Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23200
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林榮耀
dc.contributor.authorSai-Wen Tangen
dc.contributor.author唐賽文zh_TW
dc.date.accessioned2021-06-08T04:47:06Z-
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citation1. Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol 2001;166:1611-23.
2. Russo P. Renal cell carcinoma: presentation, staging, and surgical treatment. Semin Oncol 2000;27:160-76.
3. Pavlovich CP, Schmidt LS. Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer 2004;4:381-93.
4. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med 2005;353:2477-90.
5. Bui MH, Zisman A, Pantuck AJ, Han KR, Wieder J, Belldegrun AS. Prognostic factors and molecular markers for renal cell carcinoma. Expert Rev Anticancer Ther 2001;1:565-75.
6. Mejean A, Oudard S, Thiounn N. Prognostic factors of renal cell carcinoma. J Urol 2003;169:821-7.
7. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 2003;27:612-24.
8. van Spronsen DJ, de Weijer KJ, Mulders PF, De Mulder PH. Novel treatment strategies in clear-cell metastatic renal cell carcinoma. Anticancer Drugs 2005;16:709-17.
9. Ishimura T, Sakai I, Hara I, Eto H, Miyake H. Microscopic venous invasion in renal cell carcinoma as a predictor of recurrence after radical surgery. Int J Urol 2004;11:264-8.
10. Wood C, Srivastava P, Bukowski R, et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 2008;372:145-54.
11. Amato RJ. Chemotherapy for renal cell carcinoma. Semin Oncol 2000;27:177-86.
12. Lane BR, Rini BI, Novick AC, Campbell SC. Targeted molecular therapy for renal cell carcinoma. Urology 2007;69:3-10.
13. Ernstoff MS, Crocenzi TS, Seigne JD, et al. Developing a rational tumor vaccine therapy for renal cell carcinoma: immune yin and yang. Clin Cancer Res 2007;13:733s-40s.
14. Glaspy JA. Therapeutic options in the management of renal cell carcinoma. Semin Oncol 2002;29:41-6.
15. Crispen PL, Boorjian SA, Lohse CM, Leibovich BC, Kwon ED. Predicting disease progression after nephrectomy for localized renal cell carcinoma: the utility of prognostic models and molecular biomarkers. Cancer 2008;113:450-60.
16. Klatte T, Seligson DB, Riggs SB, et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 2007;13:7388-93.
17. Rini BI, Flaherty K. Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urol Oncol 2008;26:543-9.
18. Hirota E, Yan L, Tsunoda T, et al. Genome-wide gene expression profiles of clear cell renal cell carcinoma: identification of molecular targets for treatment of renal cell carcinoma. Int J Oncol 2006;29:799-827.
19. Riss J, Khanna C, Koo S, et al. Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res 2006;66:7216-24.
20. Amatschek S, Koenig U, Auer H, et al. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res 2004;64:844-56.
21. Caldwell MC, Hough C, Furer S, Linehan WM, Morin PJ, Gorospe M. Serial analysis of gene expression in renal carcinoma cells reveals VHL-dependent sensitivity to TNFalpha cytotoxicity. Oncogene 2002;21:929-36.
22. Yamanaka M, Kimura F, Kagata Y, et al. BIGH3 is overexpressed in clear cell renal cell carcinoma. Oncol Rep 2008;19:865-74.
23. Yao M, Huang Y, Shioi K, et al. A three-gene expression signature model to predict clinical outcome of clear cell renal carcinoma. Int J Cancer 2008;123:1126-32.
24. Suzuki Y, Sugano S. Construction of a full-length enriched and a 5'-end enriched cDNA library using the oligo-capping method. Methods Mol Biol 2003;221:73-91.
25. Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S. Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. Gene 1997;200:149-56.
26. Matsuda A, Suzuki Y, Honda G, et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 2003;22:3307-18.
27. Yamada S, Ohira M, Horie H, et al. Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene 2004;23:5901-11.
28. Arvanitis C, Felsher DW. Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin Cancer Biol 2006;16:313-7.
29. Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 2006;16:318-30.
30. Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005;6:635-45.
31. Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol 2006;16:253-64.
32. Knoepfler PS. Myc goes global: new tricks for an old oncogene. Cancer Res 2007;67:5061-3.
33. Guo QM, Malek RL, Kim S, et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res 2000;60:5922-8.
34. Zhou Q, Hopp T, Fuqua SA, Steeg PS. Cyclin D1 in breast premalignancy and early breast cancer: implications for prevention and treatment. Cancer Lett 2001;162:3-17.
35. Fernandez PC, Frank SR, Wang L, et al. Genomic targets of the human c-Myc protein. Genes Dev 2003;17:1115-29.
36. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2:647-56.
37. Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene 1999;18:3004-16.
38. Pelengaris S, Khan M, Evan G. c-MYC: more than just a matter of life and death. Nat Rev Cancer 2002;2:764-76.
39. Bucci B, D'Agnano I, Amendola D, et al. Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteins. Clin Cancer Res 2005;11:2756-67.
40. Bidwell GL, 3rd, Raucher D. Enhancing the antiproliferative effect of topoisomerase II inhibitors using a polypeptide inhibitor of c-Myc. Biochem Pharmacol 2006;71:248-56.
41. Watt FM, Frye M, Benitah SA. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer 2008;8:234-42.
42. Aksoy S, Szumlanski CL, Weinshilboum RM. Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. J Biol Chem 1994;269:14835-40.
43. Williams AC, Ramsden DB. Autotoxicity, methylation and a road to the prevention of Parkinson's disease. J Clin Neurosci 2005;12:6-11.
44. Roessler M, Rollinger W, Palme S, et al. Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin Cancer Res 2005;11:6550-7.
45. Xu J, Moatamed F, Caldwell JS, et al. Enhanced expression of nicotinamide N-methyltransferase in human papillary thyroid carcinoma cells. J Clin Endocrinol Metab 2003;88:4990-6.
46. Rogers CD, Fukushima N, Sato N, et al. Differentiating pancreatic lesions by microarray and QPCR analysis of pancreatic juice RNAs. Cancer Biol Ther 2006;5:1383-9.
47. Lim BH, Cho BI, Kim YN, Kim JW, Park ST, Lee CW. Overexpression of nicotinamide N-methyltransferase in gastric cancer tissues and its potential post-translational modification. Exp Mol Med 2006;38:455-65.
48. Lal A, Lash AE, Altschul SF, et al. A public database for gene expression in human cancers. Cancer Res 1999;59:5403-7.
49. Sartini D, Santarelli A, Rossi V, et al. Nicotinamide N-methyltransferase upregulation inversely correlates with lymph node metastasis in oral squamous cell carcinoma. Mol Med 2007;13:415-21.
50. Kim J, Hong SJ, Lim EK, et al. Expression of nicotinamide N-methyltransferase in hepatocellular carcinoma is associated with poor prognosis. J Exp Clin Cancer Res 2009;28:20.
51. Wu Y, Siadaty MS, Berens ME, Hampton GM, Theodorescu D. Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration. Oncogene 2008;27:6679-89.
52. Yao M, Tabuchi H, Nagashima Y, et al. Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol 2005;205:377-87.
53. Sartini D, Muzzonigro G, Milanese G, Pierella F, Rossi V, Emanuelli M. Identification of nicotinamide N-methyltransferase as a novel tumor marker for renal clear cell carcinoma. J Urol 2006;176:2248-54.
54. Tomida M, Mikami I, Takeuchi S, Nishimura H, Akiyama H. Serum levels of nicotinamide N-methyltransferase in patients with lung cancer. J Cancer Res Clin Oncol 2009.
55. Kassem H, Sangar V, Cowan R, Clarke N, Margison GP. A potential role of heat shock proteins and nicotinamide N-methyl transferase in predicting response to radiation in bladder cancer. Int J Cancer 2002;101:454-60.
56. Wu Y, Siadaty MS, Berens ME, Hampton GM, Theodorescu D. Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration. Oncogene 2008.
57. Rini J, Szumlanski C, Guerciolini R, Weinshilboum RM. Human liver nicotinamide N-methyltransferase: ion-pairing radiochemical assay, biochemical properties and individual variation. Clin Chim Acta 1990;186:359-74.
58. Riederer M, Erwa W, Zimmermann R, Frank S, Zechner R. Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis 2008.
59. Qin H, Sun Y, Benveniste EN. The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem 1999;274:29130-7.
60. Watkins G, Douglas-Jones A, Bryce R, Mansel RE, Jiang WG. Increased levels of SPARC (osteonectin) in human breast cancer tissues and its association with clinical outcomes. Prostaglandins Leukot Essent Fatty Acids 2005;72:267-72.
61. Shi Q, Bao S, Song L, et al. Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene 2007;26:4084-94.
62. Bredel M, Bredel C, Juric D, et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 2005;65:8679-89.
63. Lee JS, Heo J, Libbrecht L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006;12:410-6.
64. Kato T, Kameoka S, Kimura T, Nishikawa T, Kobayashi M. C-erbB-2 and PCNA as prognostic indicators of long-term survival in breast cancer. Anticancer Res 2002;22:1097-103.
65. Lay AJ, Jiang XM, Kisker O, et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 2000;408:869-73.
66. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 2000;60:203-12.
67. de Nigris F, Sica V, Herrmann J, et al. c-Myc oncoprotein: cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases. Cell Cycle 2003;2:325-8.
68. Yang Tsung-Cheng. (2008) Nicotinamide-N-methyltransferase Enhances Invasive Ability of clear Cell Renal Cell Carcinoma by Inducing Matrix Metalloprotease-2 Expression. Master Thesis. National Taiwan University.
69. Lee TJ, Jung EM, Lee JT, et al. Mithramycin A sensitizes cancer cells to TRAIL-mediated apoptosis by down-regulation of XIAP gene promoter through Sp1 sites. Mol Cancer Ther 2006;5:2737-46.
70. Soldani C, Scovassi AI. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 2002;7:321-8.
71. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol 2003;15:725-31.
72. Kuwahara D, Tsutsumi K, Kobayashi T, Hasunuma T, Nishioka K. Caspase-9 regulates cisplatin-induced apoptosis in human head and neck squamous cell carcinoma cells. Cancer Lett 2000;148:65-71.
73. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001;107:137-48.
74. Katoh M, Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 2006;5:1059-64.
75. Hu CM, Chang ZF. Synthetic lethality by lentiviral short hairpin RNA silencing of thymidylate kinase and doxorubicin in colon cancer cells regardless of the p53 status. Cancer Res 2008;68:2831-40.
76. Maxwell SA, Rivera A. Proline oxidase induces apoptosis in tumor cells, and its expression is frequently absent or reduced in renal carcinomas. J Biol Chem 2003;278:9784-9.
77. Rivera A, Maxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 2005;280:29346-54.
78. Blaine SA, Wick M, Dessev C, Nemenoff RA. Induction of cPLA2 in lung epithelial cells and non-small cell lung cancer is mediated by Sp1 and c-Jun. J Biol Chem 2001;276:42737-43.
79. Dimberg J, Samuelsson A, Hugander A, Soderkvist P. Gene expression of cyclooxygenase-2, group II and cytosolic phospholipase A2 in human colorectal cancer. Anticancer Res 1998;18:3283-7.
80. Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB. Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 2004;4:562-8.
81. Fan Y, Liu Z, Fang X, et al. Differential expression of full-length telomerase reverse transcriptase mRNA and telomerase activity between normal and malignant renal tissues. Clin Cancer Res 2005;11:4331-7.
82. Kozma L, Kiss I, Nagy A, Szakall S, Ember I. Investigation of c-myc and K-ras amplification in renal clear cell adenocarcinoma. Cancer Lett 1997;111:127-31.
83. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science 1998;281:1509-12.
84. Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007;13:4042-5.
85. Gumz ML, Zou H, Kreinest PA, et al. Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin Cancer Res 2007;13:4740-9.
86. Furge KA, Chen J, Koeman J, et al. Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res 2007;67:3171-6.
87. Prall OW, Rogan EM, Musgrove EA, Watts CK, Sutherland RL. c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell Biol 1998;18:4499-508.
88. Santoni-Rugiu E, Falck J, Mailand N, Bartek J, Lukas J. Involvement of Myc activity in a G(1)/S-promoting mechanism parallel to the pRb/E2F pathway. Mol Cell Biol 2000;20:3497-509.
89. Qi Y, Tu Y, Yang D, et al. Cyclin A but not cyclin D1 is essential for c-myc-modulated cell-cycle progression. J Cell Physiol 2007;210:63-71.
90. Pajic A, Spitkovsky D, Christoph B, et al. Cell cycle activation by c-myc in a burkitt lymphoma model cell line. Int J Cancer 2000;87:787-93.
91. Zajac-Kaye M. Myc oncogene: a key component in cell cycle regulation and its implication for lung cancer. Lung Cancer 2001;34 Suppl 2:S43-6.
92. Carroll JS, Swarbrick A, Musgrove EA, Sutherland RL. Mechanisms of growth arrest by c-myc antisense oligonucleotides in MCF-7 breast cancer cells: implications for the antiproliferative effects of antiestrogens. Cancer Res 2002;62:3126-31.
93. Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell 2007;129:665-79.
94. Fujii K, Kondo T, Yokoo H, Yamada T, Iwatsuki K, Hirohashi S. Proteomic study of human hepatocellular carcinoma using two-dimensional difference gel electrophoresis with saturation cysteine dye. Proteomics 2005;5:1411-22.
95. Maddika S, Ande SR, Panigrahi S, et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 2007;10:13-29.
96. Harris AW, Strasser A, Bath ML, Elefanty AG, Cory S. Lymphomas and plasmacytomas in transgenic mice involving bcl2, myc and v-abl. Curr Top Microbiol Immunol 1997;224:221-30.
97. Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc) 2008;73:751-62.
98. Wang YH, Liu S, Zhang G, et al. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res 2005;7:R220-8.
99. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161-74.
100. Maeta H, Ohgi S, Terada T. Protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in papillary thyroid carcinomas. Virchows Arch 2001;438:121-8.
101. Vasala K, Paakko P, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 immunoreactive protein as a prognostic marker in bladder cancer. Urology 2003;62:952-7.
102. Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 2003;3:489-501.
103. Gress TM, Muller-Pillasch F, Lerch MM, Friess H, Buchler M, Adler G. Expression and in-situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer 1995;62:407-13.
104. Takahashi M, Oka N, Naroda T, et al. Prognostic significance of matrix metalloproteinases-2 activation ratio in renal cell carcinoma. Int J Urol 2002;9:531-8.
105. Park MJ, Kwak HJ, Lee HC, et al. Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J Biol Chem 2007;282:30485-96.
106. Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD, Cheng SY. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 2006;66:775-83.
107. Cheung LW, Leung PC, Wong AS. Gonadotropin-releasing hormone promotes ovarian cancer cell invasiveness through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9. Cancer Res 2006;66:10902-10.
108. Choi YA, Lim HK, Kim JR, et al. Group IB secretory phospholipase A2 promotes matrix metalloproteinase-2-mediated cell migration via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem 2004;279:36579-85.
109. Bae IH, Park MJ, Yoon SH, et al. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res 2006;66:4991-5.
110. Park CM, Park MJ, Kwak HJ, et al. Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 2006;66:8511-9.
111. Saito Y, Tachibana I, Takeda Y, et al. Absence of CD9 enhances adhesion-dependent morphologic differentiation, survival, and matrix metalloproteinase-2 production in small cell lung cancer cells. Cancer Res 2006;66:9557-65.
112. Vincenti MP, Brinckerhoff CE. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol 2007;213:355-64.
113. Kim ES, Sohn YW, Moon A. TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett 2007;252:147-56.
114. Ito H, Duxbury M, Benoit E, et al. Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res 2004;64:7439-46.
115. Melnikova VO, Mourad-Zeidan AA, Lev DC, Bar-Eli M. Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J Biol Chem 2006;281:2911-22.
116. Han X, Boyd PJ, Colgan S, Madri JA, Haas TL. Transcriptional up-regulation of endothelial cell matrix metalloproteinase-2 in response to extracellular cues involves GATA-2. J Biol Chem 2003;278:47785-91.
117. Safe S, Abdelrahim M. Sp transcription factor family and its role in cancer. Eur J Cancer 2005;41:2438-48.
118. Wang D, Li Z, Messing EM, Wu G. Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM. J Biol Chem 2002;277:36216-22.
119. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 2008;8:187-98.
120. Gao N, Asamitsu K, Hibi Y, Ueno T, Okamoto T. AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65. J Biol Chem 2008;283:7834-43.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23200-
dc.description.abstract腎細胞癌佔世界上癌症的3 %,有逐年增加的趨勢,其中清細胞型腎細胞癌(ccRCC)是最常見的腎細胞癌亞型。由於腎細胞癌具有高轉移能力與高抗藥性,導致腎細胞癌病人有較差的五年存活率。
為了找出ccRCC中癌化相關基因,我們利用oligo-capping法建立ccRCC和正常腎臟的全長互補去氧核醣核酸資料庫。在進行去氧核醣核酸定序後,分別在ccRCC和正常腎臟中鑑定到4,356個基因與3,055個基因。藉由比較ccRCC與正常腎臟的基因表現圖譜,找到了201個表現上升基因與182個表現下降基因。我們以Q-PCR進一步證明20個未曾被發現在ccRCC中表現有變化的基因在ccRCC組織中有異常表現。
為了探討在ccRCC中異常的細胞訊息路徑,我們對383個ccRCC相關基因進行功能性網絡分析,並發現MYC路徑在ccRCC中是活化的。我們進一步證明MYC與MYC標的基因BCL2、CCND1、PCNA、PGK1和VEGFA的表現量有正相關。若抑制MYC表現,MYC標的基因的表現也會因此減少,且MYC也被證明會結合在BCL2、CCND1、PCNA、PGK1和VEGFA的基因啟動子上。此外,利用MYC siRNA減少MYC表現量可明顯抑制ccRCC細胞的增生、非固著依賴性細胞生長與細胞週期,這些結果證明了MYC活化對ccRCC的重要性。
菸鹼醯胺-氮-甲基轉移酶(NNMT)在ccRCC中是表現明顯上升基因之一。我們進一步研究NNMT在癌細胞中的功能,並發現具侵犯性的腎細胞癌細胞株中NNMT與基質金屬蛋白酶-2(MMP-2)的表現比不具侵犯性的腎細胞癌細胞株高,而且NNMT siRNA可明顯抑制腎細胞癌細胞株中MMP-2的表現。此外,在腎細胞癌組織中,NNMT和MMP-2的表現量有正相關,證明在腎細胞癌中NNMT與MMP-2表現有關連性。另外,我們發現NNMT酵素活性可能與引起MMP-2表現無相關性,而MMP-2基因啟動子上的SP1結合處、轉錄因子SP1和PI3K/AKT訊息路徑與MMP-2的表現有關。此外,實驗證明SP1與MMP-2基因啟動子的結合受到PI3K/AKT訊息路徑所調控。四個可能與NNMT有交互作用的蛋白也被鑑定出來。更進一步地,我們研究MMP-2在NNMT引起的細胞侵犯之角色,並發現MMP-2抑制劑或中和抗體均能抑制NNMT大量表現的細胞之侵犯能力;而在腎細胞癌細胞株中NNMT siRNA對侵犯能力的抑制作用可被MMP-2活性蛋白所回復,這些結果證明MMP-2對於NNMT引起的細胞侵犯是必要的。並且, NOD-SCID小鼠實驗證明NNMT的表現於腎細胞癌細胞株的生長與肺臟轉移扮演著重要角色。除此之外,我們也發現NNMT增加腎細胞癌細胞對抗癌藥物cisplatin所引起之細胞凋亡的抵抗力,其機制可能是NNMT的表現能抑制caspase 9/caspase 3/PARP的凋亡訊息與cisplatin引起的p53乙醯化。這些結果證明了NNMT在腎細胞癌中扮演重要角色。
zh_TW
dc.description.abstractClear cell renal cell carcinoma (ccRCC) is the major subtype of RCC, accounting for 3% of malignancies worldwide with increasing incidence. ccRCC is characterized by its high invasive potential and insensitivity to traditional anti-cancer therapies, resulting in a poor five-year survival rate of patients with RCC.
To investigate the genes associated with carcinogenesis in ccRCC, the full-length enriched cDNA libraries of ccRCC and normal kidney tissues were constructed by oligo-capping method. After nucleotide sequencing, 4,356 and 3,055 genes were identified from ccRCC and normal kidney, respectively. By analyzing gene expression profiles, 201 upregulated and 182 downregulated genes were identified in ccRCC. The differential expression of 20 ccRCC-associated genes, which have not been reported previously in ccRCC, were further demonstrated by quantitative real-time PCR.
To study the deregulated cellular pathways in ccRCC, functional network analysis was performed using 383 differentially expressed genes. The signature of MYC pathway was found to be activated in ccRCC. The correlation between the expression levels of MYC and MYC-target genes, BCL2, CCND1, PCNA, PGK1 and VEGFA was demonstrated in ccRCC tissues. Moreover, our results showed that MYC siRNA suppressed the expression of the MYC-target genes, and MYC was associated with the promoter regions of these MYC-target genes in ccRCC cells. Furthermore, the knockdown of MYC expression significantly inhibited the uncontrolled proliferation, anchorage-independent growth and cell cycle progression of ccRCC cells. These results suggest an essential role of MYC activation for ccRCC.
Nicotinamide N-methyltransferase (NNMT) was identified as one of the most upregulated genes in ccRCC. We found that the invasive ccRCC cell lines (786O and Caki-1) exhibited a higher expression of NNMT and matrix metalloproteinase-2 (MMP-2) than those of primary ccRCC cell lines. NNMT siRNA remarkably inhibited MMP-2 expression in ccRCC cells. Moreover, a positive correlation was identified between NNMT and MMP-2 expression in ccRCC tumors, suggesting that NNMT is associated with MMP-2 expression. Interestingly, NNMT catalytic activity may not be essential for NNMT-mediated MMP-2 expression. We further demonstrated that SP1-binding elements of MMP-2 promoter, transcription factor SP1 and PI3K/AKT pathway are involved in MMP-2 expression induced by NNMT. Moreover, the results revealed that the binding of SP1 on MMP-2 promoter is regulated by PI3K/AKT pathway. Four potential NNMT-interacting proteins were identified by yeast two-hybrid assay using human kidney cDNA library as prey. Furthermore, MMP-2 activity was demonstrated to be required for NNMT-mediated cell invasion. The in vivo experiment further indicated that NNMT expression plays an important role for the tumor growth and pulmonary metastasis of 786O cells in NOD-SCID mice.
Additionally, the effect of NNMT expression on the resistance to anti-cancer drug was investigated. NNMT was found to increase the resistance to the apoptosis induced by cisplatin-mediated DNA damage in HEK293 cells and 786O cells. The results showed that the caspase 9/caspase 3/PARP apoptosis signaling was suppressed in NNMT-overexpressing cells. Moreover, the acetylation of p53 induced by cisplatin, which is a crucial signal to trigger apoptosis, was significantly reduced by NNMT expression. These results elucidate the cancer-promoting functions of NNMT in ccRCC.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:47:06Z (GMT). No. of bitstreams: 1
ntu-98-D92442003-1.pdf: 4943940 bytes, checksum: 566fda6619e7d9bddf8d6e3bdc3f7f0d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsCONTENTS
PAGE
ABBREVIATIONS......................................................................................................1
摘要................................................................................................................................3
關鍵詞............................................................................................................................4
ABSTRACT..................................................................................................................5
KEYWORDS................................................................................................................7
INTRODUCTION........................................................................................................8
INSTRUMENTS.........................................................................................................14
MATERIALS AND METHODS...............................................................................15
1. Tissue specimens and cell lines.......................................................................................15
2. Materials.....................................................................................................................15
3. Purification of total RNA and mRNA......................................................................,.......16
4. Construction of the full-length cDNA library...........................................................,.......18
5. Transformation of the full-length cDNA library into E. coli.....................................,.........21
6. Sequence analysis of the full-length cDNA library............................................................22
7. Functional network analysis..........................................................................................23
8. Quantitative real-time PCR...........................................................................................23
9. Immunohistochemical analysis.......................................................................................24
10. Western blot analysis...........................................................................................,......25
11. Short interference RNA transfection.............................................................................26
12. 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay................27
13. Soft agar assay...........................................................................................................28
14. Cell cycle analysis.......................................................................................................28
15. Chromatin immunoprecipitation assay..........................................................................28
16. Construction of NNMT-expressing plasmid and generation of stable clones.......................30
17. Gelatin zymography assay...........................................................................................31
18. NNMT activity assay...................................................................................................31
19. Construction of human MMP-2 promoter.....................................................................33
20. Luciferase reporter assay.............................................................................................34
21. Yeast two-hybrid assay................................................................................................34
22. Matrigel invasion assay...............................................................................................35
23. Lentiviral shRNA infection..........................................................................................36
24. Xenograft Assay for tumor growth and lung metastasis...................................................36
RESULTS....................................................................................................................38
§ Analysis of gene expression profiles of ccRCC and normal kidney...................38
1. Construction and sequence analysis of full-length enriched cDNA libraries.........................38
2. Classification of the ccRCC-associated genes by cellular function.......................................39
3. Differential expression of the noval ccRCC-associated genes in ccRCC...............................40
§ Pathway analysis of the differentially expressed genes of ccRCC......................41
1. Activation of MYC pathway in ccRCC............................................................................41
2. Suppressing the expression of MYC-target genes by MYC siRNA......................................44
3. Inhibition of cell proliferation by MYC siRNA.................................................................45
§ Functional analysis of NNMT in ccRCC..............................................................46
1. Overexpression of NNMT in ccRCC tissues.....................................................................46
2. Identification of the potential role of NNMT in ccRCC.....................................................47
3. Catalytic activity of NNMT is not essential for NNMT-mediated MMP-2 expression ...........49
4. PI3K/AKT/SP1 pathway is involved in NNMT-mediated MMP-2 expression.......................50
5. Identification of potential NNMT-interacting proteins......................................................53
6. Involvement of MMP-2 in NNMT-mediated cell invasiveness............................................54
7. Effects of NNMT shRNA on tumor growth and metastasis of ccRCC cells..........................55
8. Effects of NNMT expression on apoptosis induced by cisplatin-mediated DNA damage…....55
9. Regulation of cisplatin-induced apoptosis signaling by NNMT...........................................56
DISCUSSION….........................................................................................................59
1. Analysis of full-length cDNA library of ccRCC................................................................59
2. Role of MYC activation in ccRCC..................................................................................61
3. Role of nicotinamide N-methyltransferase in ccRCC........................................................64
FIGURES AND LEGENDS......................................................................................70
Figure 1. Flowchart of the oligo-capping method.................................................................70
Figure 2. Construction of full-length enriched cDNA library.................................................71
Figure 3. MYC and 37 MYC-target genes in ccRCC............................................................72
Figure 4. Upregulation of MYC expression in ccRCC…………………..............................73
Figure 5. Effects of MYC on the expression of MYC-target genes in ccRCC cells…................74
Figure 6. Inhibitory effects of MYC siRNA on the growth ability in ccRCC cells….................75
Figure 7. Inhibition on cell cycle progression by MYC siRNA…...........................................76
Figure 8. Overexpression of NNMT in ccRCC tissues…......................................................77
Figure 9. Generation of HEK293 cells stably overexpressing NNMT…..................................78
Figure 10. Effects of NNMT overexpression on the expression of MMP-2...............................79
Figure 11. Effects of NNMT siRNA on MMP-2 expression in ccRCC cells..............................80
Figure 12. Correlation between the expression levels of NNMT and MMP-2 in ccRCC tissues..81
Figure 13. Effects of the substrates and products of NNMT reaction on MMP-2 expression......82
Figure 14. Enlarged view of the catalytic site of NNMT........................................................83
Figure 15. Role of NNMT catalytic activity in NNMT-mediated MMP-2 expression.................84
Figure 16. Signaling pathway involved in NNMT-mediated MMP-2 expression.......................85
Figure 17. Role of SP1-binding elements in MMP-2 transcriptional activity............................86
Figure 18. Importance of SP1 in MMP-2 expression induced by NNMT.................................87
Figure 19. Role of PI3K/AKT pathway in the binding of SP1 to MMP-2 promoter..................88
Figure 20. Identification of NNMT-interacting proteins by yeast two-hybrid assay…………….89
Figure 21. Enhancement of cell invasiveness by NNMT via MMP-2.......................................90
Figure 22. Effects of NNMT shRNA on the growth and lung metastasis of ccRCC cells............91
Figure 23. Effects of NNMT on apoptosis induced by cisplatin-mediated DNA damage............92
Figure 24. Effects of NNMT on apoptosis signal induced by cisplatin-mediated DNA damage…93
Figure 25. Suppression of cisplatin-induced p53 acetylation by NNMT overexpression............94
TABLES......................................................................................................................95
Table 1. Specific primers for Q-PCR analysis and ChIP assay...............................................95
Table 2-1. Significantly upregulated genes in ccRCC............................................................97
Table 2-2. Significantly downregulated genes in ccRCC......................................................103
Table 3. Functional classification of the differentially expressed genes..................................108
Table 4. Differential expression of ccRCC-associated genes in ccRCC..................................109
Table 5. Top 5 functional networks of 383 differentially expressed genes in ccRCC...............110
Table 6. Expression levels of MYC-target genes in ccRCC and adjacent normal tissues.........111
REFERENCES.........................................................................................................112
PUBLICATIONS.....................................................................................................121
dc.language.isoen
dc.subject清細胞型腎細胞癌zh_TW
dc.subjectMYC活化zh_TW
dc.subject全長互補去氧核醣核酸資料庫zh_TW
dc.subject菸鹼醯胺-氮-甲基轉移&#37238zh_TW
dc.subject基質金zh_TW
dc.subject屬蛋白&#37238zh_TW
dc.subjectMYC activationen
dc.subjectMatrix metalloproteinase-2en
dc.subjectNicotinamide N-methyltransferaseen
dc.subjectfull-length cDNA libraryen
dc.subjectClear cell renal cell carcinomaen
dc.title清細胞型腎細胞癌相關基因之研究:
I. 分析清細胞型腎細胞癌之全長cDNA庫
II. MYC活化於清細胞型腎細胞癌之致癌角色
III. 菸鹼醯胺-氮-甲基轉移酶在清細胞型腎細胞癌之癌化角色
zh_TW
dc.titleStudies on Clear Cell Renal Cell Carcinoma (ccRCC)-associated Genes :
I. Analysis of Full-length cDNA Library of ccRCC
II. Role of MYC Activation in ccRCC Carcinogenesis
III. Role of Nicotinamide N-methyltransferase in ccRCC Progression
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee張智芬,周綠蘋,李德章,包家駒,吳華林,周玉山
dc.subject.keyword清細胞型腎細胞癌,全長互補去氧核醣核酸資料庫,MYC活化,菸鹼醯胺-氮-甲基轉移&#37238,基質金,屬蛋白&#37238,-2,zh_TW
dc.subject.keywordClear cell renal cell carcinoma,full-length cDNA library,MYC activation,Nicotinamide N-methyltransferase,Matrix metalloproteinase-2,en
dc.relation.page121
dc.rights.note未授權
dc.date.accepted2009-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved