Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨
dc.contributor.authorHsin-Jung Yangen
dc.contributor.author楊欣蓉zh_TW
dc.date.accessioned2021-06-08T04:48:35Z-
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citationAlvarez-Garcia, I. and Miska, E.A. (2005) MicroRNA functions in animal development and human disease. Development, 132, 4653-4662.
Ambros, V. (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell, 113, 673-676.
Anderson, C., Catoe, H. and Werner, R. (2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res, 34, 5863-5871.
Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-297.
Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 37, 766-770.
Bernstein, E., Kim, S.Y., Carmell, M.A., Murchison, E.P., Alcorn, H., Li, M.Z., Mills, A.A., Elledge, S.J., Anderson, K.V. and Hannon, G.J. (2003) Dicer is essential for mouse development. Nat Genet, 35, 215-217.
Bilokapic, S., Ivic, N., Godinic-Mikulcic, V., Piantanida, I., Ban, N. and Weygand-Durasevic, I. (2009) Idiosyncratic helix-turn-helix motif in Methanosarcina barkeri seryl-tRNA synthetase has a critical architectural role. J Biol Chem, 284, 10706-10713.
Brennecke, J., Stark, A., Russell, R.B. and Cohen, S.M. (2005) Principles of microRNA-target recognition. PLoS Biol, 3, e85.
Brodersen, P. and Voinnet, O. (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol, 10, 141-148.
Cai, X., Hagedorn, C.H. and Cullen, B.R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10, 1957-1966.
Chen, C.Z., Li, L., Lodish, H.F. and Bartel, D.P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science, 303, 83-86.
Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L. and Wang, D.Z. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 38, 228-233.
Chen, J.F., Murchison, E.P., Tang, R., Callis, T.E., Tatsuguchi, M., Deng, Z., Rojas, M., Hammond, S.M., Schneider, M.D., Selzman, C.H. (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A, 105, 2111-2116.
Chereau, D., Boczkowska, M., Skwarek-Maruszewska, A., Fujiwara, I., Hayes, D.B., Rebowski, G., Lappalainen, P., Pollard, T.D. and Dominguez, R. (2008) Leiomodin is an actin filament nucleator in muscle cells. Science, 320, 239-243.
Coffey, V.G. and Hawley, J.A. (2007) The molecular bases of training adaptation. Sports Med, 37, 737-763.
Daubas, P., Crist, C.G., Bajard, L., Relaix, F., Pecnard, E., Rocancourt, D. and Buckingham, M. (2009) The regulatory mechanisms that underlie inappropriate transcription of the myogenic determination gene Myf5 in the central nervous system. Dev Biol, 327, 71-82.
Didiano, D. and Hobert, O. (2006) Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol, 13, 849-851.
Erson, A.E. and Petty, E.M. (2008) MicroRNAs in development and disease. Clin Genet, 74, 296-306.
Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P. and Schier, A.F. (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833-838.
Gruic-Sovulj, I., Landeka, I., Soll, D. and Weygand-Durasevic, I. (2002) tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase. Eur J Biochem, 269, 5271-5279.
Hartlein, M. and Cusack, S. (1995) Structure, function and evolution of seryl-tRNA synthetases: implications for the evolution of aminoacyl-tRNA synthetases and the genetic code. J Mol Evol, 40, 519-530.
He, L. and Hannon, G.J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5, 522-531.
Hsu, R.J., Yang, H.J. and Tsai, H.J. (2009) Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res, 37, e77.
Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T. and Zamore, P.D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293, 834-838.
Itoh, Y., Sekine, S., Kuroishi, C., Terada, T., Shirouzu, M., Kuramitsu, S. and Yokoyama, S. (2008) Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii. RNA Biol, 5, 169-177.
John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C. and Marks, D.S. (2004) Human MicroRNA targets. PLoS Biol, 2, e363.
Khvorova, A., Reynolds, A. and Jayasena, S.D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 209-216.
Kloosterman, W.P., Wienholds, E., Ketting, R.F. and Plasterk, R.H. (2004) Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res, 32, 6284-6291.
Kloosterman, W.P., Wienholds, E., de Bruijn, E., Kauppinen, S. and Plasterk, R.H. (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods, 3, 27-29.
Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M. (2005) Combinatorial microRNA target predictions. Nat Genet, 37, 495-500.
Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M. and Stoffel, M. (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature, 438, 685-689.
Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W. and Tuschl, T. (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol, 12, 735-739.
Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. and Tuschl, T. (2003) New microRNAs from mouse and human. RNA, 9, 175-179.
Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-854
Lee, R.C. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science, 294, 862-864.
Lee, Y., Jeon, K., Lee, J.T., Kim, S. and Kim, V.N. (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 21, 4663-4670.
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415-419.
Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23, 4051-4060.
Lesjak, S. and Weygand-Durasevic, I. (2009) Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations. FEMS Microbiol Lett, 294, 111-118.
Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. and Burge, C.B. (2003) Prediction of mammalian microRNA targets. Cell, 115, 787-798.
Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15-20.
Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. and Bartel, D. P. (2003) Vertebrate microRNA genes. Science, 299, 1540.
Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S. and Johnson, J.M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769-773.
McCarthy, J.J. and Esser, K.A. (2007) MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol, 102, 306-313.
Mishima, Y., Abreu-Goodger, C., Staton, A.A., Stahlhut, C., Shou, C., Cheng, C., Gerstein, M., Enright, A.J. and Giraldez, A.J. (2009) Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes Dev, 23, 619-632.
Mocibob, M. and Weygand-Durasevic, I. (2008) The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo. Arch Biochem Biophys, 470, 129-138.
Pollard, T.D. (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct, 36, 451-477.
Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432, 226-230.
Rao, P.K., Kumar, R.M., Farkhondeh, M., Baskerville, S. and Lodish, H.F. (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A, 103, 8721-8726.
Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R. and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-906.
Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B. and Bartel, D.P. (2002) Prediction of plant microRNA targets. Cell, 110, 513-520.
Robins, H., Li, Y. and Padgett, R.W. (2005) Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A, 102, 4006-4009.
Rokov-Plavec, J., Dulic, M., Duchene, A.M. and Weygand-Durasevic, I. (2008) Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts. Plant Cell Rep, 27, 1157-1168.
Safdar, A., Abadi, A., Akhtar, M., Hettinga, B.P. and Tarnopolsky, M.A. (2009) miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One, 4, e5610.
Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. and Zamore, P.D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199-208.
Shi, R. and Chiang, V.L. (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, 39, 519-525.
Slack, F.J., Basson, M., Liu, Z., Ambros, V., Horvitz, H.R. and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell, 5, 659-669.
Sokol, N.S. and Ambros, V. (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev, 19, 2343-2354.
Sweetman, D., Goljanek, K., Rathjen, T., Oustanina, S., Braun, T., Dalmay, T. and Munsterberg, A. (2008) Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev Biol, 321, 491-499.
Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. and Parker, R. (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20, 515-524.
van Rooij, E., Liu, N. and Olson, E.N. (2008) MicroRNAs flex their muscles. Trends Genet, 24, 159-166.
Wang, B., Love, T.M., Call, M.E., Doench, J.G. and Novina, C.D. (2006) Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell, 22, 553-560.
Watanabe, Y., Tomita, M. and Kanai, A. (2007) Computational methods for microRNA target prediction. Methods Enzymol, 427, 65-86.
Wienholds, E., Koudijs, M.J., van Eeden, F.J., Cuppen, E. and Plasterk, R.H. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet, 35, 217-218.
Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H.R., Kauppinen, S. and Plasterk, R.H. (2005) MicroRNA expression in zebrafish embryonic development. Science, 309, 310-311.
Wienholds, E. and Plasterk, R.H. (2005) MicroRNA function in animal development. FEBS Lett, 579, 5911-5922.
Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S. and Kellis, M. (2005) Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature, 434, 338-345.
Zhao, Y., Samal, E. and Srivastava, D. (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214-220.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23228-
dc.description.abstract微型核醣核酸 (MicroRNA, miRNA) 為短片段 (~22 nt) 之非轉譯核醣核酸 (noncoding RNAs, ncRNAs),其藉由保守性種子序列 (conservative seed sequence )與目標基因之 3’ 端非轉譯區 (3’- untranslated region, 3’UTR) 結合,於轉錄後層級 (post-transcriptional level) 調控基因的表現。 microRNA-1 (miR-1) 為肌肉專一型微型核醣核酸 (muscle-specific miRNA),雖然已知其可專一地表現於心肌與骨骼肌,但是參與在軀幹部骨骼肌的分子調控機制尚不清楚。我們先前利用 Labeled microRNA pull-down (LAMP) assay system (Hsu et al., 2009) 篩選在 whole-cell extracts 中可與 miR-1 結合的 mRNA 片段,再以 microarray 進行比對分析及確認。結果發現在斑馬魚中 miR-1 可能與 seryl-tRNA synthetase (sars) 的3’ 端非轉譯區結合。於是本研究中,我們利用全胚胎原位雜交實驗 (WISH) 初步證實 miR-1 與 sars 在胚胎發育早期 18-24 hpf 之軀幹部肌節中具有同位性的表現,且至發育晚期 24-48 hpf 形成軀幹部肌肉時,也一起在快肌中同位性表現。進一步利用 Luciferase reporter assay system 於 COS-1 cells 與斑馬魚胚胎中證實於 in vitro 與 in vivo 系統中,miR-1 均可透過 sars-3’UTR 抑制報導基因的表現,其抑制能力分別為90.6±1.4 % 與 64.6±4.74%。並利用西方浸漬法證實 miR-1 可抑制 Sars 蛋白質的表現。另一方面,我們發現在胚胎中,若過量表現 miR-1 時,會造成胚胎體節萎縮及分節不明顯;而注射 sars 轉譯抑制劑 (morpholino oligonucleotides, MO) 降低 Sars 蛋白質表現時,則產生類似過量表現 miR-1 所造成之缺失。若於胚胎中同時注射 sars mRNA 與 miR-1,則可降低 miR-1 過量表現所造成的缺失比例。我們進一步發現於胚胎中過量表現 sars、降低 miR-1 以及降低 sars 表現時,均會造成斑馬魚快肌之肌動蛋白排列紊亂與活動力降低。綜合以上證據,我們認為 sars 為 miR-1 下游調控的基因,且 miR-1 可藉由直接抑制目標基因 sars ,來調控斑馬魚快肌之肌動蛋白排列,進而影響斑馬魚軀幹部快肌的形成與維持。zh_TW
dc.description.abstractThe microRNA (miRNA) is a short (19-22nt) and endogenous non-coding RNA that silences gene expression at the post-transcriptional level by means of binding to the 3’-untranslated translated region (3’UTR) of target mRNA via a conservative seed sequence (5-8 nt) of miRNAs. miR-1, a muscle-specific miRNA, is significantly expressed in cardiac and skeletal muscle. However, the detailed molecular regulatory mechanism of miR-1 in the skeletal muscle is still unknown. Previously we screened the target mRNAs of miR-1 from whole-cell extracts of zebrafish embryos of 48 hpf by both miRNA-pull down assay (Hsu et al., 2009) and microarray analysis. We obtained the putative target gene seryl-tRNA synthetase (sars). In this study, using whole-mount in situ hybridization, we observed that the expression patterns of miR-1 and sars were co-localized in the somites during 18-24 hpf, and they were co-localized in the fast-twitch muscle of trunk after muscle formation. Then, we went further to confirm that miR-1 was able to repress the luciferase activity through binding to the 3’UTR of sars mRNAs in COS-1 cells and zebrafish embryos, respectively. Compared to the control group, the expression levels of luciferase reporter constructs harboring the 3’UTR of sars were reduced 90.6±1.4 % and 64.6±4.74%, respectively. And using Western blotting, we validated miR-1 could repress Sars protein expression. On the other hand, we observed that overexpression of miR-1 resulted in somitic atrophy and indistinct somite boundary. Interestingly, when knockdown of sars by injected with sars-MO,the defect was similar to the embryos injected with miR-1 RNA。And the miR-1-induced defect could be partially rescued by co-injection of sars mRNA. In addition, we observed that overexpression of sars, loss-of sars and loss-of miR-1 disrupted the fast-twitch muscle actin organization. Taken together, we demonstrated that sars was a direct target gene of miR-1. By directly inhibiting the expression of sars, miR-1 could regulate actin organization of zebrafish trunk fast-twitch muscle to impact on its formation and maintenance.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:48:35Z (GMT). No. of bitstreams: 1
ntu-98-R96b43022-1.pdf: 11272084 bytes, checksum: 4ab3478a9b59c3b895b70c9b10397cef (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
中文摘要 ---------------------------------------------- 1
英文摘要 ---------------------------------------------- 2
文獻回顧 ---------------------------------------------- 4
前言 -------------------------------------------------- 11
材料與方法 -------------------------------------------- 13
結果 -------------------------------------------------- 28
討論 -------------------------------------------------- 38
總結 -------------------------------------------------- 45
參考文獻 ---------------------------------------------- 46
圖 ---------------------------------------------------- 53
附錄 -------------------------------------------------- 69
dc.language.isozh-TW
dc.subject快肌zh_TW
dc.subject微型核醣核酸zh_TW
dc.subjectfast-twitch muscleen
dc.subjectmicroRNAen
dc.subjectmiR-1en
dc.titlemicroRNA miR-1 藉由直接抑制目標基因 seryl-tRNA synthetase 以調控斑馬魚快肌之肌動蛋白排列zh_TW
dc.titleThe microRNA miR-1 regulates fast-twitch muscle actin organization through silencing the target gene seryl-tRNA synthetase in zebrafish embryosen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳曜鴻,俞震亞,陳盛良
dc.subject.keyword微型核醣核酸,快肌,zh_TW
dc.subject.keywordmicroRNA,miR-1,fast-twitch muscle,en
dc.relation.page73
dc.rights.note未授權
dc.date.accepted2009-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
11.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved