Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23202
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorCheng-Ta Chiangen
dc.contributor.author江政達zh_TW
dc.date.accessioned2021-06-08T04:47:13Z-
dc.date.copyright2009-08-03
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citationReference
Alt, J.R., Cleveland, J.L., Hannink, M., and Diehl, J.A. (2000). Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 14, 3102-3114.
Altabef, M., Garcia, M., Lavau, C., Bae, S.C., Dejean, A., and Samarut, J. (1996). A retrovirus carrying the promyelocyte-retinoic acid receptor PML-RARalpha fusion gene transforms haematopoietic progenitors in vitro and induces acute leukaemias. EMBO J 15, 2707-2716.
Aoto, T., Saitoh, N., Ichimura, T., Niwa, H., and Nakao, M. (2006). Nuclear and chromatin reorganization in the MHC-Oct3/4 locus at developmental phases of embryonic stem cell differentiation. Developmental Biology 298, 354-367.
Aravind, L., and Koonin, E.V. (1999). Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285, 1353-1361.
Beech, S.J., Lethbridge, K.J., Killick, N., McGlincy, N., and Leppard, K.N. (2005). Isoforms of the promyelocytic leukemia protein differ in their effects on ND10 organization. Exp Cell Res 307, 109-117.
Bernardi, R., and Pandolfi, P.P. (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8, 1006-1016.
Bernardi, R., Scaglioni, P.P., Bergmann, S., Horn, H.F., Vousden, K.H., and Pandolfi, P.P. (2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6, 665-672.
Best, J.L., Ganiatsas, S., Agarwal, S., Changou, A., Salomoni, P., Shirihai, O., Meluh, P.B., Pandolfi, P.P., and Zon, L.I. (2002). SUMO-1 protease-1 regulates gene transcription through PML. Molecular Cell 10, 843-855.
Bomont, P., Cavalier, L., Blondeau, F., Ben Hamida, C., Belal, S., Tazir, M., Demir, E., Topaloglu, H., Korinthenberg, R., Tuysuz, B., et al. (2000). The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 26, 370-374.
Borden, K.L. (1998). RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem Cell Biol 76, 351-358.
Borden, K.L., Lally, J.M., Martin, S.R., O'Reilly, N.J., Solomon, E., and Freemont, P.S. (1996). In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci U S A 93, 1601-1606.
Brown, D., Kogan, S., Lagasse, E., Weissman, I., Alcalay, M., Pelicci, P.G., Atwater, S., and Bishop, J.M. (1997). A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci U S A 94, 2551-2556.
Brown, N.R., Noble, M.E., Endicott, J.A., and Johnson, L.N. (1999). The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1, 438-443.
Butterfield, D.A., Abdul, H.M., Opii, W., Newman, S.F., Joshi, G., Ansari, M.A., and Sultana, R. (2006). Pin1 in Alzheimer's disease. J Neurochem 98, 1697-1706.
Bylebyl, G.R., Belichenko, I., and Johnson, E.S. (2003). The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278, 44113-44120.
Cao, X., Clavijo, C., Li, X., Lin, H.H., Chen, Y., Shih, H.M., and Ann, D.K. (2008). SUMOylation of HMGA2: selective destabilization of promyelocytic leukemia protein via proteasome. Mol Cancer Ther 7, 923-934.
Chang, K.S., Fan, Y.H., Andreeff, M., Liu, J., and Mu, Z.M. (1995). The PML gene encodes a phosphoprotein associated with the nuclear matrix. Blood 85, 3646-3653.
Cho, Y.M., Lee, I., Maul, G.G., and Yu, E.S. (1998). A novel nuclear substructure, ND10: Distribution in normal and neoplastic human tissues. International Journal of Molecular Medicine 1, 717-724.
Condemine, W., Takahashi, Y., Zhu, J., Puvion-Dutilleul, F., Guegan, S., Janin, A., and de The, H. (2006). Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 66, 6192-6198.
Cullinan, S.B., Gordan, J.D., Jin, J., Harper, J.W., and Diehl, J.A. (2004). The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24, 8477-8486.
Daniel, M.T., Koken, M., Romagne, O., Barbey, S., Bazarbachi, A., Stadler, M., Guillemin, M.C., Degos, L., Chomienne, C., and de The, H. (1993). PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82, 1858-1867.
de Stanchina, E., Querido, E., Narita, M., Davuluri, R.V., Pandolfi, P.P., Ferbeyre, G., and Lowe, S.W. (2004). PML is a direct p53 target that modulates p53 effector functions. Molecular Cell 13, 523-535.
de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., and Dejean, A. (1991). The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675-684.
Dellaire, G., and Bazett-Jones, D.P. (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26, 963-977.
Deshaies, R.J. (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15, 435-467.
Desterro, J.M., Rodriguez, M.S., Kemp, G.D., and Hay, R.T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 274, 10618-10624.
Dougherty, M.K., Muller, J., Ritt, D.A., Zhou, M., Zhou, X.Z., Copeland, T.D., Conrads, T.P., Veenstra, T.D., Lu, K.P., and Morrison, D.K. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17, 215-224.
Dror, N., Rave-Harel, N., Burchert, A., Azriel, A., Tamura, T., Tailor, P., Neubauer, A., Ozato, K., and Levi, B.Z. (2007). Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells. Journal of Biological Chemistry 282, 5633-5640.
Duprez, E., Saurin, A.J., Desterro, J.M., Lallemand-Breitenbach, V., Howe, K., Boddy, M.N., Solomon, E., de The, H., Hay, R.T., and Freemont, P.S. (1999). SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 112 ( Pt 3), 381-393.
Fagioli, M., Alcalay, M., Tomassoni, L., Ferrucci, P.F., Mencarelli, A., Riganelli, D., Grignani, F., Pozzan, T., Nicoletti, I., and Pelicci, P.G. (1998). Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 16, 2905-2913.
Fanghanel, J., and Fischer, G. (2004). Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front Biosci 9, 3453-3478.
Feldman, R.M., Correll, C.C., Kaplan, K.B., and Deshaies, R.J. (1997). A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221-230.
Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S.W. (2000). PML is induced by oncogenic ras and promotes premature senescence. Genes & Development 14, 2015-2027.
Flenghi, L., Fagioli, M., Tomassoni, L., Pileri, S., Gambacorta, M., Pacini, R., Grignani, F., Casini, T., Ferrucci, P.F., Martelli, M.F., et al. (1995). Characterization of a New Monoclonal-Antibody (Pg-M3) Directed against the Aminoterminal Portion of the Pml Gene-Product - Immunocytochemical Evidence for High Expression of Pml Proteins on Activated Macrophages, Endothelial-Cells, and Epithelia. Blood 85, 1871-1880.
Fu, C., Ahmed, K., Ding, H., Ding, X., Lan, J., Yang, Z., Miao, Y., Zhu, Y., Shi, Y., Zhu, J., et al. (2005). Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24, 5401-5413.
Furukawa, M., He, Y.J., Borchers, C., and Xiong, Y. (2003). Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5, 1001-1007.
Furukawa, M., Ohta, T., and Xiong, Y. (2002). Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J Biol Chem 277, 15758-15765.
Geiss-Friedlander, R., and Melchior, F. (2007). Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8, 947-956.
Geyer, R., Wee, S., Anderson, S., Yates, J., and Wolf, D.A. (2003). BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 12, 783-790.
Gong, L., and Yeh, E.T. (2006). Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281, 15869-15877.
Grignani, F., Testa, U., Rogaia, D., Ferrucci, P.F., Samoggia, P., Pinto, A., Aldinucci, D., Gelmetti, V., Fagioli, M., Alcalay, M., et al. (1996). Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J 15, 4949-4958.
Grisolano, J.L., Wesselschmidt, R.L., Pelicci, P.G., and Ley, T.J. (1997). Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89, 376-387.
Guo, D., Li, M., Zhang, Y., Yang, P., Eckenrode, S., Hopkins, D., Zheng, W., Purohit, S., Podolsky, R.H., Muir, A., et al. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36, 837-841.
Gurrieri, C., Capodieci, P., Bernardi, R., Scaglioni, P.P., Nafa, K., Rush, L.J., Verbel, D.A., Cordon-Cardo, C., and Pandolfi, P.P. (2004). Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96, 269-279.
Hamdane, M., Dourlen, P., Bretteville, A., Sambo, A.V., Ferreira, S., Ando, K., Kerdraon, O., Begard, S., Geay, L., Lippens, G., et al. (2006). Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol Cell Neurosci 32, 155-160.
Harper, J.W., Burton, J.L., and Solomon, M.J. (2002). The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 16, 2179-2206.
Hayakawa, F., and Privalsky, M.L. (2004). Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 5, 389-401.
Heun, P. (2007). SUMOrganization of the nucleus. Current Opinion in Cell Biology 19, 350-355.
Hunter, T. (1998). Prolyl isomerases and nuclear function. Cell 92, 141-143.
Jensen, K., Shiels, C., and Freemont, P.S. (2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene 20, 7223-7233.
Joazeiro, C.A., and Weissman, A.M. (2000). RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549-552.
Johnson, E.S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-382.
Kaelin, W.G., Jr. (2002). Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2, 673-682.
Kamitani, T., Kito, K., Nguyen, H.P., Wada, H., Fukuda-Kamitani, T., and Yeh, E.T. (1998a). Identification of three major sentrinization sites in PML. J Biol Chem 273, 26675-26682.
Kamitani, T., Nguyen, H.P., Kito, K., Fukuda-Kamitani, T., and Yeh, E.T. (1998b). Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J Biol Chem 273, 3117-3120.
Kamura, T., Sato, S., Haque, D., Liu, L., Kaelin, W.G., Jr., Conaway, R.C., and Conaway, J.W. (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 12, 3872-3881.
Kentsis, A., and Borden, K.L. (2000). Construction of macromolecular assemblages in eukaryotic processes and their role in human disease: linking RINGs together. Curr Protein Pept Sci 1, 49-73.
Kerscher, O. (2007). SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 8, 550-555.
Kile, B.T., Schulman, B.A., Alexander, W.S., Nicola, N.A., Martin, H.M., and Hilton, D.J. (2002). The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 27, 235-241.
Kipreos, E.T. (2005). Ubiquitin-mediated pathways in C. elegans. WormBook, 1-24.
Kobayashi, A., Kang, M.I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K., and Yamamoto, M. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24, 7130-7139.
Koken, M.H.M., Linarescruz, G., Puviondutilleul, F., Puvion, E., Quignon, F., Stadler, M., Chelbialix, M.K., Guillemin, M.C., Sobzack, J., Calvo, F., et al. (1995). The Nuclear-Body Associated-Pml Protein Is an Interferon-Induced Antioncogene Which Has an Altered Expression during Oncogenesis. Journal of Cellular Biochemistry, 139-139.
Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B., and de The, H. (2008). Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10, 547-555.
Lallemand-Breitenbach, V., Zhu, J., Puvion, F., Koken, M., Honore, N., Doubeikovsky, A., Duprez, E., Pandolfi, P.P., Puvion, E., Freemont, P., et al. (2001). Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 193, 1361-1371.
Le, X.F., Yang, P., and Chang, K.S. (1996). Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem 271, 130-135.
Lee, M.S., Kao, S.C., Lemere, C.A., Xia, W., Tseng, H.C., Zhou, Y., Neve, R., Ahlijanian, M.K., and Tsai, L.H. (2003). APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163, 83-95.
Lin, D.Y., Huang, Y.S., Jeng, J.C., Kuo, H.Y., Chang, C.C., Chao, T.T., Ho, C.C., Chen, Y.C., Lin, T.P., Fang, H.I., et al. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24, 341-354.
Liou, Y.C., Ryo, A., Huang, H.K., Lu, P.J., Bronson, R., Fujimori, F., Uchida, T., Hunter, T., and Lu, K.P. (2002). Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci U S A 99, 1335-1340.
Louria-Hayon, I., Alsheich-Bartok, O., Levav-Cohen, Y., Silberman, I., Berger, M., Grossman, T., Matentzoglu, K., Jiang, Y.H., Muller, S., Scheffner, M., et al. (2009). E6AP promotes the degradation of the PML tumor suppressor. Cell Death Differ 16, 1156-1166.
Lu, K.P. (2004). Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem Sci 29, 200-209.
Lu, K.P., Finn, G., Lee, T.H., and Nicholson, L.K. (2007). Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3, 619-629.
Lu, K.P., Hanes, S.D., and Hunter, T. (1996). A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544-547.
Lu, K.P., Liou, Y.-C., and Zhou, X.Z. (2002a). Pinning down proline-directed phosphorylation signaling. Trends in Cell Biology 12, 164-172.
Lu, K.P., Liou, Y.C., and Vincent, I. (2003). Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's Disease. Bioessays 25, 174-181.
Lu, K.P., Liou, Y.C., and Zhou, X.Z. (2002b). Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 12, 164-172.
Lu, K.P., and Zhou, X.Z. (2007). The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8, 904-916.
Lu, P.-J., Wulf, G., Zhou, X.Z., Davies, P., and Lu, K.P. (1999a). The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784-788.
Lu, P.J., Zhou, X.Z., Shen, M., and Lu, K.P. (1999b). Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325-1328.
Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S.C., Tatham, M.H., Hay, R.T., Lamond, A.I., Mann, M., and Vertegaal, A.C. (2008). In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7, 132-144.
Matunis, M.J., Coutavas, E., and Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135, 1457-1470.
Melnick, A., and Licht, J.D. (1999). Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93, 3167-3215.
Mukhopadhyay, D., Ayaydin, F., Kolli, N., Tan, S.H., Anan, T., Kametaka, A., Azuma, Y., Wilkinson, K.D., and Dasso, M. (2006). SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J Cell Biol 174, 939-949.
Muller, S., Matunis, M.J., and Dejean, A. (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17, 61-70.
Murzin, A.G. (1992). Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins 14, 191-201.
Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N., and Yasuda, H. (1999). In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun 254, 693-698.
Passmore, L.A., and Barford, D. (2004). Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379, 513-525.
Pastorino, L., Sun, A., Lu, P.J., Zhou, X.Z., Balastik, M., Finn, G., Wulf, G., Lim, J., Li, S.H., Li, X., et al. (2006). The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440, 528-534.
Petrie, K., and Zelent, A. (2008). Marked for death. Nat Cell Biol 10, 507-509.
Petroski, M.D., and Deshaies, R.J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6, 9-20.
Piazza, F., Gurrieri, C., and Pandolfi, P.P. (2001). The theory of APL. Oncogene 20, 7216-7222.
Pickart, C.M., and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8, 610-616.
Pintard, L., Willems, A., and Peter, M. (2004). Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 23, 1681-1687.
Ramelot, T.A., Gentile, L.N., and Nicholson, L.K. (2000). Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39, 2714-2725.
Ramelot, T.A., and Nicholson, L.K. (2001). Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J Mol Biol 307, 871-884.
Ranganathan, R., Lu, K.P., Hunter, T., and Noel, J.P. (1997). Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89, 875-886.
Reineke, E.L., Lam, M., Liu, Q., Liu, Y., Stanya, K.J., Chang, K.S., Means, A.R., and Kao, H.Y. (2008). Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol Cell Biol 28, 997-1006.
Renault, L., Nassar, N., Vetter, I., Becker, J., Klebe, C., Roth, M., and Wittinghofer, A. (1998). The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97-101.
Robinson, D.N., and Cooley, L. (1997). Drosophila kelch is an oligomeric ring canal actin organizer. J Cell Biol 138, 799-810.
Ryo, A., Liou, Y.C., Wulf, G., Nakamura, M., Lee, S.W., and Lu, K.P. (2002). PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 22, 5281-5295.
Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252-6258.
Salomoni, P., and Pandolfi, P.P. (2002). The role of PML in tumor suppression. Cell 108, 165-170.
Saurin, A.J., Borden, K.L., Boddy, M.N., and Freemont, P.S. (1996). Does this have a familiar RING? Trends Biochem Sci 21, 208-214.
Scaglioni, P.P., Yung, T.M., Cai, L.F., Erdjument-Bromage, H., Kaufman, A.J., Singh, B., Teruya-Feldstein, J., Tempst, P., and Pandolfi, P.P. (2006). A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269-283.
Scheffner, M., Huibregtse, J.M., Vierstra, R.D., and Howley, P.M. (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495-505.
Scheffner, M., Nuber, U., and Huibregtse, J.M. (1995). Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81-83.
Schulman, B.A., Carrano, A.C., Jeffrey, P.D., Bowen, Z., Kinnucan, E.R., Finnin, M.S., Elledge, S.J., Harper, J.W., Pagano, M., and Pavletich, N.P. (2000). Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381-386.
Shen, T.H., Lin, H.K., Scaglioni, P.P., Yung, T.M., and Pandolfi, P.P. (2006). The mechanisms of PML-nuclear body formation. Mol Cell 24, 331-339.
Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J., and Harper, J.W. (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209-219.
Stadler, M., Chelbi-Alix, M.K., Koken, M.H., Venturini, L., Lee, C., Saib, A., Quignon, F., Pelicano, L., Guillemin, M.C., Schindler, C., et al. (1995). Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11, 2565-2573.
Stogios, P.J., and Prive, G.G. (2004). The BACK domain in BTB-kelch proteins. Trends Biochem Sci 29, 634-637.
Sultana, R., Boyd-Kimball, D., Poon, H.F., Cai, J., Pierce, W.M., Klein, J.B., Markesbery, W.R., Zhou, X.Z., Lu, K.P., and Butterfield, D.A. (2006). Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis. Neurobiol Aging 27, 918-925.
Talis, A.L., Huibregtse, J.M., and Howley, P.M. (1998). The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 273, 6439-6445.
Tatham, M.H., Geoffroy, M.C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E.G., Palvimo, J.J., and Hay, R.T. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10, 538-546.
Thrower, J.S., Hoffman, L., Rechsteiner, M., and Pickart, C.M. (2000). Recognition of the polyubiquitin proteolytic signal. EMBO J 19, 94-102.
Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T., and Noel, J.P. (2000). Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 7, 639-643.
Weiwad, M., Kullertz, G., Schutkowski, M., and Fischer, G. (2000). Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett 478, 39-42.
Wulf, G., Finn, G., Suizu, F., and Lu, K.P. (2005). Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 7, 435-441.
Wulf, G., Garg, P., Liou, Y.C., Iglehart, D., and Lu, K.P. (2004). Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J 23, 3397-3407.
Wulf, G.M., Ryo, A., Wulf, G.G., Lee, S.W., Niu, T., Petkova, V., and Lu, K.P. (2001). Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20, 3459-3472.
Xu, L., Wei, Y., Reboul, J., Vaglio, P., Shin, T.H., Vidal, M., Elledge, S.J., and Harper, J.W. (2003). BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316-321.
Yaffe, M.B., Schutkowski, M., Shen, M., Zhou, X.Z., Stukenberg, P.T., Rahfeld, J.U., Xu, J., Kuang, J., Kirschner, M.W., Fischer, G., et al. (1997). Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957-1960.
Yang, S., Kuo, C., Bisi, J.E., and Kim, M.K. (2002). PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4, 865-870.
Yeh, E.S., and Means, A.R. (2007). PIN1, the cell cycle and cancer. Nat Rev Cancer 7, 381-388.
Zheng, N., Schulman, B.A., Song, L., Miller, J.J., Jeffrey, P.D., Wang, P., Chu, C., Koepp, D.M., Elledge, S.J., Pagano, M., et al. (2002). Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703-709.
Zheng, N., Wang, P., Jeffrey, P.D., and Pavletich, N.P. (2000). Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533-539.
Zhou, X.Z., Kops, O., Werner, A., Lu, P.J., Shen, M., Stoller, G., Kullertz, G., Stark, M., Fischer, G., and Lu, K.P. (2000). Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6, 873-883.
Zhou, X.Z., Lu, P.J., Wulf, G., and Lu, K.P. (1999). Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell Mol Life Sci 56, 788-806.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23202-
dc.description.abstractPromyelocytic leukemia protein (簡稱PML)為一種抑癌蛋白。其會於細胞核中形成特殊的斑點狀構造,稱為PML-nuclear body (PML-NB)。PML-NB參與許多不同細胞生理功能的調控,例如誘發細胞凋亡、抑制細胞生長與促使細胞老化。當細胞受到壓力時,PML蛋白表現量會上升;反之,在人類腫瘤細胞中常出現PML蛋白消失的現象。然而,目前調控PML蛋白穩定性的因子之研究尚未透徹。在這篇論文中我們發現,BTB-Kelch蛋白DIP-2扮演著負調節者的角色,它會促使PML蛋白穩定性下降。DIP-2蛋白由一個BTB區塊、一個BACK區塊以及六個Kelch區塊所組成。根據本實驗室先前的研究中發現,DIP-2蛋白會與Cul3蛋白形成一個完整的泛素連接酶複合體,在此我們更進一步發現DIP-2會以其受質辨識區Kelch區塊去辨識PML蛋白,這樣一來,PML蛋白會被牽引到完整的Cul3-DIP-2泛素連接酶複合體中而被進行泛素化修飾,進而導致蛋白質降解。除此之外,有別於PML,DIP-2並不會進行小類泛素化修飾,而其促使PML蛋白泛素化的能力亦不受PML被小類泛素化修飾與否所影響;同時PML K490的小類泛素化與否,也不影響DIP-2造成PML蛋白泛素化修飾的能力。而後我們發現脯胺酸異構酶Pin1的活性會調控DIP-2所導致的PML蛋白泛素化修飾,並進一步證實PML蛋白上可與Pin1結合的pS/T-P區間中,絲胺酸518與527這兩個位置的磷酸化對於DIP-2促使PML蛋白泛素化的能力是必需的。總而言之,我們除了發現DIP-2-Cul3泛素連接酶複合體可將PML蛋白泛素化進而降解,更找到了一項新的PML蛋白降解之機制。zh_TW
dc.description.abstractThe promyelocytic leukemia (PML) is a tumor suppressor protein and is critical for the formation PML-nuclear body (PML-NB), a subnuclear macromolecular structure implicated in the regulation of various cellular functions, such as induction of apoptosis, growth suppression and cellular senescence. PML is activated in response to various stress signals and is frequently downregulated in human tumors. However, the factors regulating PML stability have not been completely understood. In this thesis, we identify the BTB-Kelch protein DIP-2 as a negative regulator of PML stability. DIP-2 contains an N-terminal BTB/POZ domain, an internal BACK domain and C-terminal six Kelch repeats. Previous study in our laboratory indicates that DIP-2 associates with Cul3 to form an ubiquitin ligase complex. Here, we show that DIP-2 interacts with PML through its substrate recognition domain. This interaction targets PML to the Cul3-DIP-2 complex for ubiquitination and, consequently, degradation. Unlike PML, DIP-2 is not sumoylated and DIP-2 mediates PML ubiquitination through a PML sumoylation-independent manner. Furthermore, PML sumoylation at K490 does not interfere with its ubiquitination by DIP-2-Cul3. However, DIP-2-mediated PML ubiquitination requires the activity of peptidyl prolyl cis/trans isomerase Pin1, which is known to trigger PML degradation. DIP-2-meditated PML ubiquitination also requires the Ser518/527 residues of PML, both of which are within the Pin1 targeting motif, pS/T-P. Together, this study not only identifies the DIP-2-Cul3 complex as an ubiquitin ligase for PML, but also reveals a novel PML degradation pathway.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:47:13Z (GMT). No. of bitstreams: 1
ntu-98-R96b46032-1.pdf: 1107496 bytes, checksum: 03f54ab269a9c5ee56eabac546e8add5 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of content
中文摘要........................................................................................................................i
Abstract.........................................................................................................................ii
I.Introduction................................................................................................................1
1. Protein modification by ubiquitin...........................................................................2
1.1 The diversity of ubiquitin E3 ligase................................................................3
1.2 BTB-Kelch proteins and DIP-2......................................................................5
2. Protein modification by SUMO..............................................................................6
2.1 The mechanism of reversible sumoylation.....................................................6
2.2 SUMO-acceptor sites.....................................................................................7
2.3 SUMO-mediated protein-protein interactions...........................................…8
3. PML......................................................................................................................9
3.1 The PML protein............................................................................................10
3.2 The PML NBs................................................................................................11
3.3 Regulation of PML expression and stability..................................................12
4. Pin1.......................................................................................................................15
4.1 Pin1 catalyzes the unique conformational switch in the pSer/Thr-Pro bonds.............................................................................................................15
4.2 The biological functions of Pin1...................................................................16
II.Material and Methods............................................................................................19
III.Results....................................................................................................................24
IV.Discussion...............................................................................................................32
Reference.....................................................................................................................49

圖目錄
Figure 1. Schematic representation of the DIP-2 mutants and post-translational
modifications of PML...................................................................................................38
Figure 2. DIP-2 interacts with PML I through its c-terminal Kelch repeats................39
Figure 3. DIP-2 interacts with PML I and PML IV through its c-terminal Kelch repeats...........................................................................................................................40
Figure 4. DIP-2-Cul3-ROC1 E3 ligase complex promotes the ubiquitination of PML
in vivo...........................................................................................................................41
Figure 5. DIP-2 cannot be modified by SUMO1 in the in vitro sumoylation assay.....42
Figure 6. DIP-2 interacts with PML through a PML sumoylation-independent mechanism....................................................................................................................43
Figure 7. PML 3KR mutant is ubiquitinated by DIP-2 as efficiently as the wild type PML..............................................................................................................................44
Figure 8. DIP-2, but not DIP-2m6 mutant, decreases the half-lives of both PML and PML 3KR.....................................................................................................................45
Figure 9. Sumoylation of PML on K490 does not affect its degradation by DIP-2.....46
Figure 10. Knockdown of Pin1 attenuates DIP-2-mediated ubiquitination of PML
in vivo...........................................................................................................................47
Figure 11. Serine 518 and 527 residues of PML are critical for DIP-2-mediated ubiquitination...............................................................................................................48
dc.language.isoen
dc.titleDIP-2泛素化修飾抑癌蛋白PML之降解機制探討zh_TW
dc.titleCharacterization of DIP-2-mediated ubiquitination and degradation of the PML tumor suppressor proteinen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光超(Guang-Chao Chen),陳宏文(Hung-wen Chen)
dc.subject.keywordPML,DIP-2,泛素化,小類泛素化,Pin1,zh_TW
dc.subject.keywordPML,DIP-2,ubiquitination,sumoylation,Pin1,en
dc.relation.page59
dc.rights.note未授權
dc.date.accepted2009-07-30
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved