Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23226
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱式鴻(Shyh-Horng Chiou)
dc.contributor.authorYu-Huan Sunen
dc.contributor.author孫玉歡zh_TW
dc.date.accessioned2021-06-08T04:48:29Z-
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation伍、參考文獻
1. Kaiser J. Proteomics. Public-private group maps out initiatives. Science 296: 827, 2002.
2. Stults JT, Arnott D. Proteomics. Methods Enzymol. 402: 245-89, 2005.
3. Baldwin MA. Analysis of glycosylphosphatidylinositol protein anchors: the prion protein. Methods Enzymol. 405: 172-87, 2005.
4. Chan SM, Utz PJ. The challenge of analyzing the proteome in humans with autoimmune diseases. Ann. N. Y. Acad. Sci. 1062: 61-8, 2005.
5. Michel PE, Crettaz D, Morier P, Heller M, Gallot D, Tissot JD, Reymond F, Rossier JS. Proteome analysis of human plasma and amniotic fluid by Off-Gel isoelectric focusing followed by nano-LC-MS/MS. Electrophoresis 27: 1169-81, 2006.
6. Stevens EV, Posadas EM, Davidson B, Kohn EC. Proteomics in cancer. Ann. Oncol. 15 Suppl. 4: iv167-71, 2004.
7. Everley PA, Zetter BR. Proteomics in tumor progression and metastasis. Ann. N. Y. Acad. Sci. 1059: 1-10, 2005.
8. Blake CA, Helmke SM. Proteomics of the anterior pituitary gland as a model for studying the physiology of a heterogeneous organ. Exp. Biol. Med. 230: 793-9, 2005.
9. Ekins S, Nikolsky Y, Nikolskaya T. Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends. Pharmacol. Sci. 26: 202-9, 2005.
10. Themmen AP. An update of the pathophysiology of human gonadotrophin subunit and receptor gene mutations and polymorphisms. Reproduction 130: 263-74, 2005.
11. Asa SL, Ezzat S. Genetics and proteomics of pituitary tumors. Endocrine 28: 43-7, 2005.
12. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-5, 1984.
13. Weiss J, Tsang TK, Meng X, Zhang H, Kilner E, Wang E, Watkin W. Detection of Helicobacter pylori gastritis by PCR: correlation with inflammation scores and immunohistochemical and CLOtest findings. Am. J. Clin. Pathol. 129: 89-96, 2008.
14. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539-47, 1997.
15. Suerbaum S, Michetti P. Helicobacter pylori infection. N. Engl. J. Med. 347: 1175-86, 2002.
16. Walker MM, Crabtree JE. Helicobacter pylori infection and the pathogenesis of duodenal ulceration. Ann. N. Y. Acad. Sci. 859: 96-111, 1998.
17. Stoicov C, Saffari R, Cai X, Hasyagar C, Houghton J. Molecular biology of gastric cancer: Helicobacter infection and gastric adenocarcinoma: bacterial and host factors responsible for altered growth signaling. Gene 341: 1-17, 2004.
18. Hopkins RJ, Girardi LS, Turney EA. Relationship between Helicobacter pylori eradication and reduced duodenal and gastric ulcer recurrence: a review. Gastroenterology 110: 1244-52, 1996.
19. Aspholm-Hurtig M, Dailide G, Lahmann M, Kalia A, Ilver D, Roche N, Vikstrom S, Sjostrom R, Linden S, Backstrom A, Lundberg C, Arnqvist A, Mahdavi J, Nilsson UJ, Velapatino B, Gilman RH, Gerhard M, Alarcon T, Lopez-Brea M, Nakazawa T, Fox JG, Correa P, Dominguez-Bello MG, Perez-Perez GI, Blaser MJ, Normark S, Carlstedt I, Oscarson S, Teneberg S, Berg DE, Boren T. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305: 519-22, 2004.
20. Hennig EE, Mernaugh R, Edl J, Cao P, Cover TL. Heterogeneity among Helicobacter pylori strains in expression of the outer membrane protein BabA. Infect. Immun. 72: 3429-35, 2004.
21. Backstrom A, Lundberg C, Kersulyte D, Berg DE, Boren T, Arnqvist A. Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding. Proc. Natl. Acad. Sci. U.S.A. 101: 16923-8, 2004.
22. Hatakeyama M, Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 96: 835-43, 2005.
23. Blaser MJ. The biology of cag in the Helicobacter pylori-human interaction. Gastroenterology 128: 1512-5, 2005.
24. Yoshiyama H, Nakazawa T. Unique mechanism of Helicobacter pylori for colonizing the gastric mucus. Microbes Infect. 2: 55-60, 2000.
25. Boyle EC, Finlay BB. Bacterial pathogenesis: exploiting cellular adherence. Curr. Opin. Cell Biol. 15: 633-9, 2003.
26. Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 3: 320-32, 2005.
27. Del Prete G, Chiumiento L, Amedei A, Piazza M, D'Elios MM, Codolo G, de Bernard M, Masetti M, Bruschi F. Immunosuppression of TH2 responses in Trichinella spiralis infection by Helicobacter pylori neutrophil-activating protein. J. Allergy Clin. Immunol. 122: 908-913 e5, 2008.
28. Wang CA, Liu YC, Du SY, Lin CW, Fu HW. Helicobacter pylori neutrophil-activating protein promotes myeloperoxidase release from human neutrophils. Biochem. Biophys. Res. Commun. 377: 52-6, 2008.
29. Evans DJ, Jr., Evans DG, Lampert HC, Nakano H. Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene 153: 123-7, 1995.
30. Montemurro P, Barbuti G, Dundon WG, Del Giudice G, Rappuoli R, Colucci M, De Rinaldis P, Montecucco C, Semeraro N, Papini E. Helicobacter pylori neutrophil-activating protein stimulates tissue factor and plasminogen activator inhibitor-2 production by human blood mononuclear cells. J. Infect. Dis. 183: 1055-62, 2001.
31. Satin B, Del Giudice G, Della Bianca V, Dusi S, Laudanna C, Tonello F, Kelleher D, Rappuoli R, Montecucco C, Rossi F. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J. Exp. Med. 191: 1467-76, 2000.
32. Montemurro P, Nishioka H, Dundon WG, de Bernard M, Del Giudice G, Rappuoli R, Montecucco C. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a potent stimulant of mast cells. Eur. J. Immunol. 32: 671-6, 2002.
33. Tonello F, Dundon WG, Satin B, Molinari M, Tognon G, Grandi G, Del Giudice G, Rappuoli R, Montecucco C. The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol. Microbiol. 34: 238-46, 1999.
34. Evans DJ, Jr., Evans DG, Takemura T, Nakano H, Lampert HC, Graham DY, Granger DN, Kvietys PR. Characterization of a Helicobacter pylori neutrophil-activating protein. Infect. Immun. 63: 2213-20, 1995.
35. Zanotti G, Papinutto E, Dundon W, Battistutta R, Seveso M, Giudice G, Rappuoli R, Montecucco C. Structure of the neutrophil-activating protein from Helicobacter pylori. J. Mol. Biol. 323: 125-30, 2002.
36. Henle ES, Luo Y, Linn S. Fe2+, Fe3+, and oxygen react with DNA-derived radicals formed during iron-mediated Fenton reactions. Biochemistry 35: 12212-9, 1996.
37. Wolf SG, Frenkiel D, Arad T, Finkel SE, Kolter R, Minsky A. DNA protection by stress-induced biocrystallization. Nature 400: 83-5, 1999.
38. Buda F, Ensing B, Gribnau MC, Baerends EJ. O2 evolution in the Fenton reaction. Chemistry 9: 3436-44, 2003.
39. Dundon WG, Polenghi A, Del Guidice G, Rappuoli R, Montecucco C. Neutrophil-activating protein (HP-NAP) versus ferritin (Pfr): comparison of synthesis in Helicobacter pylori. FEMS Microbiol. Lett. 199: 143-9, 2001.
40. Chuang MH, Wu MS, Lo WL, Lin JT, Wong CH, Chiou SH. The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. U.S.A. 103: 2552-7, 2006.
41. Olczak AA, Olson JW, Maier RJ. Oxidative-stress resistance mutants of Helicobacter pylori. J. Bacteriol. 184: 3186-93, 2002.
42. Ceci P, Mangiarotti L, Rivetti C, Chiancone E. The neutrophil-activating Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from Escherichia coli Dps to bind and condense DNA. Nucleic Acids Res. 35: 2247-56, 2007.
43. Teneberg S, Miller-Podraza H, Lampert HC, Evans DJ, Jr., Evans DG, Danielsson D, Karlsson KA. Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori. J. Biol. Chem. 272: 19067-71, 1997.
44. Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM. Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect. Immun. 66: 444-7, 1998.
45. Montecucco C, de Bernard M. Molecular and cellular mechanisms of action of the vacuolating cytotoxin (VacA) and neutrophil-activating protein (HP-NAP) virulence factors of Helicobacter pylori. Microbes Infect. 5: 715-21, 2003.
46. Joossens JV, Geboers J. Nutrition and gastric cancer. Nutr. Cancer 2: 250-61, 1981.
47. Joossens JV, Hill MJ, Elliott P, Stamler R, Lesaffre E, Dyer A, Nichols R, Kesteloot H. Dietary salt, nitrate and stomach cancer mortality in 24 countries. European Cancer Prevention (ECP) and the INTERSALT Cooperative Research Group. Int. J. Epidemiol. 25: 494-504, 1996.
48. Fox JG, Dangler CA, Taylor NS, King A, Koh TJ, Wang TC. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice. Cancer Res. 59: 4823-8, 1999.
49. Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287: 252-60, 2000.
50. Loh JT, Torres VJ, Cover TL. Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res. 67: 4709-15, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23226-
dc.description.abstract中文摘要
幽門螺旋桿菌是一種微耗氧性(5% O2)的革蘭氏陰性桿菌,外觀主要呈螺旋狀,菌體長約2至4微米,寬約0.5微米,其中一端具有數根鞭毛,可幫助菌體以螺旋狀方式移動至胃部,並穩定地寄居在人體胃部的黏膜層。根據統計,目前幽門桿菌約感染全世界一半以上的人口,但在絕大多數的受感染者體內都只造成症狀輕微的慢性胃炎,只有部份感染毒性較強菌株的病患才會發生胃潰瘍或甚至是胃腺癌等胃部疾病。然而雖然目前研究已知感染幽門桿菌是導致胃癌與消化性潰瘍的關鍵因素,但也有部份研究認為,當這項因素單獨存在並不足以致病。根據先前流行病學及動物模式的實驗發現,在已感染幽門螺旋桿菌的狀況下,高鹽的飲食習慣可能會促進胃炎的惡化及提高胃癌的發生率。
在這篇研究當中,我們想以蛋白質體學的方式去討論在高鹽環境下,幽門桿菌的蛋白質表現量是否會受到調節。在實驗中,我們分別將由臨床胃癌及十二指腸潰瘍病患身上分離出的幽門桿菌菌株培養在含有0.5%或2%氯化鈉的腦心浸出物培養液(BHI broth)中培養24小時,接著利用二維電泳、液相層析串聯質譜儀的結果與生物資訊資料庫作搜尋比對,我們找出數個在高鹽濃度的培養液中表現量會上升的蛋白質,其中包含嗜中性細胞激活蛋白(Neutrophil Activating Protein, NapA)、過氧化氫分解酶(Catalase)、尿素分解酶A、B次單元體(UreaA, UreaB),與50S核糖體蛋白質L7/ L12 (50S ribosomal proteins L7/L12)等蛋白。
NapA蛋白是屬於Dps family (DNA protection during starvation)蛋白的一員,是由約17 kDa左右的相同單體聚合成的十二聚體蛋白(dodecamer),是幽門桿菌一個重要的致病因子(virulence factor)之一。目前研究認為NapA對於幽門桿菌有兩個主要的功能:第一個功能是吸引嗜中性細胞(neutrophils)與單核球(monocytes),並促使這些免疫細胞產生活性氧物質(reactive oxygen species, ROS),引發局部發炎反應;而另一個可能的功能則是與鐵離子結合,避免細胞中的游離鐵離子與過氧化氫進行Fenton reaction而生成會對細胞造成傷害的氫氧自由基(OH•)。
本論文的研究重點在於探討幽門桿菌臨床胃癌菌株HC28的NapA之重組蛋白(HC28-NapA)及十二指腸潰瘍菌株HD30的NapA之重組蛋白(H30-NapA)在高鹽壓力下其物化性質的變化,我們利用了分析級超高速離心機(Analytical Ultracentrifuge, AUC)及快速液態層析儀(Fast Performance Liquid Chromatography, FPLC)去分析NapA蛋白在高鹽壓力下的變化,結果發現在2000 mM NaCl濃度下,NapA蛋白的分子量會由原態大小約200 kDa,下降至150 kDa左右,表示NapA蛋白在高鹽濃度下,其蛋白質次單元體(subunit)可能會發生解離(dissociation)。同時我們也利用圓雙色偏光吸收光譜儀(Circular Dichroism, CD)及螢光光譜(Fluorescence Spectroscopy)去測定NapA蛋白在高鹽濃度下的二級和三級結構變化。並利用恆溫滴定熱卡計ITC (Isothermal Titration Calorimetry)去測量NapA蛋白與鐵離子結合的化學計量數(stoichiometry, n),並討論高鹽狀態下NapA蛋白與鐵離子的結合能力是否受到影響。
zh_TW
dc.description.abstractHelicobacter pylori (H. pylori) is a helix-shaped, microaerophilic Gram-negative bacterium, about 2 to 4 μm long with a diameter of about 0.5 μm. The bacterium can move through the stomach by means of its flagella, forming long-term stable colonies in the mucosa of stomachs. According to previous epidemiological studies, H. pylori infected stomachs of more than 50% of human population. Infection by H. pylori usually causes chronic gastritis without obvious symptoms; but in some strains producing specific virulence factors, they may lead to the development of ulcers or even gastric adenocarcinoma. It is known that H. pylori infection is the leading cause of gastric cancer and peptic-ulcer diseases. However, the factors involved in diseases caused by this bacterium are known to be complex and multi-factorial. Some human epidemiologic studies and animal models have confirmed that a high-salt dietary intake significantly increase the risk of gastritis and enhance the development of gastric carcinoma caused probably by H. pylori infection.
To address the influence of high osmotic stress, we focus on the protein expression profile of H. pylori under high salt concentration by a proteomic approach. Clinical isolates of H. pylori from patients of gastric cancer (HC28) and duodenal ulcer (HD30) were grown in a normal BHI medium (0.5% NaCl) and hyper-osmotic stress (BHI medium supplemented with 2% NaCl) conditions for 24 h, followed by 2D electrophoresis, LC-MS/MS, MALDI-TOF-MS and bioinformatics database search/peptide-mass comparison. In this study, we identify some H. pylori proteins that were altered in response to high salt concentration in liquid culture media, including conspicuously a virulence factor of H. pylori, neutrophil activating protein (NapA), plus catalase, UreaA, UreaB, and 50S ribosomal proteins L7/L12.
NapA is a dodecameric protein consisting of 17 kDa monomers, and belongs to a member of Dps protein family. It acts as one of the major virulence factors in H. pylori infection. It has also been shown to play dual roles inside affected cells. First, it can elicit the cellular responses for the recruitment of human neutrophils and monocytes, the activation upon which immune cells would generate reactive oxygen radicals released from neutrophils and cause the inflammation locally. Secondly, NapA can sequester free ferrous ions in the cell to prevent the production of toxic hydroxyl radicals from Fenton reaction.
In this study, we have also cloned and purified recombinant NapA by RT-PCR and overexpression of this protein factor. We characterized and compared the molecular sizes of NapA obtained from H. pylori of gastric cancer strain HC28 (HC28-NapA) and duodenum ulcer strain HD30 (HD30-NapA) under high-salt stress by using analytical ultracentrifuge (AUC) and fast performance liquid chromatography (FPLC). We found that the molecular mass of NapA can be reduced from 200 kDa to about 150 kDa in the presence of 2000 mM NaCl, suggesting that the subunits of NapA may dissociate into smaller aggregates under high-salt concentration. Furthermore, we also characterized the secondary and tertiary structures of NapA under different salt concentrations by circular dichroism (CD) and fluorescence spectroscopy. The binding stoichiometry between iron and NapA under different salt concentrations was also analyzed by using isothermal titration calorimetry (ITC) in order to reveal the quantitative binding relationship between iron and NapA.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:48:29Z (GMT). No. of bitstreams: 1
ntu-98-R96b46017-1.pdf: 4543753 bytes, checksum: 3c4ba77d3ee55d2b0a38680f12c8c0cc (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents內文目錄
壹、背景介紹
第一章 蛋白質體學簡介………………………………………………………..….1
第二章 幽門螺旋桿菌(Helicobacter pylori)之簡介……………………………….5
第三章 幽門螺旋桿菌之嗜中性粒細胞激活蛋白(neutrophil activating protein) ..9
第四章 研究動機與目的………………………………………………………….12
貳、材料與方法
第一章 實驗材料………………………………………………………………….14
1.1 實驗菌株、載體及引子……………………………………………………14
1.2 實驗試藥及相關酵素………………………………………………..……..14
1.3 實驗儀器設備……………………………………….………………..…….14
第二章 實驗方法………………………………………………………………….15
2.1 胃幽門螺旋桿菌的培養……………………………………………..….….15
2.2 二維電泳與蛋白質影像分析……………………………….…………..….16
2.3 胃幽門螺旋桿菌NapA蛋白基因的定序……………………..………..….19
2.4 胃幽門螺旋桿菌NapA重組蛋白的表現與純化……………………....….21
2.5 胃幽門螺旋桿菌NapA蛋白結構的電腦模擬預測………….…………….23
2.6 各種鹽濃度之NapA蛋白的配製…………….………………………....….23
2.7 不同鹽濃度狀況下NapA蛋白之分子量變化…………….……………….24
2.8 不同鹽濃度下NapA蛋白之二級結構變化……………….….………...….26
2.9 不同鹽濃度下NapA蛋白之螢光光譜………………...……………….….27
2.10不同鹽濃度下NapA蛋白之亞鐵氧化酶活性測試…………………….....28
2.11 NapA蛋白之恆溫滴定熱卡計(isothermal titration calorimeter)測定…….30
參、實驗結果…………………………………………………………………………..31
第一章 高鹽環境下胃幽門螺旋桿菌的蛋白質體分析與相關蛋白質鑑定..…...31
1.1 高鹽壓力下幽門螺旋桿菌之蛋白質體圖譜………………………….…...31
1.2 高鹽壓力下幽門螺旋桿菌之蛋白質表現量變化分析…………….....…...33
第二章 幽門桿菌NapA蛋白的基因定序與重組蛋白質體表現……………......35
2.1 幽門桿菌NapA蛋白之基因定序…......................................................…...35
2.2 幽門桿菌NapA蛋白的表現、純化與鑑定….....………………………....37
2.3 幽門桿菌NapA蛋白之電腦模擬預測結構…......................................…...39
第三章 幽門桿菌NapA蛋白在不同鹽濃度狀態下之分子量變化測試與分析.....40
3.1 NapA蛋白聚合體之分子量及聚合數鑑定…........................................…...40
3.2 NapA蛋白聚合體之沉降係數(sedimentation coefficient)鑑定......……......42
第四章 幽門螺旋桿菌NapA蛋白在不同鹽濃度狀態下之二級結構與三級結構變化分析…..........................................................................................…...45
4.1 NapA蛋白二級結構之鑑定分析..................................................................45
4.2 NapA蛋白三級結構之鑑定分析............................................................…...48
4.3 NapA蛋白表面疏水性之變化分析........................................................…...49
4.4 NapA蛋白之內生性螢光變化分析........................................................…...50
第五章 幽門螺旋桿菌NapA蛋白在不同鹽濃度狀態下與鐵離子結合能力及亞鐵氧化酶活性測試........................................................................………..51
5.1 NapA蛋白之亞鐵氧化酶活性分析..................................................………..51
5.2 NapA蛋白與鐵離子結合之結合常數與熱力學分析…………………..…..53
肆、結果討論…........................................................................................................…...54
第一章 幽門桿菌在高鹽壓力下之蛋白質表現量變化探討……….………..…..54
第二章 NapA在高鹽濃度環境下之結構變化……….…………………………..56
第三章 NapA蛋白之鐵離子結合常數與熱力學變化探討……….………....…..58
伍、參考文獻…........................................................................................................…...61
陸、附錄…...............................................................................................................…...66
dc.language.isozh-TW
dc.subject恆溫滴定熱卡計zh_TW
dc.subject幽門桿菌zh_TW
dc.subject胃癌zh_TW
dc.subject十二指腸潰瘍zh_TW
dc.subject蛋白質體學zh_TW
dc.subject嗜中性粒細胞激活蛋白zh_TW
dc.subject分析級超高速離心機zh_TW
dc.subjectduodenal ulceren
dc.subjectisothermal titration calorimetryen
dc.subjectanalytical ultracentrifugeen
dc.subjectneutrophil activating proteinen
dc.subjectHelicobacter pylorien
dc.subjectgastric canceren
dc.subjectproteomicsen
dc.title幽門螺旋桿菌在高鹽壓力下的蛋白質體分析:嗜中性細胞激活蛋白的物化性質研究zh_TW
dc.titleProteomic study of Helicobacter pylori under high-salt stress: Physicochemical characterization of neutrophil activating protein (NapA)en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳世雄(Shih-Hsiung Wu),林俊宏(Chun-Hung Lin)
dc.subject.keyword幽門桿菌,胃癌,十二指腸潰瘍,蛋白質體學,嗜中性粒細胞激活蛋白,分析級超高速離心機,恆溫滴定熱卡計,zh_TW
dc.subject.keywordHelicobacter pylori,gastric cancer,duodenal ulcer,proteomics,neutrophil activating protein,analytical ultracentrifuge,isothermal titration calorimetry,en
dc.relation.page76
dc.rights.note未授權
dc.date.accepted2009-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved