh_TW
dc.subjectsterility controlen
dc.subjectnitroreductaseen
dc.subjectprimordial germ cellsen
dc.subjecttransgenic fishen
dc.title專一性表達硝基還原酶基因於斑馬魚始基生殖細胞以抑制其性腺發育之研究zh_TW
dc.titleSpecific Gene Expression of Nitroreductase in Zebrafish Primordial Germ Cells for the Inhibition of Gonadal Developmenten
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃尉東(Wei-Tung Huang),陳志毅(Jyh-Yih Chen),羅秀婉(Shiu-Wann Lou)
dc.subject.keyword基因轉殖魚類,不孕控制,始基生殖細胞,硝基還原&#37238,zh_TW
dc.subject.keywordtransgenic fish,sterility control,primordial germ cells,nitroreductase,en
dc.relation.page51
dc.rights.note未授權
dc.date.accepted2009-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved