Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23219
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorChun-Kai Laien
dc.contributor.author賴俊凱zh_TW
dc.date.accessioned2021-06-08T04:48:07Z-
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citationAdams J, Kelso R, Cooley L (2000) The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10(1): 17-24
Alcalay M, Tomassoni L, Colombo E, Stoldt S, Grignani F, Fagioli M, Szekely L, Helin K, Pelicci PG (1998) The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol 18(2): 1084-1093
Allen E, Ding J, Wang W, Pramanik S, Chou J, Yau V, Yang Y (2005) Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 438(7065): 224-228
Alsheich-Bartok O, Haupt S, Alkalay-Snir I, Saito S, Appella E, Haupt Y (2008) PML enhances the regulation of p53 by CK1 in response to DNA damage. Oncogene 27(26): 3653-3661
Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP (2004) PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6(7): 665-672
Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A (2002) Deconstructing PML-induced premature senescence. EMBO J 21(13): 3358-3369
Boisvert FM, Hendzel MJ, Bazett-Jones DP (2000) Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148(2): 283-292
Bomont P, Cavalier L, Blondeau F, Ben Hamida C, Belal S, Tazir M, Demir E, Topaloglu H, Korinthenberg R, Tuysuz B, Landrieu P, Hentati F, Koenig M (2000) The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 26(3): 370-374
Borden KL, Lally JM, Martin SR, O'Reilly NJ, Solomon E, Freemont PS (1996) In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci U S A 93(4): 1601-1606
Bork P, Doolittle RF (1994) Drosophila kelch motif is derived from a common enzyme fold. J Mol Biol 236(5): 1277-1282
Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11(2): 82-88
Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D (1998) Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281(5384): 1860-1863
Chang KS, Fan YH, Andreeff M, Liu J, Mu ZM (1995) The PML gene encodes a phosphoprotein associated with the nuclear matrix. Blood 85(12): 3646-3653
Chen LY, Chen JD (2003) Daxx silencing sensitizes cells to multiple apoptotic pathways. Mol Cell Biol 23(20): 7108-7121
Chen W, Zollman S, Couderc JL, Laski FA (1995) The BTB domain of bric a brac mediates dimerization in vitro. Mol Cell Biol 15(6): 3424-3429
Chen WL, Lin JW, Huang HJ, Wang SM, Su MT, Lee-Chen GJ, Chen CM, Hsieh-Li HM (2008) SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res 1233: 176-184
Chen Y, Derin R, Petralia RS, Li M (2002) Actinfilin, a brain-specific actin-binding protein in postsynaptic density. J Biol Chem 277(34): 30495-30501
Claiborne BJ, Xiang Z, Brown TH (1993) Hippocampal circuitry complicates analysis of long-term potentiation in mossy fiber synapses. Hippocampus 3(2): 115-121
Condemine W, Takahashi Y, Zhu J, Puvion-Dutilleul F, Guegan S, Janin A, de The H (2006) Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 66(12): 6192-6198
D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4(1): 11-19
de The H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347(6293): 558-561
Ding J, Allen E, Wang W, Valle A, Wu C, Nardine T, Cui B, Yi J, Taylor A, Jeon NL, Chu S, So Y, Vogel H, Tolwani R, Mobley W, Yang Y (2006) Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport. Hum Mol Genet 15(9): 1451-1463
Dyck JA, Maul GG, Miller WH, Jr., Chen JD, Kakizuka A, Evans RM (1994) A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76(2): 333-343
Eichinger L, Bomblies L, Vandekerckhove J, Schleicher M, Gettemans J (1996) A novel type of protein kinase phosphorylates actin in the actin-fragmin complex. EMBO J 15(20): 5547-5556
Engelhardt OG, Boutell C, Orr A, Ullrich E, Haller O, Everett RD (2003) The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML. Exp Cell Res 283(1): 36-50
Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16(3): 566-577
Fagioli M, Alcalay M, Pandolfi PP, Venturini L, Mencarelli A, Simeone A, Acampora D, Grignani F, Pelicci PG (1992) Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 7(6): 1083-1091
Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14(16): 2015-2027
Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K, Pandolfi PP, Will H, Schneider C, Del Sal G (2000) Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19(22): 6185-6195
Fujita Y, Taniguchi J, Uchikawa M, Endo M, Hata K, Kubo T, Mueller BK, Yamashita T (2008) Neogenin regulates neuronal survival through DAP kinase. Cell Death Differ 15(10): 1593-1608
Furukawa M, He YJ, Borchers C, Xiong Y (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5(11): 1001-1007
Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25(1): 162-171
Gao C, Ho CC, Reineke E, Lam M, Cheng X, Stanya KJ, Liu Y, Chakraborty S, Shih HM, Kao HY (2008) Histone deacetylase 7 promotes PML sumoylation and is essential for PML nuclear body formation. Mol Cell Biol 28(18): 5658-5667
Geyer R, Wee S, Anderson S, Yates J, Wolf DA (2003) BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 12(3): 783-790
Gilbert PE, Brushfield AM (2009) The role of the CA3 hippocampal subregion in spatial memory: a process oriented behavioral assessment. Prog Neuropsychopharmacol Biol Psychiatry 33(5): 774-781
Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, Pandolfi PP (2000) The function of PML in p53-dependent apoptosis. Nat Cell Biol 2(10): 730-736
Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C, Pandolfi PP (2004) Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96(4): 269-279
Hakli M, Karvonen U, Janne OA, Palvimo JJ (2005) SUMO-1 promotes association of SNURF (RNF4) with PML nuclear bodies. Exp Cell Res 304(1): 224-233
Hakli M, Lorick KL, Weissman AM, Janne OA, Palvimo JJ (2004) Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Lett 560(1-3): 56-62
Hara T, Ishida H, Raziuddin R, Dorkhom S, Kamijo K, Miki T (2004) Novel kelch-like protein, KLEIP, is involved in actin assembly at cell-cell contact sites of Madin-Darby canine kidney cells. Mol Biol Cell 15(3): 1172-1184
He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD (2006) Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 26(39): 9975-9982
Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281(23): 16117-16127
Hernandez MC, Andres-Barquin PJ, Martinez S, Bulfone A, Rubenstein JL, Israel MA (1997) ENC-1: a novel mammalian kelch-related gene specifically expressed in the nervous system encodes an actin-binding protein. J Neurosci 17(9): 3038-3051
Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, Schmitz ML (2002) Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4(1): 1-10
Huibregtse JM, Scheffner M, Howley PM (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10(13): 4129-4135
Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF, 3rd, Maul GG (1999) PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147(2): 221-234
Ito N, Phillips SE, Yadav KD, Knowles PF (1994) Crystal structure of a free radical enzyme, galactose oxidase. J Mol Biol 238(5): 794-814
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1): 76-86
Jang MS, Ryu SW, Kim E (2002) Modification of Daxx by small ubiquitin-related modifier-1. Biochem Biophys Res Commun 295(2): 495-500
Jiang S, Avraham HK, Park SY, Kim TA, Bu X, Seng S, Avraham S (2005) Process elongation of oligodendrocytes is promoted by the Kelch-related actin-binding protein Mayven. J Neurochem 92(5): 1191-1203
Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102(5): 549-552
Kamitani T, Kito K, Nguyen HP, Wada H, Fukuda-Kamitani T, Yeh ET (1998) Identification of three major sentrinization sites in PML. J Biol Chem 273(41): 26675-26682
Khan MM, Nomura T, Kim H, Kaul SC, Wadhwa R, Zhong S, Pandolfi PP, Ishii S (2001) PML-RARalpha alleviates the transcriptional repression mediated by tumor suppressor Rb. J Biol Chem 276(47): 43491-43494
Kim IF, Mohammadi E, Huang RC (1999) Isolation and characterization of IPP, a novel human gene encoding an actin-binding, kelch-like protein. Gene 228(1-2): 73-83
Kim TA, Jiang S, Seng S, Cha K, Avraham HK, Avraham S (2005) The BTB domain of the nuclear matrix protein NRP/B is required for neurite outgrowth. J Cell Sci 118(Pt 23): 5537-5548
Kim TA, Lim J, Ota S, Raja S, Rogers R, Rivnay B, Avraham H, Avraham S (1998) NRP/B, a novel nuclear matrix protein, associates with p110(RB) and is involved in neuronal differentiation. J Cell Biol 141(3): 553-566
Kim TA, Ota S, Jiang S, Pasztor LM, White RA, Avraham S (2000) Genomic organization, chromosomal localization and regulation of expression of the neuronal nuclear matrix protein NRP/B in human brain tumors. Gene 255(1): 105-116
Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C, et al. (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 13(5): 1073-1083
Krek W (2003) BTB proteins as henchmen of Cul3-based ubiquitin ligases. Nat Cell Biol 5(11): 950-951
Kroll J, Shi X, Caprioli A, Liu HH, Waskow C, Lin KM, Miyazaki T, Rodewald HR, Sato TN (2005) The BTB-kelch protein KLHL6 is involved in B-lymphocyte antigen receptor signaling and germinal center formation. Mol Cell Biol 25(19): 8531-8540
Kurki S, Latonen L, Laiho M (2003) Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 116(Pt 19): 3917-3925
Kwek SS, Derry J, Tyner AL, Shen Z, Gudkov AV (2001) Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20(20): 2587-2599
Laezza F, Wilding TJ, Sequeira S, Coussen F, Zhang XZ, Hill-Robinson R, Mulle C, Huettner JE, Craig AM (2007) KRIP6: a novel BTB/kelch protein regulating function of kainate receptors. Mol Cell Neurosci 34(4): 539-550
Laezza F, Wilding TJ, Sequeira S, Craig AM, Huettner JE (2008) The BTB/kelch protein, KRIP6, modulates the interaction of PICK1 with GluR6 kainate receptors. Neuropharmacology 55(7): 1131-1139
Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10(5): 547-555
Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC (2001) Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20(25): 3247-3257
Le XF, Vallian S, Mu ZM, Hung MC, Chang KS (1998) Recombinant PML adenovirus suppresses growth and tumorigenicity of human breast cancer cells by inducing G1 cell cycle arrest and apoptosis. Oncogene 16(14): 1839-1849
Lee HE, Jee CD, Kim MA, Lee HS, Lee YM, Lee BL, Kim WH (2007) Loss of promyelocytic leukemia protein in human gastric cancers. Cancer Lett 247(1): 103-109
Li H, Leo C, Zhu J, Wu X, O'Neil J, Park EJ, Chen JD (2000) Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 20(5): 1784-1796
Liang XQ, Avraham HK, Jiang S, Avraham S (2004) Genetic alterations of the NRP/B gene are associated with human brain tumors. Oncogene 23(35): 5890-5900
Louria-Hayon I, Alsheich-Bartok O, Levav-Cohen Y, Silberman I, Berger M, Grossman T, Matentzoglu K, Jiang YH, Muller S, Scheffner M, Haupt S, Haupt Y (2009) E6AP promotes the degradation of the PML tumor suppressor. Cell Death Differ
Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP, Haupt Y (2003) The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278(35): 33134-33141
Milovic-Holm K, Krieghoff E, Jensen K, Will H, Hofmann TG (2007) FLASH links the CD95 signaling pathway to the cell nucleus and nuclear bodies. EMBO J 26(2): 391-401
Moller A, Sirma H, Hofmann TG, Rueffer S, Klimczak E, Droge W, Will H, Schmitz ML (2003) PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 63(15): 4310-4314
Mu ZM, Chin KV, Liu JH, Lozano G, Chang KS (1994) PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 14(10): 6858-6867
Mu ZM, Le XF, Vallian S, Glassman AB, Chang KS (1997) Stable overexpression of PML alters regulation of cell cycle progression in HeLa cells. Carcinogenesis 18(11): 2063-2069
Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275(18): 13321-13329
Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17(1): 61-70
Nacak TG, Alajati A, Leptien K, Fulda C, Weber H, Miki T, Czepluch FS, Waltenberger J, Wieland T, Augustin HG, Kroll J (2007) The BTB-Kelch protein KLEIP controls endothelial migration and sprouting angiogenesis. Circ Res 100(8): 1155-1163
Nacak TG, Leptien K, Fellner D, Augustin HG, Kroll J (2006) The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem 281(8): 5065-5071
Padmanabha R, Chen-Wu JL, Hanna DE, Glover CV (1990) Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10(8): 4089-4099
Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406(6792): 207-210
Pearson M, Pelicci PG (2001) PML interaction with p53 and its role in apoptosis and replicative senescence. Oncogene 20(49): 7250-7256
Perez-Torrado R, Yamada D, Defossez PA (2006) Born to bind: the BTB protein-protein interaction domain. Bioessays 28(12): 1194-1202
Pintard L, Willems A, Peter M (2004) Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 23(8): 1681-1687
Prag S, Adams JC (2003) Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinformatics 4: 42
Regad T, Bellodi C, Nicotera P, Salomoni P (2009) The tumor suppressor Pml regulates cell fate in the developing neocortex. Nat Neurosci 12(2): 132-140
Reineke EL, Lam M, Liu Q, Liu Y, Stanya KJ, Chang KS, Means AR, Kao HY (2008) Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol Cell Biol 28(3): 997-1006
Robinson DN, Cooley L (1997) Drosophila kelch is an oligomeric ring canal actin organizer. J Cell Biol 138(4): 799-810
Rondou P, Haegeman G, Vanhoenacker P, Van Craenenbroeck K (2008) BTB Protein KLHL12 targets the dopamine D4 receptor for ubiquitination by a Cul3-based E3 ligase. J Biol Chem 283(17): 11083-11096
Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW, Lu KP (2002) PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 22(15): 5281-5295
Salinas GD, Blair LA, Needleman LA, Gonzales JD, Chen Y, Li M, Singer JD, Marshall J (2006) Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. J Biol Chem 281(52): 40164-40173
Salomoni P, Bernardi R, Bergmann S, Changou A, Tuttle S, Pandolfi PP (2005) The promyelocytic leukemia protein PML regulates c-Jun function in response to DNA damage. Blood 105(9): 3686-3690
Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, Tempst P, Pandolfi PP (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2): 269-283
Schaefer H, Rongo C (2006) KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. Mol Biol Cell 17(3): 1250-1260
Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3): 495-505
Schmid MF, Agris JM, Jakana J, Matsudaira P, Chiu W (1994) Three-dimensional structure of a single filament in the Limulus acrosomal bundle: scruin binds to homologous helix-loop-beta motifs in actin. J Cell Biol 124(3): 341-350
Schumacher AM, Schavocky JP, Velentza AV, Mirzoeva S, Watterson DM (2004) A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase. Biochemistry 43(25): 8116-8124
Seng S, Avraham HK, Jiang S, Venkatesh S, Avraham S (2006) KLHL1/MRP2 mediates neurite outgrowth in a glycogen synthase kinase 3beta-dependent manner. Mol Cell Biol 26(22): 8371-8384
Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24(3): 331-339
Soltysik-Espanola M, Rogers RA, Jiang S, Kim TA, Gaedigk R, White RA, Avraham H, Avraham S (1999) Characterization of Mayven, a novel actin-binding protein predominantly expressed in brain. Mol Biol Cell 10(7): 2361-2375
Son SH, Yu E, Choi EK, Lee H, Choi J (2005) Promyelocytic leukemia protein-induced growth suppression and cell death in liver cancer cells. Cancer Gene Ther 12(1): 1-11
Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101(40): 14373-14378
Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6(10): R82
Stogios PJ, Prive GG (2004) The BACK domain in BTB-kelch proteins. Trends Biochem Sci 29(12): 634-637
Swiercz JM, Kuner R, Behrens J, Offermanns S (2002) Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35(1): 51-63
Swiercz JM, Kuner R, Offermanns S (2004) Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2. J Cell Biol 165(6): 869-880
Tang J, Xie W, Yang X (2005) Association of caspase-2 with the promyelocytic leukemia protein nuclear bodies. Cancer Biol Ther 4(6): 645-649
Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5): 538-546
van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262(5142): 2050-2054
von Bulow M, Heid H, Hess H, Franke WW (1995) Molecular nature of calicin, a major basic protein of the mammalian sperm head cytoskeleton. Exp Cell Res 219(2): 407-413
Wang W, Ding J, Allen E, Zhu P, Zhang L, Vogel H, Yang Y (2005) Gigaxonin interacts with tubulin folding cofactor B and controls its degradation through the ubiquitin-proteasome pathway. Curr Biol 15(22): 2050-2055
Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP (1998) PML is essential for multiple apoptotic pathways. Nat Genet 20(3): 266-272
Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994) Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 76(2): 345-356
Williams SK, Spence HJ, Rodgers RR, Ozanne BW, Fitzgerald U, Barnett SC (2005) Role of Mayven, a kelch-related protein in oligodendrocyte process formation. J Neurosci Res 81(5): 622-631
Wu WS, Vallian S, Seto E, Yang WM, Edmondson D, Roth S, Chang KS (2001) The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases. Mol Cell Biol 21(7): 2259-2268
Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, Vidal M, Elledge SJ, Harper JW (2003) BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425(6955): 316-321
Xu ZX, Zou WX, Lin P, Chang KS (2005) A role for PML3 in centrosome duplication and genome stability. Mol Cell 17(5): 721-732
Xue F, Cooley L (1993) kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72(5): 681-693
Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley LC, Lu KP (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278(5345): 1957-1960
Yan W, Ma L, Burns KH, Matzuk MM (2004) Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proc Natl Acad Sci U S A 101(20): 7793-7798
Yang S, Kuo C, Bisi JE, Kim MK (2002) PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4(11): 865-870
Yu W, Li Y, Zhou X, Deng Y, Wang Z, Yuan W, Li D, Zhu C, Zhao X, Mo X, Huang W, Luo N, Yan Y, Ocorr K, Bodmer R, Wang Y, Wu X (2008) A novel human BTB-kelch protein KLHL31, strongly expressed in muscle and heart, inhibits transcriptional activities of TRE and SRE. Mol Cells 26(5): 443-453
Yukawa K, Tanaka T, Bai T, Li L, Tsubota Y, Owada-Makabe K, Maeda M, Hoshino K, Akira S, Iso H (2006) Deletion of the kinase domain from death-associated protein kinase enhances spatial memory in mice. Int J Mol Med 17(5): 869-873
Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24): 10941-10953
Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M (2005) Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem 280(34): 30091-30099
Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP (2000a) Role of SUMO-1-modified PML in nuclear body formation. Blood 95(9): 2748-2752
Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP (2000b) Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med 191(4): 631-640
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23219-
dc.description.abstractDIP-2為BTB-kelch蛋白家族的一員。許多BTB-kelch蛋白已被發現高度表現於神經系統中,並參與包括神經型態生成以及突觸訊息傳遞在內的神經發育機轉。但就DIP-2而言,儘管我們已發現它可作為Cul3泛素接合酶與受質間的轉接者,進而導致死亡相關蛋白激酶DAPK以及抑癌蛋白PML的泛素化和降解,但對於DIP-2的表現分佈以及其詳細的功能機制所知甚少。本篇論文中,我們觀察DIP-2於成鼠腦部的表現情形,發現DIP-2主要分佈於大腦皮層、海馬迴、嗅球及小腦皮層等區域。值得注意的是,DIP-2於絕大多數區域呈現以細胞體和樹突為主的表現型態,但於海馬迴CA3處則特別表現於軸突中。另一方面,為求更進一步瞭解DIP-2的功能,本篇論文亦深入探討DIP-2對PML進行蛋白降解的調控機制,從而發現細胞週期素依賴性激酶(CDKs)參與DIP-2對PML的調控。我們證實PML確實為CDK1/2/4/6的受質,而Ser 518則為主要發生磷酸化的殘基。實驗結果顯示,這些CDK都參與由DIP-2所誘發的PML蛋白降解。總的來說,這項研究不僅呈現DIP-2蛋白於鼠腦中的表現型態特徵,亦將DIP-2所媒介的PML蛋白降解與細胞週期對PML的調控機制作緊密結合,為抑癌蛋白PML穩定性的研究提供新的一層認知。zh_TW
dc.description.abstractDIP-2 is a member of the BTB-kelch protein family, of which several members are highly expressed in the nervous system and have been demonstrated to elicit neuronal functions, including neural morphogenesis and synapse transmission. However, little is known about the expression patterns of DIP-2 and its biological functions, although previous studies in our laboratory revealed that DIP-2 functions as a substrate adaptor of Cul3-based ubiquitin ligase to promote the ubiquitination of DAPK and PML. Here, we characterized the expression pattern of DIP-2 protein in the adult mouse brain and found its high expression levels in the cerebral cortex, the hippocampus, the olfactory bulb and the cerebellar cortex. Notably, DIP-2 displays both somatic and dendritic patterns in most regions observed, whereas it exhibits an axonal pattern in CA3 of hippocampus. In an attempt to study the function of DIP-2, we investigated the mechanism through which DIP-2 mediates PML protein degradation. First, we identified a role of CDK in DIP-2-mediated PML degradation. Furthermore, we demonstrated PML as the substrate of CDK1/2/4/6 in vitro and the Ser 518 residue as the major phosphorylation site. Finally, we showed that the each of these CDKs contributes to PML degradation induced by DIP-2. Together, this study not only presents the expression features of DIP-2 in mouse brain, but also provides a linkage between DIP-2-mediated PML degradation and cell cycle-dependent regulation of PML, thus adding another aspect of proper control for the stability of tumor suppressor PML protein.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:48:07Z (GMT). No. of bitstreams: 1
ntu-98-R95b43027-1.pdf: 3359049 bytes, checksum: f88d3aecbe620eca50681da0acf0ceaa (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of Content 2
中文摘要 4
Abstract 5
Introduction 6
The kelch-repeat superfamily 6
The BTB-kelch proteins 7
The BTB-kelch proteins in the nervous system 10
DIP-2 (DAPK-interacting protein 2) 13
PML (Promyelocytic Leukemia) 14
PML nuclear bodies 15
Functions of PML and PML-NBs in transcriptional regulation 16
Functions of PML and PML-NBs in apoptosis 17
PML as a tumor suppressor 18
The control of PML protein stability 19
Materials and Methods 21
RNA purification and RT-PCR 21
Plasmids 21
Establishment of DIP-2 knockdown cell by lentivirus system 22
Cell culture and transient transfection 22
Antibodies 23
Western blot 23
Immunohistochemistry 24
Immunofluorescence 24
Kinase inhibitors 25
In vitro kinase assay 25
Results 26
The expression pattern of DIP-2 in adult mouse brain 26
DIP-2 is localized mainly in cell bodies and dendrites but also in axons of certain neurons 28
CDK inhibitor blocks DIP-2-mediated PML degradation 29
CDK1 phosphorylates PML at serine 518 and serine 527 in vitro 30
CDK1, 2, 4 and 6 are all involved in DIP-2-mediated PML degradation. 30
Cyclins trigger DIP-2-mediated PML degradation 31
Discussion 32
References 36
Figures 49
Figure 1. Schematic illustration of DIP-2 domain structure and its function as an E3 ubiquitin ligase adaptor. 49
Figure 2. Schematic illustration of PML domain structure and its known residues for post-translational modifications. 50
Figure 3. Anti-DIP-2 antiserum specifically recognizes DIP-2. 51
Figure 4. Immunohistochemistry analysis for characterization of DIP-2 distribution in adult mouse brain. 52
Figure 5. DIP-2 is localized mainly in cell bodies and dendrites but also in axons of certain neurons. 54
Figure 6. CDK inhibitor blocks DIP-2-mediated degradation of ectopically expressed PML. 56
Figure 7. DIP-2-mediated degradation of endogenous PML is blocked by CDK inhibitor. 57
Figure 8. CDK1 phosphorylates PML principally at serine 518 in vitro. 58
Figure 9. CDK1, 2, 4 and 6 are all involved in DIP-2-mediated PML degradation. 59
Figure 10. Cyclins trigger DIP-2-mediated PML degradation. 60
Appendix 61
Table S1. Primers used in this thesis. 61
Figure S1. Expression pattern of DIP-2 mRNA in embryonic mice and adult mouse brain. 62
dc.language.isoen
dc.subject泛素化zh_TW
dc.subject降解zh_TW
dc.subjectPin1zh_TW
dc.subject腦zh_TW
dc.subject細胞週期素依賴性激&#37238zh_TW
dc.subjectDIP-2zh_TW
dc.subjectbrainen
dc.subjectPMLen
dc.subjectPin1en
dc.subjectDIP-2en
dc.subjectCDKen
dc.subjectBTB-kelchen
dc.titleBTB-kelch蛋白DIP-2的表現及功能特性分析zh_TW
dc.titleCharacterization of the Expression and Function of a Novel BTB-kelch Protein DIP-2en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee杜邦憲(Pang-Hsien Tu),張茂山(Mau-Sun Chang)
dc.subject.keyword降解,泛素化,腦,細胞週期素依賴性激&#37238,DIP-2,Pin1,zh_TW
dc.subject.keywordbrain,BTB-kelch,CDK,DIP-2,Pin1,PML,en
dc.relation.page63
dc.rights.note未授權
dc.date.accepted2009-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved