請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23103
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳瑞華(Ruey-Hwa Chen) | |
dc.contributor.author | Fang-Yen Li | en |
dc.contributor.author | 李芳諺 | zh_TW |
dc.date.accessioned | 2021-06-08T04:42:04Z | - |
dc.date.copyright | 2009-08-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-10 | |
dc.identifier.citation | Anderson, P., and Kedersha, N. (2006). RNA granules. J Cell Biol 172, 803-808.
Andersson, M.K., Stahlberg, A., Arvidsson, Y., Olofsson, A., Semb, H., Stenman, G., Nilsson, O., and Aman, P. (2008). The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 9, 37. Antar, L.N., Dictenberg, J.B., Plociniak, M., Afroz, R., and Bassell, G.J. (2005). Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4, 350-359. Aplin, A.E., Howe, A., Alahari, S.K., and Juliano, R.L. (1998). Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50, 197-263. Aubele, M., Auer, G., Walch, A.K., Munro, A., Atkinson, M.J., Braselmann, H., Fornander, T., and Bartlett, J.M. (2007). PTK (protein tyrosine kinase)-6 and HER2 and 4, but not HER1 and 3 predict long-term survival in breast carcinomas. Br J Cancer 96, 801-807. Aubele, M., Walch, A.K., Ludyga, N., Braselmann, H., Atkinson, M.J., Luber, B., Auer, G., Tapio, S., Cooke, T., and Bartlett, J.M. (2008). Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term survival of breast cancer patients. Br J Cancer 99, 1089-1095. Bagrodia, S., Taylor, S.J., Jordon, K.A., Van Aelst, L., and Cerione, R.A. (1998). A novel regulator of p21-activated kinases. J Biol Chem 273, 23633-23636. Bardoni, B., Castets, M., Huot, M.E., Schenck, A., Adinolfi, S., Corbin, F., Pastore, A., Khandjian, E.W., and Mandel, J.L. (2003). 82-FIP, a novel FMRP (fragile X mental retardation protein) interacting protein, shows a cell cycle-dependent intracellular localization. Hum Mol Genet 12, 1689-1698. Barker, K.T., Jackson, L.E., and Crompton, M.R. (1997). BRK tyrosine kinase expression in a high proportion of human breast carcinomas. Oncogene 15, 799-805. Benekli, M., Baer, M.R., Baumann, H., and Wetzler, M. (2003). Signal transducer and activator of transcription proteins in leukemias. Blood 101, 2940-2954. Biesova, Z., Piccoli, C., and Wong, W.T. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241. Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411, 355-365. Born, M., Quintanilla-Fend, L., Braselmann, H., Reich, U., Richter, M., Hutzler, P., and Aubele, M. (2005). Simultaneous over-expression of the Her2/neu and PTK6 tyrosine kinases in archival invasive ductal breast carcinomas. J Pathol 205, 592-596. Bowman, T., Garcia, R., Turkson, J., and Jove, R. (2000). STATs in oncogenesis. Oncogene 19, 2474-2488. Boyle, S.N., Michaud, G.A., Schweitzer, B., Predki, P.F., and Koleske, A.J. (2007). A critical role for cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave formation. Curr Biol 17, 445-451. Bromberg, J. (2002). Stat proteins and oncogenesis. J Clin Invest 109, 1139-1142. Brown, M.C., Cary, L.A., Jamieson, J.S., Cooper, J.A., and Turner, C.E. (2005). Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Mol Biol Cell 16, 4316-4328. Brown, M.C., West, K.A., and Turner, C.E. (2002). Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell 13, 1550-1565. Chakraborty, G., Jain, S., and Kundu, G.C. (2008). Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 68, 152-161. Chan, J.M., Stampfer, M.J., Giovannucci, E., Gann, P.H., Ma, J., Wilkinson, P., Hennekens, C.H., and Pollak, M. (1998). Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279, 563-566. Chang, F., Lemmon, C.A., Park, D., and Romer, L.H. (2007). FAK potentiates Rac1 activation and localization to matrix adhesion sites: a role for betaPIX. Mol Biol Cell 18, 253-264. Chang, J.H., Wilson, L.K., Moyers, J.S., Zhang, K., and Parsons, S.J. (1993). Increased levels of p21ras-GTP and enhanced DNA synthesis accompany elevated tyrosyl phosphorylation of GAP-associated proteins, p190 and p62, in c-src overexpressors. Oncogene 8, 959-967. Chang, Y.C., Lin, S.Y., Liang, S.Y., Pan, K.T., Chou, C.C., Chen, C.H., Liao, C.L., Khoo, K.H., and Meng, T.C. (2008). Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. J Proteome Res 7, 1055-1066. Chen, H.Y., Shen, C.H., Tsai, Y.T., Lin, F.C., Huang, Y.P., and Chen, R.H. (2004). Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin. Mol Cell Biol 24, 10558-10572. Coppo, P., Dusanter-Fourt, I., Millot, G., Nogueira, M.M., Dugray, A., Bonnet, M.L., Mitjavila-Garcia, M.T., Le Pesteur, D., Guilhot, F., Vainchenker, W., et al. (2003). Constitutive and specific activation of STAT3 by BCR-ABL in embryonic stem cells. Oncogene 22, 4102-4110. Coussens, L.M., and Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chem Biol 3, 895-904. Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-1372. Coyle, J.H., Guzik, B.W., Bor, Y.C., Jin, L., Eisner-Smerage, L., Taylor, S.J., Rekosh, D., and Hammarskjold, M.L. (2003). Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK. Mol Cell Biol 23, 92-103. Derry, J.J., Prins, G.S., Ray, V., and Tyner, A.L. (2003). Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene 22, 4212-4220. Derry, J.J., Richard, S., Valderrama Carvajal, H., Ye, X., Vasioukhin, V., Cochrane, A.W., Chen, T., and Tyner, A.L. (2000). Sik (BRK) phosphorylates Sam68 in the nucleus and negatively regulates its RNA binding ability. Mol Cell Biol 20, 6114-6126. Easty, D.J., Mitchell, P.J., Patel, K., Florenes, V.A., Spritz, R.A., and Bennett, D.C. (1997). Loss of expression of receptor tyrosine kinase family genes PTK7 and SEK in metastatic melanoma. Int J Cancer 71, 1061-1065. Feng, Q., Baird, D., Peng, X., Wang, J., Ly, T., Guan, J.L., and Cerione, R.A. (2006). Cool-1 functions as an essential regulatory node for EGF receptor- and Src-mediated cell growth. Nat Cell Biol 8, 945-956. Frank, S.R., and Hansen, S.H. (2008). The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin Cell Dev Biol 19, 234-244. Fukunaga, R., and Hunter, T. (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16, 1921-1933. Funato, Y., Terabayashi, T., Suenaga, N., Seiki, M., Takenawa, T., and Miki, H. (2004). IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res 64, 5237-5244. Graves, J.D., and Krebs, E.G. (1999). Protein phosphorylation and signal transduction. Pharmacol Ther 82, 111-121. Griffith, O.L., Melck, A., Jones, S.J., and Wiseman, S.M. (2006). Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24, 5043-5051. Haegebarth, A., Heap, D., Bie, W., Derry, J.J., Richard, S., and Tyner, A.L. (2004). The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2. J Biol Chem 279, 54398-54404. Hahnfeldt, P., Panigrahy, D., Folkman, J., and Hlatky, L. (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59, 4770-4775. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. Harris, C.C. (1996). p53 tumor suppressor gene: from the basic research laboratory to the clinic--an abridged historical perspective. Carcinogenesis 17, 1187-1198. Henao-Mejia, J., and He, J.J. (2009). Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1. Exp Cell Res. Herbert, B.S., Wright, W.E., and Shay, J.W. (2001). Telomerase and breast cancer. Breast Cancer Res 3, 146-149. Herzig, M., Savarese, F., Novatchkova, M., Semb, H., and Christofori, G. (2007). Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene 26, 2290-2298. Hong, E., Shin, J., Kim, H.I., Lee, S.T., and Lee, W. (2004). Solution structure and backbone dynamics of the non-receptor protein-tyrosine kinase-6 Src homology 2 domain. J Biol Chem 279, 29700-29708. Hubbard, S.R., and Till, J.H. (2000). Protein tyrosine kinase structure and function. Annu Rev Biochem 69, 373-398. Hunter, T. (2000). Signaling--2000 and beyond. Cell 100, 113-127. Ibarrola, N., Molina, H., Iwahori, A., and Pandey, A. (2004). A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine. J Biol Chem 279, 15805-15813. Ikeda, O., Miyasaka, Y., Sekine, Y., Mizushima, A., Muromoto, R., Nanbo, A., Yoshimura, A., and Matsuda, T. (2009). STAP-2 is phosphorylated at tyrosine-250 by Brk and modulates Brk-mediated STAT3 activation. Biochem Biophys Res Commun 384, 71-75. Innocenti, M., Tenca, P., Frittoli, E., Faretta, M., Tocchetti, A., Di Fiore, P.P., and Scita, G. (2002). Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol 156, 125-136. Ishibe, S., Joly, D., Zhu, X., and Cantley, L.G. (2003). Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 12, 1275-1285. Kabotyanski, E.B., and Rosen, J.M. (2003). Signal transduction pathways regulated by prolactin and Src result in different conformations of activated Stat5b. J Biol Chem 278, 17218-17227. Kamalati, T., Jolin, H.E., Fry, M.J., and Crompton, M.R. (2000). Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation. Oncogene 19, 5471-5476. Kamalati, T., Jolin, H.E., Mitchell, P.J., Barker, K.T., Jackson, L.E., Dean, C.J., Page, M.J., Gusterson, B.A., and Crompton, M.R. (1996). Brk, a breast tumor-derived non-receptor protein-tyrosine kinase, sensitizes mammary epithelial cells to epidermal growth factor. J Biol Chem 271, 30956-30963. Karlsson, E., Delle, U., Danielsson, A., Olsson, B., Abel, F., Karlsson, P., and Helou, K. (2008). Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer. BMC Cancer 8, 254. Kasprzycka, M., Majewski, M., Wang, Z.J., Ptasznik, A., Wysocka, M., Zhang, Q., Marzec, M., Gimotty, P., Crompton, M.R., and Wasik, M.A. (2006). Expression and oncogenic role of Brk (PTK6/Sik) protein tyrosine kinase in lymphocytes. Am J Pathol 168, 1631-1641. Kim, H., Jung, J., Lee, E.S., Kim, Y.C., Lee, W., and Lee, S.T. (2007). Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6. Biochem Biophys Res Commun 362, 829-834. Kim, H., and Lee, S.T. (2005). An intramolecular interaction between SH2-kinase linker and kinase domain is essential for the catalytic activity of protein-tyrosine kinase-6. J Biol Chem 280, 28973-28980. Klinghoffer, R.A., Sachsenmaier, C., Cooper, J.A., and Soriano, P. (1999). Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 18, 2459-2471. Kolibaba, K.S., and Druker, B.J. (1997). Protein tyrosine kinases and cancer. Biochim Biophys Acta 1333, F217-248. Kossakowska, A.E., Huchcroft, S.A., Urbanski, S.J., and Edwards, D.R. (1996). Comparative analysis of the expression patterns of metalloproteinases and their inhibitors in breast neoplasia, sporadic colorectal neoplasia, pulmonary carcinomas and malignant non-Hodgkin's lymphomas in humans. Br J Cancer 73, 1401-1408. Lacronique, V., Boureux, A., Monni, R., Dumon, S., Mauchauffe, M., Mayeux, P., Gouilleux, F., Berger, R., Gisselbrecht, S., Ghysdael, J., et al. (2000). Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells. Blood 95, 2076-2083. Lee, H., Kim, M., Lee, K.H., Kang, K.N., and Lee, S.T. (1998). Exon-intron structure of the human PTK6 gene demonstrates that PTK6 constitutes a distinct family of non-receptor tyrosine kinase. Mol Cells 8, 401-407. Lee, L.A., Lee, E., Anderson, M.A., Vardy, L., Tahinci, E., Ali, S.M., Kashevsky, H., Benasutti, M., Kirschner, M.W., and Orr-Weaver, T.L. (2005). Drosophila genome-scale screen for PAN GU kinase substrates identifies Mat89Bb as a cell cycle regulator. Dev Cell 8, 435-442. Lee, S.T., Strunk, K.M., and Spritz, R.A. (1993). A survey of protein tyrosine kinase mRNAs expressed in normal human melanocytes. Oncogene 8, 3403-3410. Leu, T.H., Yeh, H.H., Huang, C.C., Chuang, Y.C., Su, S.L., and Maa, M.C. (2004). Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279, 9875-9881. Liu, K., Li, L., Nisson, P.E., Gruber, C., Jessee, J., and Cohen, S.N. (2000). Neoplastic transformation and tumorigenesis associated with sam68 protein deficiency in cultured murine fibroblasts. J Biol Chem 275, 40195-40201. Liu, L., Gao, Y., Qiu, H., Miller, W.T., Poli, V., and Reich, N.C. (2006). Identification of STAT3 as a specific substrate of breast tumor kinase. Oncogene 25, 4904-4912. Liu, Y., Shah, K., Yang, F., Witucki, L., and Shokat, K.M. (1998). Engineering Src family protein kinases with unnatural nucleotide specificity. Chem Biol 5, 91-101. Llor, X., Serfas, M.S., Bie, W., Vasioukhin, V., Polonskaia, M., Derry, J., Abbott, C.M., and Tyner, A.L. (1999). BRK/Sik expression in the gastrointestinal tract and in colon tumors. Clin Cancer Res 5, 1767-1777. Lukong, K.E., Huot, M.E., and Richard, S. (2009). BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest. Cell Signal 21, 1415-1422. Lukong, K.E., Larocque, D., Tyner, A.L., and Richard, S. (2005). Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem 280, 38639-38647. Lukong, K.E., and Richard, S. (2003). Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta 1653, 73-86. Lukong, K.E., and Richard, S. (2008). Breast tumor kinase BRK requires kinesin-2 subunit KAP3A in modulation of cell migration. Cell Signal 20, 432-442. Maa, M.C., Hsieh, C.Y., and Leu, T.H. (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20, 106-112. Maa, M.C., Lee, J.C., Chen, Y.J., Lee, Y.C., Wang, S.T., Huang, C.C., Chow, N.H., and Leu, T.H. (2007). Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem 282, 19399-19409. Manabe, R., Kovalenko, M., Webb, D.J., and Horwitz, A.R. (2002). GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J Cell Sci 115, 1497-1510. Mann, M. (2006). Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7, 952-958. Manser, E., Loo, T.H., Koh, C.G., Zhao, Z.S., Chen, X.Q., Tan, L., Tan, I., Leung, T., and Lim, L. (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1, 183-192. Matoskova, B., Wong, W.T., Nomura, N., Robbins, K.C., and Di Fiore, P.P. (1996). RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12, 2679-2688. Matoskova, B., Wong, W.T., Salcini, A.E., Pelicci, P.G., and Di Fiore, P.P. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol 15, 3805-3812. Minoguchi, M., Minoguchi, S., Aki, D., Joo, A., Yamamoto, T., Yumioka, T., Matsuda, T., and Yoshimura, A. (2003). STAP-2/BKS, an adaptor/docking protein, modulates STAT3 activation in acute-phase response through its YXXQ motif. J Biol Chem 278, 11182-11189. Mitchell, P.J., Barker, K.T., Martindale, J.E., Kamalati, T., Lowe, P.N., Page, M.J., Gusterson, B.A., and Crompton, M.R. (1994). Cloning and characterisation of cDNAs encoding a novel non-receptor tyrosine kinase, brk, expressed in human breast tumours. Oncogene 9, 2383-2390. Mitchell, P.J., Barker, K.T., Shipley, J., and Crompton, M.R. (1997). Characterisation and chromosome mapping of the human non receptor tyrosine kinase gene, brk. Oncogene 15, 1497-1502. Mitchell, P.J., Sara, E.A., and Crompton, M.R. (2000). A novel adaptor-like protein which is a substrate for the non-receptor tyrosine kinase, BRK. Oncogene 19, 4273-4282. Monteagudo, C., Merino, M.J., San-Juan, J., Liotta, L.A., and Stetler-Stevenson, W.G. (1990). Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 136, 585-592. Nita-Lazar, A., Saito-Benz, H., and White, F.M. (2008). Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 8, 4433-4443. Olayioye, M.A., Beuvink, I., Horsch, K., Daly, J.M., and Hynes, N.E. (1999). ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem 274, 17209-17218. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648. Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376-386. Ostrander, J.H., Daniel, A.R., Lofgren, K., Kleer, C.G., and Lange, C.A. (2007). Breast tumor kinase (protein tyrosine kinase 6) regulates heregulin-induced activation of ERK5 and p38 MAP kinases in breast cancer cells. Cancer Res 67, 4199-4209. Pan, C., Gnad, F., Olsen, J.V., and Mann, M. (2008). Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-4546. Paul, M.K., and Mukhopadhyay, A.K. (2004). Tyrosine kinase - Role and significance in Cancer. Int J Med Sci 1, 101-115. Petro, B.J., Tan, R.C., Tyner, A.L., Lingen, M.W., and Watanabe, K. (2004). Differential expression of the non-receptor tyrosine kinase BRK in oral squamous cell carcinoma and normal oral epithelium. Oral Oncol 40, 1040-1047. Premont, R.T., Claing, A., Vitale, N., Perry, S.J., and Lefkowitz, R.J. (2000). The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J Biol Chem 275, 22373-22380. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., et al. (2005). Global analysis of protein phosphorylation in yeast. Nature 438, 679-684. Qiu, H., and Miller, W.T. (2002). Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition. J Biol Chem 277, 34634-34641. Qiu, H., and Miller, W.T. (2004). Role of the Brk SH3 domain in substrate recognition. Oncogene 23, 2216-2223. Qiu, H., Zappacosta, F., Su, W., Annan, R.S., and Miller, W.T. (2005). Interaction between Brk kinase and insulin receptor substrate-4. Oncogene 24, 5656-5664. Reinders, J., and Sickmann, A. (2005). State-of-the-art in phosphoproteomics. Proteomics 5, 4052-4061. Rothe, F., Gueydan, C., Bellefroid, E., Huez, G., and Kruys, V. (2006). Identification of FUSE-binding proteins as interacting partners of TIA proteins. Biochem Biophys Res Commun 343, 57-68. Rush, J., Moritz, A., Lee, K.A., Guo, A., Goss, V.L., Spek, E.J., Zhang, H., Zha, X.M., Polakiewicz, R.D., and Comb, M.J. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23, 94-101. Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211-225. Schmandt, R.E., Bennett, M., Clifford, S., Thornton, A., Jiang, F., Broaddus, R.R., Sun, C.C., Lu, K.H., Sood, A.K., and Gershenson, D.M. (2006). The BRK tyrosine kinase is expressed in high-grade serous carcinoma of the ovary. Cancer Biol Ther 5, 1136-1141. Schober, M., Raghavan, S., Nikolova, M., Polak, L., Pasolli, H.A., Beggs, H.E., Reichardt, L.F., and Fuchs, E. (2007). Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J Cell Biol 176, 667-680. Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C., and Di Fiore, P.P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293. Serfas, M.S., and Tyner, A.L. (2003). Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases. Oncol Res 13, 409-419. Shah, K., and Shokat, K.M. (2002). A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. Chem Biol 9, 35-47. Shay, J.W., and Bacchetti, S. (1997). A survey of telomerase activity in human cancer. Eur J Cancer 33, 787-791. Shen, C.H., Chen, H.Y., Lin, M.S., Li, F.Y., Chang, C.C., Kuo, M.L., Settleman, J., and Chen, R.H. (2008). Breast tumor kinase phosphorylates p190RhoGAP to regulate rho and ras and promote breast carcinoma growth, migration, and invasion. Cancer Res 68, 7779-7787. Siyanova, E.Y., Serfas, M.S., Mazo, I.A., and Tyner, A.L. (1994). Tyrosine kinase gene expression in the mouse small intestine. Oncogene 9, 2053-2057. Sledge, G.W., Jr., and Miller, K.D. (2003). Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur J Cancer 39, 1668-1675. Smolka, M.B., Albuquerque, C.P., Chen, S.H., and Zhou, H. (2007). Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A 104, 10364-10369. Sopko, R., and Andrews, B.J. (2008). Linking the kinome and phosphorylome--a comprehensive review of approaches to find kinase targets. Mol Biosyst 4, 920-933. Stofega, M.R., Sanders, L.C., Gardiner, E.M., and Bokoch, G.M. (2004). Constitutive p21-activated kinase (PAK) activation in breast cancer cells as a result of mislocalization of PAK to focal adhesions. Mol Biol Cell 15, 2965-2977. Taylor, S.J., Resnick, R.J., and Shalloway, D. (2004). Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol 5, 5. ten Klooster, J.P., Jaffer, Z.M., Chernoff, J., and Hordijk, P.L. (2006). Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J Cell Biol 172, 759-769. Thomas, S.M., Soriano, P., and Imamoto, A. (1995). Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature 376, 267-271. Turner, C.E., Brown, M.C., Perrotta, J.A., Riedy, M.C., Nikolopoulos, S.N., McDonald, A.R., Bagrodia, S., Thomas, S., and Leventhal, P.S. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J Cell Biol 145, 851-863. Ullrich, A., and Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203-212. van der Geer, P., Hunter, T., and Lindberg, R.A. (1994). Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10, 251-337. Vasioukhin, V., Serfas, M.S., Siyanova, E.Y., Polonskaia, M., Costigan, V.J., Liu, B., Thomason, A., and Tyner, A.L. (1995). A novel intracellular epithelial cell tyrosine kinase is expressed in the skin and gastrointestinal tract. Oncogene 10, 349-357. Vernet, C., and Artzt, K. (1997). STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet 13, 479-484. Weaver, A.M., and Silva, C.M. (2006). Modulation of signal transducer and activator of transcription 5b activity in breast cancer cells by mutation of tyrosines within the transactivation domain. Mol Endocrinol 20, 2392-2405. Weaver, A.M., and Silva, C.M. (2007). Signal transducer and activator of transcription 5b: a new target of breast tumor kinase/protein tyrosine kinase 6. Breast Cancer Res 9, R79. Weintraub, S.J., Chow, K.N., Luo, R.X., Zhang, S.H., He, S., and Dean, D.C. (1995). Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375, 812-815. Welsch, T., Endlich, K., Giese, T., Buchler, M.W., and Schmidt, J. (2007). Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett 255, 205-218. Xiang, B., Chatti, K., Qiu, H., Lakshmi, B., Krasnitz, A., Hicks, J., Yu, M., Miller, W.T., and Muthuswamy, S.K. (2008). Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proc Natl Acad Sci U S A 105, 12463-12468. Yao, J., Weremowicz, S., Feng, B., Gentleman, R.C., Marks, J.R., Gelman, R., Brennan, C., and Polyak, K. (2006). Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 66, 4065-4078. Yarden, Y., and Ullrich, A. (1988). Growth factor receptor tyrosine kinases. Annu Rev Biochem 57, 443-478. Yu, C.L., Meyer, D.J., Campbell, G.S., Larner, A.C., Carter-Su, C., Schwartz, J., and Jove, R. (1995). Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81-83. Zhang, H., Zha, X., Tan, Y., Hornbeck, P.V., Mastrangelo, A.J., Alessi, D.R., Polakiewicz, R.D., and Comb, M.J. (2002). Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J Biol Chem 277, 39379-39387. Zhang, P., Ostrander, J.H., Faivre, E.J., Olsen, A., Fitzsimmons, D., and Lange, C.A. (2005). Regulated association of protein kinase B/Akt with breast tumor kinase. J Biol Chem 280, 1982-1991. Zhang, Z., and Carmichael, G.G. (2001). The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106, 465-475. Zhao, Z.S., Manser, E., Loo, T.H., and Lim, L. (2000). Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol 20, 6354-6363. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23103 | - |
dc.description.abstract | 乳癌激酶是一種非受體型酪胺酸激酶,以經常在乳癌中過量表現而聞名。過去研究指出位於表皮生長激素(EGF)傳遞路徑下游的乳癌激酶能促進細胞的增殖和移動,而這些功能被認為來自於它對細胞中某些蛋白的磷酸化所造成,然而至今卻只發現它極少數的受質。因此在本篇論文中我們利用系統性蛋白質體學方法來比較過量表現和沒表現乳癌激酶的細胞裡有被酪胺酸磷酸化的蛋白之間的差異,並藉此找出一些可能是乳癌激酶受質的蛋白。當那些有被酪胺酸磷酸化的蛋白經免疫親和純化和胰蛋白酵素分解後,其中的磷酸化胜肽經質譜分析可發現有127種磷酸化蛋白特別出現於過量表現乳癌激酶的細胞中。大部分被發現的蛋白都會和核醣核酸作用且參與多種不同的核酸代謝途徑,例如核酸剪接與加工和去氧核醣核酸的轉錄。除此之外,當中還有某些蛋白會調控細胞移動和細胞骨架的變動。而且乳癌激酶的一些已知受質Sam68、SLM-2、PSF也在其列。接著我們從中選出GIT2和ARHGEF6這兩個蛋白來證實是否為此激酶的受質。結果發現乳癌激酶在細胞中不僅使這兩個蛋白的磷酸化程度上升,也與它們有著交互作用。另外我們也發現GIT2的Y286和Y592這兩個酪胺酸位點可被乳癌激酶給磷酸化。最後我們又另外研究一個名叫EPS8且早已被我們實驗室發現也是乳癌激酶受質的蛋白。我們以生物體外激脢活性試驗證實ESP8確實是乳癌激酶的受質,也連帶確定了此蛋白中的某五個酪胺酸位點可被此激酶給磷酸化。整體來說我們的研究發現了數個乳癌激酶下游的作用目標,並可做為未來研究乳癌激酶生物功能的基礎。 | zh_TW |
dc.description.abstract | Breast tumor kinase (Brk), a non-receptor tyrosine kinase, is frequently overexpressed in breast cancers. Previous studies have shown that Brk acts downstream of epidermal growth factor to promote cell proliferation and migration. These biological functions of Brk are thought to be resulted from its phosphorylation of cellular proteins, but only a limited number of substrates have been discovered to date. In the thesis, we took use a systematic proteomic approach to identify putative Brk substrates by comparing the tyrosine phosphorylated proteins in Brk-overexpresing cells and control cells. Using immunoaffinity purification of tyrosine-phosphorylated proteins followed by enrichment of phosphopeptides, 127 phosphoproteins are observed only in Brk-overexpresing cells. Most of them belong to RNA-binding proteins involving in various RNA metabolic processes, such as splicing, transcription, and RNA processing. In addition, several of them are known to elicit effects on regulating actin cytoskeleton and/or cell migration. Importantly, several known Brk substrates, including Sam68, SLM-2, and PSF, are also recovered. We next validate the Brk-induced tyrosine phosphorylation of two identified proteins, GIT2 and ARHGEF6. Importantly, Brk not only promotes their phosphorylation in vivo but also physically interacts with both proteins. Moreover, we show that the tyrosine residues Y286 and Y592 of GIT2 are both involved in Brk-induced phosphorylation. Finally, we have extended our analysis to EPS8, another putative Brk substrate identified previously in our laboratory. Using in vitro kinase assay, we demonstrate EPS8 as a direct substrate of Brk and identify five Brk-targeting tyrosine residues. Together, our analysis has uncovered several Brk downstream targets, which would provide a basis for future analysis of Brk’s biological functions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:42:04Z (GMT). No. of bitstreams: 1 ntu-98-R96b46029-1.pdf: 823032 bytes, checksum: e2aebcec42ce5ef33964cddccfcbedb9 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Table of Content
中文摘要 ………………………………………………………………………………..i Abstract …………………………………………………………………………….......ii Ⅰ. Introduction ………………………………………………………………………...1 1. Overview of cancer………………………………………………………………..1 2. Protein tyrosine kinases and cancer formation………………………….............4 2.1 Receptor tyrosine kinase (RTK) and nonreceptor tyrosine kinase (NRTK)……4 2.1.1 Receptor tyrosine kinase (RTK)………………………………………..5 2.1.2 Nonreceptor tyrosine kinase (NRTK)…………………………………..6 2.2 The functional roles of PTK in tumor progression ……………………….........7 3. Breast tumor kinase (Brk)………………………………………………………..8 3.1 Identification of Brk………………………………………………………........8 3.2 Domain structure of Brk………………………………………………………..9 3.3 Biological functions of Brk…………………………………………………...10 3.4 Identification of Brk substrates………………………………………………..11 4. Identifying kinase substrates by assessing phosphorylaiton…………………..15 4.1 In vitro phosphorylation of pooled libraries……………………………..........15 4.1.1 Systematic screening of pools of potential substrates in whole cell lysates…………………………………………………………………15 4.1.2 Systematic screening of pools of potential substrates on proteome chips…………………………………………………………………...16 4.1.3 Systematic screening of pools of potential substrates using phage expression-derived protein libraries…………………………………..17 4.2 Detection by phosphor-specific antibodies……………………………............17 4.3 Mass spectrometry of complex samples………………………………………18 Ⅱ. Specific Aim………………………………………………………………………..19 Ⅲ. Materials and Methods…………………………………………………………...20 Ⅳ. Results ……………………………………………………………………………..27 Ⅴ. Discussion ………………………………………………........................................34 Reference ……………………………………………………………………………...57 圖目錄 Figure 1. Comparison of the tyrosine phosphorylation status of cellular proteins in control and Brk expressing cells………………………………………………………..38 Figure 2. Comparison of the tyrosine phosphorylation status of cellular proteins in control and Brk expressing 293T cells treated with pervanadate before harvesting…...39 Figure 3. Schematic presentation for the integrated phosphoproteomic approach utilized in this study……………………………………………………………………………..40 Figure 4. The workflow for selection of unique and convincing pTyr proteins from the data list of Brk………………………………………………………………………….41 Figure 5. Brk promotes GIT2 tyrosine phosphorylation……………………………….42 Figure 6. Brk interacts with GIT2……………………………………………………...43 Figure 7. Y592 and Y286 of GIT2 are tyrosine-phosphorylated by Brk……………….44 Figure 8. Brk promotes ARHGEF6 tyrosine phosphorylation…………………………45 Figure 9. Brk interacts with ARHGEF6………………………………………………..46 Figure 10. Brk phosphorylates EPS8 in vitro…………………………………………..47 表目錄 Table 1. Identified Tyrosine-phosphorylated proteins promoted by Brk……………….48 Table 2. Identified pTyr sites on GIT2 and ARHGEF6………………………………...56 | |
dc.language.iso | en | |
dc.title | 以磷酸化蛋白質譜鑑定乳癌激酶之受質 | zh_TW |
dc.title | Identification of Brk cellular substrates by phosphoproteomic and signaling approaches | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱繼輝(Kay-Hooi Khoo),孟子青(Tzu-Ching Meng) | |
dc.subject.keyword | Brk,磷酸化蛋白質體,質譜儀,GIT2,ARHGEF6,EPS8, | zh_TW |
dc.subject.keyword | Brk,phosphoproteomics,mass spectrometry,GIT2,ARHGEF6,EPS8, | en |
dc.relation.page | 71 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-08-10 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 803.74 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。