請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23208
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林敏聰 | |
dc.contributor.author | Bo-Yao Wang | en |
dc.contributor.author | 王柏堯 | zh_TW |
dc.date.accessioned | 2021-06-08T04:47:32Z | - |
dc.date.copyright | 2009-07-31 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-30 | |
dc.identifier.citation | [1] Minn-Tsong Lin, W. C. Lin, C. C. Kuo, and C. L. Chiu, Phys. Rev. B 62, 14268 (2000).
[2] W. C. Lin, C. C. Kuo, C. L. Chiu, and Minn-Tsong Lin, Surf. Sci. 478, 9 (2001). [3] W. C. Lin, B. Y. Wang, Y. W. Liao, K. J. Song, and Minn-Tsong Lin, Phys. Rev. B 71, 184413 (2005). [4] B. Y. Wang, W. C. Lin, Y. W. Liao, K. J. Song, and Minn-Tsong Lin, Surf. Sci. 600, 4517 (2006). [5] Minn-Tsong Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider, and J. Kirschner, Phys. Rev. B 55, 5886 (1997). [6] Till Burkert, Olle Eriksson, Peter James, Sergei I. Simak, B¨orje Johansson, and Lars Nordstr¨om, Phys. Rev. B 69, 104426 (2004). [7] Peter James, Olle Eriksson, Olof Hjaortstam, B¨orje Johansson, and Lars Nordstrom, Appl. Phys. Lett. 76, 915 (2000). [8] D. Weller and A. Moser, IEEE Transactions on Magnetics 35, 4423 (1999). [9] S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, and Eric E. Fullerton, Nature Materials 5, 210 (2006). [10] V. Skrumryev et al., Nature (London) 423, 850 (2003). [11] J. Nogu´es and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). 122 [12] C. Leighton, J. Nogu´es, B. J. J¨onsson-˚Akerman, and I. K. Schuller, Phys. Rev. Lett. 84, 3466 (2000). [13] P. Milt´enyi, M. Gierlings, J. Keller, B. Beschoten, G. G¨untherodt, U. Nowak, and K. D. Usadel, Phys. Rev. Lett. 84, 4224 (2000). [14] F. Y. Yang, and C. L. Chien, Phys. Rev. Lett. 90, 147201 (2003). [15] S. Maat, K. Takano, S. S. P. Parkin, and Eric E. Fullerton, Phys. Rev. Lett. 87, 087202 (2001). [16] Brad N. Engel, Craig D. England, Robert A. Van Leeuwen, Michael H. Wiedmann, and Charles M. Falco, Phys. Rev. Lett. 67, 1910 (1991). [17] Z. Zhang, P. E. Wigen, and S. S. P. Parkin, J. Appl. Phys. 69, 5649 (1991). [18] S. Mao, Z. Gao, H. Xi, P. Kolbo, M. Plumer, L. Wang, A. Goyal, I. Jin, J. Chen, C. Hou, R. M. White, and E. Murdock, IEEE Transactions on Magnetics. 38, 26 (2002). [19] W. Zhang, Y. Chen, and C. Hiner, J. Appl. Phys. 97, 10N702 (2005). [20] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J.Nogues, Nature 423, 850 (2003). [21] S. M. Zhou, L. Sun, P. C. Searson, and C. L. Chien, Phys. Rev. B 69, 024408 (2004). [22] S. M. Zhou, S. J. Yuan, and L. Sun, J. Magn. Magn. Mater. 286 211 (2005). [23] H. Xing, K. Keshoju, S. M. Zhou, and L. Sun, J. Appl. Phys. 101, 09E509 (2007). [24] T. Ambrose and C. L. Chien, Phys. Rev. Lett. 76, 1743 (1996). [25] M. E. Fisher and A. E. Ferdinand, Phys. Rev. Lett. 19, 169 (1967); A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969); G. A. T. Allan, Phys. Rev. B 1, 352 (1970). [26] M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972). [27] A. J. Devasahayam and M. H. Kryder, J. Appl. Phys. 85, 5519 (1999). [28] H. Sang, Y. W. Du, and C. L. Chien, J. Appl. Phys. 85, 4931 (1999). [29] M. Rickart, A. Guedes, J. Ventura, J. B. Sousa, and P. P. Freitas, J. Appl. Phys. 97, 10K110 (2005). [30] B. Y.Wang, N. Y. Jih,W. C. Lin, C. H. Chuang, P. J. Hsu, C.W. Peng, Y. C. Yeh, Y. L. Chan, W. C. Chiang, D. H. Wei, and Minn-Tsong Lin, submitted to Science. [31] Lin He, Chinping Chen, Ning Wang, Wei Zhou, and Lin Guo, J. Appl. Phys. 102, 103911 (2007). [32] C. Won, Y. Z. Wu, H. W. Zhao, A. Scholl, A. Doran, W. Kim, T. L. Owens, X. F. Jin, and Z. Q. Qiu, Phys. Rev. B. 71, 024406 (2005). [33] F. Offi, W. Kuch, and J. Kirschner, Phys. Rev. B 66, 064419 (2002). [34] K. Lenz, S. Zander, and W. Kuch, Phys. Rev. Lett. 98, 237201 (2007). [35] F. Huang, G. J. Mankey, M. T. Kief, and R. F. Willis, J. Appl. Phys. 73, 6760 (1993). [36] R. Zhang and R. F. Willis, Phys. Rev. Lett. 86, 2665 (2001). [37] Kun Chen, Alan M. Ferrenberg, and D. P. Landau, Phys. Rev. B 48, 3249 (1993). [38] L. Cannavacciuolo and D. P. Landau, Phys. Rev. B 71, 134104 (2005). [39] W. Schweika, D. P. Landau, and K. Binder, Phys. Rev. B 53, 8937 (1996). [40] E. E. Fullerton, K. T. Riggs, C. H. Sowers, S. D. Bader, and A. Berger, Phys. Rev. Lett. 75, 330 (1995). [41] D. Hobbs, J. Hafner, and D. Spiˇs´ak, Phys. Rev. B 68, 14407 (2004). [42] S. L. Qiu, and P. M. Marcus, Phys. Rev. B 60, 14533 (1999). [43] S. L. Qiu, P. M. Marcus, and Hong Ma, Phys. Rev. B 62, 3292 (2000). [44] T. Oguchi, and A. J. Freeman, J. Magn. Magn. Mater. 46, L1 (1984). [45] P. Kr¨uger, O. Elmouhssine, C. Demangeat, and J. C. Parlebas, Phys. Rev. B 54, 6393 (1996). [46] J. T. Kohlhepp, and W. J. M. de Jonge, J. Appl. Phys. 95, 6840 (2004). [47] B. T. Jonker, J. J. Krebs, and G. A. Prinz, Phys. Rev. B 39, 1399 (1989). [48] W. C. Lin, L. C. Lin, T. Y. Chen, B. Y.Wang, Ker-Jar. Song, and Minn-Tsong Lin, J. Appl. Phys. 97, 10K112 (2005). [49] W. C. Lin, T. Y. Chen, L. C. Lin, B. Y. Wang, Y. W. Liao, Ker-Jar Song, and Minn-Tsong Lin, Phys. Rev. B. 75, 054419 (2007). [50] J. T. Kohlhepp, H. Wieldraaijer and W. J. M. de Jonge, Appl. Phys. Lett. 89 032507 (2006). [51] J. T. Kohlhepp, J. Phys. D: Appl. Phys. 40, 1300 (2007). [52] J. Hafner and D. Spiˇs´ak, Phys. Rev. B 72, 144420 (2005). [53] J. T. Kohlhepp, J. Phys. D: Appl. Phys. 40, 1300 (2007). [54] J. St¨ohr and H. C. Siegmann, Magnetism: From fundamentals to Nanoscale Dynamics. (Springer; illustrated edition) 12 Sep 2006. [55] N. F. Mott, Proc. Phys. Soc. (London) 47, 571 (1935). [56] J. C. Slater, Phys. Rev. 49, 537 (1936). [57] J. C. Slater, Phys. Rev. 49, 931 (1936). [58] E. C. Stoner, Proc. Roy. Soc. (London) A 154, 656 (1936). [59] E. C. Stoner, Proc. Roy. Soc. (London) A 165, 372 (1938). July 29, 2009 [60] M. E. Fisher and M. N. Barder, Phys. Rev. Lett. 28, 1516 (1972). [61] K. Binder and P. C. Hohenberg, Phys. Rev. B 9, 2194 (1974). [62] See, e.g., B. Y. Jin and J.B Ketterson, Adv. Phys. 38, 189 (1989). [63] C. Lu and S. D. Bader, in Magnetic Properties of Low Dimensional Systems II, edited by L. Falicov, F. Mejia-Lira, and J. L. Moran-Lopez (Springer-Verlag, Berlin, 1990). [64] C. M. Schneider, P. Bressler, P. Schuster, J. Kirchner, J. J. de Miguel, and R. Miranda, Phys. Rev. Lett. 64, 1059 (1990). [65] M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972). [66] M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081 (1991). [67] D. R. Ritchie and M. E. Fisher, Phys. Rev. B 7, 480 (1973). [68] K. Binder and P. C. Hohenberg, Phys. Rev. B 9, 2194 ( 1974). [69] G. Bergmann, Phys. Rev. Lett. 41, 264 (1978). [70] R. Bergholz and V. Gradmann, J. Magn. Magn. Mater. 45, 389 (1984). [71] Minn-Tsong Lin, C. H. Ho, Ching-Ray Chang and Y. D. Yao, Phys. Rev. B 63, 100404(R) (2001). [72] Y. M. Chang, Minn-Tsong Lin, W. Pan, C. H. Ho, Y.D. Yao, O. de Haas, R. Sch¨afer and C. M. Schneider, J. Magn. Magn. Mater 239, 375 (2002). [73] C. C. Kuo, W. Pan, Y. C. Chen and Minn-Tsong Lin, J. Appl. Phys. 93, 8743 (2003). [74] G. Choe and S. Gupta, Appl. Phys. Lett. 70, 1766 (1997). [75] S. Nakagawa, K. Nishimura, Y. Shimizu and M. Naoe, J. Appl. Phys. 85, 4934 (1999). [76] S. Mao, S. Gangopadhyay, N. Amin and E. Murdock, Appl. Phys. Lett. 69, 3593 (1996). [77] W. H. Meiklejohn, J. Appl. Phys. 33 (1962) 1328. [78] C. Tsang, Robert E. Fontana, T. Lin and D.E. Heim, IEEE Trans. Magn. 30, 3801 (1994). [79] C. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987). [80] A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987). [81] A. P.Malozemoff, Phys. Rev. B 37, 7673 (1988). [82] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997). [83] J. Nogue´os, D. Lederman, T. J. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 4624 (1996). [84] T. M. Hong, Phys. Rev. B 58, 97 (1998). [85] J. Nogue´os, T. J. Moran, D. Lederman, I. K. Schuller, and K. V. Rao, Phys. Rev. B 59, 6984 (1999). [86] C. Leighton, J. Nogueo´s, B. J. Joo¨sson-A˙ kerman and I. K. Schuller, Phys. Rev. Lett. 84, 3466 (2000). [87] F. Bruno, S. Terreni, L. Floreano, A. Cossaro, D. Cvetko, P. Luches, L. Mattera, A. Morgante, R. Moroni, M. Repetto, A. Verdini, and M. Canepa, Phys. Rev. B 66, 045402 (2002). [88] S. H. Lu, J. Quinn, D. Tian, F. Jona, and P.M. Marcus, Surf. Sci. 209, 364 (1989). [89] R. Rochow, C. Carbone, Th. Dodt, F.P. Johnen, and E. Kisker, Phys. Rev. B 41, 3426 (1990). [90] P. Luches, A. Di Bona, S. Valeri, and M. Canepa, Surf. Sci. 471, 32 (2000). [91] J. St¨ohr, Y. Wu, B. D. Hermsmeier, M. G. Samant, G. R. Harp, S. Koranda, D. Dunham, and B. P. Tonner, Science 259, 658 (1993). [92] C. M. Schneider and G Sch¨onhense, Reports on Progress in Physics 65, R1785 (2002). [93] F. Borsa and V. tognetti, Magnetic Properties of Matter. World Scientific (1998). [94] Z. Q. Qiu, S. D. Bader, Review of scientific instrument, 71, 1243, (2000). [95] PEM-90TM Photoelastic modulator systems user manual, HINDS Instruments. [96] David Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications. (Cambridge University Press) March 2007. [97] http://spectroscopy.lbl.gov/XMLD-Ohldag/Ohldag.PDF. [98] J. St¨ohr, J. Magn. Magn. Mater. 200, 470, (1999). [99] X-Ray Data Booklet, Lawrence Berkeley National Laboratory (2001). [100] http://www.nsrrc.org.tw/ [101] P. M. Marcus and F. Jona, Surf. Rev. Lett. 1, 15 (1994). [102] R. Thamankar, A. Ostroukhova, and F. O. Schumann, Phys. Rev. B 66, 134414 (2002). [103] C. C. Kuo, S. F. Chuang, W. Pan, W. C. Lin, and Minn-Tsong Lin, J. Appl. Phys. 91, 7185 (2002). [104] F. Bisio, S. Terreni, G. Gonella, L. Floreano, A. Morgante, M. Canepa, and L. Mattera, Phys. Rev. Lett. 93, 106103 (2004). [105] J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, Phys. Rev. B 53, R11934 (1996). [106] R. Allenspach, M. Stampanoni, and A. Bischof, Phys. Rev. Lett. 65, 3344 (1990). [107] S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Bl¨ugel, and R. Wiesendanger, Science 288, 1805 (2000). [108] W. Kuch, L. I. Chelaru, F. Offi, J. Wang, M. Kotsugi, and J. Kirschner, Phys. Rev. Lett. 92, 017201 (2004). [109] W. Kuch, L. I. Chelaru, F. Offi, J.Wang, M. Kotsugi, and J. Kirschner, Nature Materials 5, 128 (2006). [110] M.-T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider, J. Kirschner, Surf. Sci. 410, 290 (1998). [111] B. Feldmann, B. Schirmer, A. Sokoll, and M. Wuttig, Phys. Rev. B 57, 1014 (1998). [112] N´eel, Compt. Rend. 237, 1468, (1953); J. Phys. Radium 15, 225 (1954). [113] J. A. C. Bland and B. Heinrich. Ultrathin Magnetic Structures. Springer-Verlag, Berlin, 1, (1994). [114] P. James, O. Eriksson, B. Johansson and I. A. Abrikosov, Phys. Rev. B 59, 419 (1999). [115] H. Xi, R. M. White, Z. Gao, and S. Mao, J. Appl. Phys. 92, 4828 (2002). [116] X. Y. Lang, W. T. Zheng, and Q. Jiang, Nanotechnology 18, 155701 (2007). [117] R. F. Willis, J. A. C. Bland, and W. Schwarzacher, J. Appl. Phys. 63, 4051 (1988). [118] B. Schulz and K. Baberschke, Phys. Rev. B 50, 13467 (1994). [119] F. Offi, W. Kuch, L. I. Clelaru, K. Fukumoto, M. Kotsugi, and J. Kirschner, Phys. Rev. B 67, 094419 (2003). [120] N. C. Koon, Phys. Rev. Lett. 78 4865 (1997). [121] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998). [122] T. K. Yamada, M. M. J. Bischoff, T. Mizoguchi, and H. van Kempen, Surf. Sci. 516, 179 (2002). [123] F. Baudelet, M.-T. Lin, W. Kuch, K. Meinel B. Choi, C. M. Schneider, and J. Kirschner, Phys. Rev. B 51, 12563 (1995). [124] S. T. Purcell, M. T. Johnson, N. W. E. McGee, R. Coehoorn, and W. Hoving, Phys. Rev. B 45, 13064 (1992). [125] For bct-Fe with d⊥ ∼ 1.52 ˚A, Kme ∼ -45 μeV/atom and Kshape=-132 μeV/atom. The enhanced magnetic anisotropy energy is 354 ± 86 μeV/atom. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23208 | - |
dc.description.abstract | 由於維度縮小所造成在磁性上的奇特行為,及未來在奈米元件、垂直儲存上的應用潛力,低維度下具有鐵磁-反鐵磁交換耦合的結構在近年來受到廣泛的興趣及討論。本論文藉由觀測巨觀的磁滯曲線及微觀的磁疇來探討低維度磁性超薄膜中,垂直磁異向性與鐵磁-反鐵磁交換耦合之間的相互關係。在論文的第一部份中,我們在鐵/錳/銅三金及鎳鐵(Permalloy)/錳/銅三金機版雙層超薄膜系統中,發現一種有別於以往且獨特的垂直磁異向性。透過對實驗及理論模型的分析,我們證實其機制是來自於鐵磁-反鐵磁之間的交換耦合。因著其有趣且獨特的特性,在論文第二部份中,我們進一步定量的去探討反鐵磁面心立方錳(fcc-Mn)超薄膜的自旋相關長度(spin-correlation length ξ) 以及臨界指數(critical exponent λ)。這些重要的物理量除了可提供上述兩系統隨厚度變化的磁異向能外,更可以預測其他材料、例如鈷以及鎳與反鐵磁面心立方錳之間的交換耦合,以及其磁異向行為。其預測結果與後來的實驗結果是相吻合的。在論文第三部份中,我們將研究的範圍延伸至類面心立方錳。並藉由比較實驗結果以及理論計算來探討類面心立方錳的晶格結構、交換耦合,與自旋組態之間的關係。結果顯示面心立方錳傾向提供鄰近鐵磁層垂直異向性的交換耦合(out-of-plane oriented exchange coupling)。然而對於垂直晶格被壓縮的面心立方的錳(fct-Mn)來說,則是傾向提供鄰近鐵磁層平行膜面方向的交換偏耦合(in-plane exchange bias)。進一步利用光電子顯微鏡,我們觀察到當較厚且具有平行膜面磁異向性的鐵覆蓋於厚度連續變化的面心立方錳上時,其磁疇的磁性方向會隨著面心立方錳厚度的變化,而產生震盪的行為。這種震盪可能反映出面心立方錳仍具有平行於膜面方向上磁性結構之共存態。在論文的第四部份,在具有相似的晶格結構條件之下,我們比較鐵/面心立方錳/銅三金以及鐵/面心立方錳/面心立方鐵/銅三金超薄膜系統。我們發現位於最下層具有垂直方向磁性的2.5個原子層的鐵可以在其有效居禮溫度之下,透過交換耦合強化其反鐵磁面心立方錳的的磁異向性,進而導致最上層鐵超薄膜磁矯頑力的增加、以及由平行膜面至垂直膜面的自旋翻轉行為。 | zh_TW |
dc.description.abstract | Low dimensional ferromagnetic (FM) - antiferromagnetic (AFM) exchange coupling systems attract much interest not only due to their novel magnetic behaviors with reduced dimensionality, but also for their potential applications in nanodevice and perpendicular storage. The work of this dissertation focuses on the study of the interrelation between perpendicular magnetic anisotropy and FM-AFM exchange coupling in low dimensional FM/AFM ultrathin film systems from both macroscopic (magnetic hysteresis-loop) and microscopic (magnetic domain) approaches.In the first part of this dissertation, a new kind of perpendicular magnetic anisotropy in Fe and permalloy(Py)/Mn/Cu3Au(001) ultrathin bilayer systems is presented. Through the experiments together with theoretical analysis, we demonstrate that the mechanism is driven by the FM-AFM exchange coupling. Due to such great interesting and unique capability for the AFM Mn ultrathin film with an facecenter-cubic (fcc) phase, in the second part, we quantitatively investigate the spin-correlation
length (ξ) and critical exponent (λ) of AFM fcc-Mn ultrathin film. The extracted invariant physical quantities not only provide the thickness-dependent magnetic anisotropy energy of Fe/Mn and Py/Mn ultrathin bilayers, but also could be used to estimate that for other Co/Mn and Ni/Mn systems, in which the predicted behaviors were found to be consistent with further experiment results, respectively. In the third part, we extend our interesting to the fcc-like Mn, the correlation between crystalline structure, exchange coupling with adjacent FM layer and AFM spin configuration of fcc-like Mn ultrathin films were investigated by comparing experiments with theoretical calculations in literature. We demonstrate that the out-of-plane oriented exchange coupling and the in-plane exchange bias coupling, characterized by the presence of in-plane to perpendicular spin-reorientation transition (SRT) and in-plane exchange bias, dominate in FM/fcc-Mn and FM/fct-Mn ultrathin bilayers, respectively. Furthermore, for a thicker in-plane magnetic Fe film with a wedged-shape fcc-Mn underlayer, the in-plane magnetization direction of Fe layer was found to be continuously oscillating with the variation of Mn thickness at low temperatures. This result points out that fcc-Mn could still have a co-existed in-plane layered spin state resulting such oscillation behavior. In the fourth part, the magnetic anisotropy between single crystalline Fe/fcc-Mn/Cu3Au(001) and Fe/fcc- Mn/fcc-Fe/Cu3Au(001) ultrathin films are compared. With nearly invariant crystalline structures for the fcc-Mn and the topmost Fe layer between these two systems, we demonstrate that the presence of 2.5 ML fcc-Fe underlayer with perpendicular magnetic anisotropy could enhance the perpendicular magnetic anisotropy of adjacent Mn layers, leading to the significant enhancement of perpendicular coercivity and even in-plane to perpendicular SRT in the topmost Fe layer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:47:32Z (GMT). No. of bitstreams: 1 ntu-98-D94222030-1.pdf: 3319045 bytes, checksum: 888fdf7eaf5783b600cf53e665e62a31 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 1 Introduction 1
1.1 Perpendicular magnetic anisotropy driven by FM-AFM exchange coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Probing spin-correlation length and critical exponent of AFM film in ultrathin limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Correlation between crystalline structure, exchange coupling with FM layer, and AFM spin configuration of fcc-like Mn ultrathin films . . . 5 1.4 Enhanced perpendicular magnetic anisotropy of AFM layer by adjacent perpendicular FMlayer . . . . . . . . . . . . . . . . . . . . . . . 7 2 BasicConcepts 9 2.1 Growth of ultrathin film . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 A brief description of themagnetism [54] . . . . . . . . . . . . . . . . 12 2.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Finite-size scaling ofmagnetic ultrathin film . . . . . . . . . . . . . . 20 2.5 Magnetic hysteresis-loop . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Exchange bias coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Experimental Apparatus 29 3.1 General description andMethod . . . . . . . . . . . . . . . . . . . . . 29 3.2 Auger electron spectroscopy (AES) . . . . . . . . . . . . . . . . . . . 31 3.3 Low Energy Electron Diffraction (LEED) . . . . . . . . . . . . . . . . 32 3.3.1 LEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 LEED I/V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Medium Energy Electron Diffraction (MEED) and Reflection High Energy Electron Diffraction (RHEED) . . . . . . . . . . . . . . . . . 38 3.5 Magneto-Optical Kerr Effect (MOKE) . . . . . . . . . . . . . . . . . 43 3.6 PhotoEmission Electron Microscopy (PEEM) with Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6.1 Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . . 47 3.6.2 X-ray Absorption Spectroscopy (XAS) [54] . . . . . . . . . . . 50 3.6.3 X-rayMagnetic Circular Dichroism(XMCD) [92] . . . . . . . 52 3.6.4 PhotoEmission Electron Microscopy (PEEM) [92] . . . . . . . 54 4 Perpendicular magnetic anisotropy driven by FM-AFM exchange coupling 57 4.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Crystalline structure . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.2 Spin-reorientation transition observed by PEEM . . . . . . . . 61 4.2.3 Spin-reorientation transition observed byMOKE . . . . . . . 63 4.2.4 Phase diagramofmagnetic easy axis . . . . . . . . . . . . . . 65 4.2.5 Antiparallelly coupled Fe-Mn domains . . . . . . . . . . . . . 67 4.2.6 Temperature-dependent spin-reorientation transition . . . . . 70 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 Perpendicular magnetic anisotropy driven by FM-AFM exchange coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Probing spin-correlation length and critical exponent of AFM film in ultrathin limit 75 5.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 Crystalline structure . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Spin-reorientation transition observed byMOKE . . . . . . . 77 5.2.3 Phase diagramofmagnetic easy axis . . . . . . . . . . . . . . 79 5.2.4 Probing spin-correlation length and critical exponent . . . . . 80 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.1 Magnetic anisotropy energy of Fe, Py, Co, and Ni onMn/Cu3Au(001) 84 6 Correlation between crystalline structure, exchange coupling with FM layer, and AFM spin configuration in fcc-like Mn ultrathin films 89 6.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2.1 FM-AFM exchange coupling of Fe/fcc-Mn and Fe/fct-Mn bilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2.2 Characteristic transition temperatures of Fe/fcc-Mn and Fe/fct- Mn bilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.3 Magnetic imaging on Fe/fcc-Mn bilayers . . . . . . . . . . . . 98 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.1 Possible spin configuration for fcc-likeMn . . . . . . . . . . . 102 6.3.2 Comparison between AFM-FM exchange coupling and AFM spin configuration in FM/fcc-likeMn ultrathin bilayers . . . . 104 7 Enhanced perpendicular magnetic anisotropy of AFM layer by adjacent perpendicular FM layer 106 7.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.2.1 Growth mode and crystalline structure . . . . . . . . . . . . . 107 7.2.2 Spin-reorientation transition driven by Fe underlayer . . . . . 111 7.2.3 Magnetic easy axis phase diagrams of Fe/Mn/2.5 ML Fe trilayers113 7.2.4 Perpendicular coercivity enhanced by fcc-Fe underlayer at low temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.3.1 Perpendicular magnetic anisotropy of AFM layer enhanced by FM-AFMexchange coupling . . . . . . . . . . . . . . . . . . . 115 8 Conclusion 118 Bibliography 122 Appendix 131 A.1 LEED-IV curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 A.2 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 | |
dc.language.iso | en | |
dc.title | 低維度鐵磁-反鐵磁超薄膜系統之垂直磁異向性與交換耦合之研究 | zh_TW |
dc.title | Interrelation between Perpendicular Magnetic Anisotropy and Exchange Coupling in Low Dimensional Ferromagnetic-Antiferromagnetic Ultrathin Film Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 魏德新,黃迪靖,江文中,郭瑞年,宋克嘉,吳仲卿,陳智泓 | |
dc.subject.keyword | 低維度,磁性超薄膜,反鐵磁性,垂直磁異向性,交換耦合,自旋翻轉現象, | zh_TW |
dc.subject.keyword | Low dimension,magnetic ultrathin film,antiferromagnetism,perpendicular magnetic anisotropy,exchange coupling,spin-reorientation transition, | en |
dc.relation.page | 144 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-07-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。