請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23098完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | |
| dc.contributor.author | Te-Yu Tseng | en |
| dc.contributor.author | 曾德玉 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:41:50Z | - |
| dc.date.copyright | 2011-08-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-16 | |
| dc.identifier.citation | 1. J. Gao, D. Liu, and Z. Wang, 'Microarray-based study of carbohydrate-protein binding by gold nanoparticle probes,' Anal Chem 80, 8822-8827 (2008).
2. Z. Wang, J. Lee, A. R. Cossins, and M. Brust, 'Microarray-based detection of protein binding and functionality by gold nanoparticle probes,' Anal Chem 77, 5770-5774 (2005). 3. P. Francois, M. Bento, P. Vaudaux, and J. Schrenzel, 'Comparison of fluorescence and resonance light scattering for highly sensitive microarray detection of bacterial pathogens,' J Microbiol Methods 55, 755-762 (2003). 4. B. Ford, M. Descour, and R. Lynch, 'Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,' Optics Express 9, 444-453 (2001). 5. G. L. Liu, J. C. Doll, and L. P. Lee, 'High-speed multispectral imaging of nanoplasmonic array,' Optics Express 13, 21 (2005). 6. O. Khait, S. Smirnov, and C. D. Tran, 'Time-Resolved Multispectral Imaging Spectrometer,' Applied Spectroscopy 54, 1734-1742 (2000). 7. C. Glasenapp, W. Monch, H. Krause, and H. Zappe, 'Biochip reader with dynamic holographic excitation and hyperspectral fluorescence detection,' J Biomed Opt 12, 014038 (2007). 8. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, 'Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,' Optics Express 13, 2668-2677 (2005). 9. M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, 'Design, construction, characterization, and application of a hyperspectral microarray scanner,' Appl Opt 43, 2079-2088 (2004). 10. R. D. Alcock, and J. M. Coupland, 'A compact, high numerical aperture imaging Fourier transform spectrometer and its application,' Measurement Science and Technology 17, 2861-2868 (2006 ). 11. J. Reichert, A. Csaki, J. M. Kohler, and W. Fritzsche, 'Chip-based optical detection of DNA hybridization by means of nanobead labeling,' Anal Chem 72, 6025-6029 (2000). 12. T. A. Taton, G. Lu, and C. A. Mirkin, 'Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,' J Am Chem Soc 123, 5164-5165 (2001). 13. S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, 'Base pair mismatch recognition using plasmon resonant particle labels,' Anal Biochem 309, 109-116 (2002). 14. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, 'Single-target molecule detection with nonbleaching multicolor optical immunolabels,' Proc Natl Acad Sci U S A 97, 996-1001 (2000). 15. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, 'Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,' Cancer Res 63, 1999-2004 (2003). 16. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, 'Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,' Nano Lett 5, 829-834 (2005). 17. J. Yguerabide, and E. E. Yguerabide, 'Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,' Anal Biochem 262, 157-176 (1998). 18. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, 'A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,' Nat Biotechnol 23, 741-745 (2005). 19. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. Jose-Yacaman, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, 'Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,' J Biomed Opt 12, 034007 (2007). 20. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, 'Biosensing with plasmonic nanosensors,' Nat Mater 7, 442-453 (2008). 21. A. Wax, and K. Sokolov, 'Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,' Laser & Photonics Reviews 3, 146-158 (2009). 22. M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, 'Molecular Imaging and Quantitative Measurement of Epidermal Growth Factor Receptor Expression in Live Cancer Cells Using Immunolabeled Gold Nanoparticles,' Am. J. Roentgenol. 192, 1021-1028 (2009). 23. J. Becker, O. Schubert, and C. Sonnichsen, 'Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method,' Nano Lett 7, 1664-1669 (2007). 24. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, 'Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,' Appl. Optics 38, 6628-6637 (1999). 25. V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, 'Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,' Neoplasia 11, 325-332 (2009). 26. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, 'Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,' Curr. Opin. Biotechnol. 20, 119-131 (2009). 27. S. McGee, J. Mirkovic, V. Mardirossian, A. Elackattu, C. C. Yu, S. Kabani, G. Gallagher, R. Pistey, L. Galindo, K. Badizadegan, Z. Wang, R. Dasari, M. S. Feld, and G. Grillone, 'Model-based spectroscopic analysis of the oral cavity: impact of anatomy,' J. Biomed. Opt. 13, 15 (2008). 28. A. Amelink, O. P. Kaspers, H. J. Sterenborg, J. E. van der Wal, J. L. Roodenburg, and M. J. Witjes, 'Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy,' Oral Oncol 44, 65-71 (2008). 29. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, 'In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,' J. Biomed. Opt. 10, 15 (2005). 30. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, 'Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,' J. Biomed. Opt. 11, 16 (2006). 31. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, 'NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,' Cancer Res. 62, 682-687 (2002). 32. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, 'A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,' Opt. Express 18, 5580-5594 (2010). 33. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, 'Quantitation and mapping of tissue optical properties using modulated imaging,' J. Biomed. Opt. 14, 13 (2009). 34. R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, 'Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,' J. Biomed. Opt. 10, 11 (2005). 35. J. C. Finlay, and T. H. Foster, 'Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,' Med. Phys. 31, 1949-1959 (2004). 36. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. Sterenborg, 'The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,' Phys. Med. Biol. 44, 967-981 (1999). 37. M. G. Nichols, E. L. Hull, and T. H. Foster, 'Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,' Appl. Optics 36, 93-104 (1997). 38. Q. Z. Wang, H. Z. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, 'Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system,' Opt. Express 16, 8685-8703 (2008). 39. R. Reif, O. A'Amar, and I. J. Bigio, 'Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,' Appl. Optics 46, 7317-7328 (2007). 40. G. M. Palmer, and N. Ramanujam, 'Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,' Appl. Optics 45, 1062-1071 (2006). 41. P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, 'In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,' J. Biomed. Opt. 8, 495-503 (2003). 42. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, 'Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging.,' Appl. Optics 39, 6487-6497 (2000). 43. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, 'Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,' Appl. Optics 35, 2304-2314 (1996). 44. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, 'Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,' Appl. Optics 40, 1155-1164 (2001). 45. A. J. Welch, and M. J. C. v. Gemert, Optical-thermal response of laser-irradiated tissue (Plenum Press, New York, 1995). 46. M. S. Patterson, B. Chance, and B. C. Wilson, 'Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical-Properties,' Appl. Optics 28, 2331-2336 (1989). 47. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, 'Properties of Photon Density Waves in Multiple-Scattering Media,' Appl. Optics 32, 607-616 (1993). 48. A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, 'Depth-sensitive reflectance measurements using obliquely oriented fiber probes,' J. Biomed. Opt. 10, 17 (2005). 49. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, 'Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,' J. Appl. Phys. 105, 9 (2009). 50. D. Yudovsky, and L. Pilon, 'Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,' Appl Opt 49, 1707-1719 (2010). 51. H. Y. Cen, and R. F. Lu, 'Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,' Appl. Optics 48, 5612-5623 (2009). 52. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, 'Noninvasive determination of the optical properties of two-layered turbid media,' Appl. Optics 37, 779-791 (1998). 53. L. V. Wang, and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007). 54. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, 'The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,' Journal of Physical Chemistry B 107, 668-677 (2003). 55. D. M. Haaland, J. A. Timlin, M. B. Sinclair, M. H. V. Benthem, M. J. Martinez, A. D. Aragon, and M. Werner-Washburne, 'Multivariate curve resolution for hyperspectral image analysis: applications to microarray technology ' in Proc. SPIE, R. M. Levenson, G. H. Bearman, and A. Mahadevan-Jansen, eds. (San Jose, CA, USA 2003), p. 55. 56. J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, 'Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,' BMC Genomics 6, 72 (2005). 57. A. Dubois, J. Moreau, and C. Boccara, 'Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,' Opt Express 16, 17082-17091 (2008). 58. A. C. Curry, M. Crow, and A. Wax, 'Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,' J Biomed Opt 13, 014022 (2008). 59. R. T. Kester, L. Gao, and T. S. Tkaczyk, 'Development of image mappers for hyperspectral biomedical imaging applications,' Appl Opt 49, 1886-1899 (2010). 60. Q. Liu, and N. Ramanujam, 'Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,' J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 24, 1011-1025 (2007). 61. C.-Y. Chen, 'Quantification of the optical properties and hemoglobin of tissue phantom using a hyperspectral imaging-based system,' in Graduate Institute of Biomedical Electronics and Bioinformatics(National Taiwan University, Taipei, 2010). 62. R. Graaff, M. H. Koelink, F. F. M. Demul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, 'Condensed Monte-Carlo Simulations for the Description of Light Transport,' Appl. Optics 32, 426-434 (1993). 63. S. Prahl, 'Tabulated Molar Extinction Coefficient for Hemoglobin in Water,' http://omlc.ogi.edu/spectra/hemoglobin/summary.html. 64. I. Pavlova, C. R. Weber, R. A. Schwarz, M. Williams, A. El-Naggar, A. Gillenwater, and R. Richards-Kortum, 'Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer,' J. Biomed. Opt. 13, 13 (2008). 65. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, 'Three-dimensional surface profile intensity correction for spatially modulated imaging,' J. Biomed. Opt. 14, 11 (2009). 66. D. Arifler, 'Sensitivity of spatially resolved reflectance signals to coincident variations in tissue optical properties,' Appl Opt 49, 4310-4320 (2010). 67. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, 'Fourier transform multipixel spectroscopy for quantitative cytology ' Journal of Microscopy 182, 133-140 (1996). 68. J. Li, R. K. Chan, and X. Wang, 'Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements,' Opt Express 17, 21083-21090 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23098 | - |
| dc.description.abstract | 本論文的內容主要建構一套可應用於生物醫學上的多光譜影像系統,並針對不同的生醫應用需求,延伸發展出分析多光譜資訊的工具。由於應用於生物醫學的檢測系統通常需要具備快速以及穩定的特性,為此本研究選用傅氏光譜儀作為多光譜系統的基礎架構,不僅可以高速擷取多光譜影像,並且無須太多複雜的光學架構。在此多光譜系統下,本研究也進行此系統的效能分析,並建立光譜的修正方法。
首先,本研究使用多光譜影像系統應用於量測金屬奈米粒子的散射光譜,這是因為金屬奈米粒子具有穩定與高散射強度的特性,讓金屬奈米粒子漸漸取代螢光分子作為光學檢測中的標記物的研究蓬勃地發展。由於要區別不同的金屬奈米粒子的種類,需要利用光譜儀觀察其獨特的散射光譜,若是將多種金屬奈米粒子同時應用在大面積的生醫感測晶片上,則散射光譜的擷取時間將非常驚人,因此需要高速的光譜擷取系統來搭配金屬奈米粒子的生醫應用發展。本研究成功地利用實驗室內所架設的影像式多光譜系統用於量測金屬奈米粒子的散射光譜,而且進一步使用光譜分析的工具來進行不同金屬奈米粒子的濃度定量,表現出未來可以應用於微陣列晶片的潛力。另外,本研究也利用此系統觀察到金屬奈米粒子的局部表面電漿的效應,未來亦可以用於生物環境的偵測。 另一生醫的應用部分,則是利用此系統量測組織漫散射光譜。在組織病變的進程時,組織漫散射光譜能夠反應出組織結構以及組織中生化成分的改變,因此可以利用量測到的組織漫散射光譜來能夠幫助診斷組織的病變。為了未來能與臨床應用結合,本研究將影像式光纖束用來收集組織的漫反射光譜,量測具有空間解析的組織漫反射光譜,並使用實驗室所建立的蒙地卡羅模擬工具得到組織中的光學參數,用以評斷組織中細胞型態或是生化成分的改變,希望未來能夠應用在臨床方面輔助診斷或是幫助治療。 | zh_TW |
| dc.description.abstract | This dissertation describes the construction of a hyperspectral imaging system (HSIS) based on Fourier transform spectroscopy (FTS) and the combinations of the HSIS with spectral analysis methods for biomedical applications. The FTS-based HSIS owns high-speed acquisition of hyperspectral imaging and simply optical design, which are critical features for biomedical applications. System performances and spectral calibration methods of the FTS-based HSIS were well tested.
In the first biomedical application, we used the HSIS to measure scattering spectra from immobilized plasmonic nanoparticles. The current setup had acquisition time of 5 seconds and spectral resolution of 21.4 nm at 532.1 nm. We demonstrated the applicability of the HSIS in conjunction with spectral data analysis to quantify multiple types of plasmonic nanoparticles (PNPs) and detect small changes in localized surface plasmon resonance wavelengths of PNPs due to changes in the environmental refractive index. In the second application, we also applied hyperspectral imaging to measure spatially-resolved diffuse reflectance spectra (DRS) in the visible range and an iterative inversion method based on forward Monte Carlo (MC) modeling to quantify optical properties of two-layered tissue models. We validated the inversion method using spectra experimentally measured from liquid tissue mimicking phantoms with known optical properties. Results of fitting simulated data showed that simultaneously considering the spatial and spectral information in the inversion process improves the accuracies of estimating the optical properties and the top layer thickness in comparison to methods fitting reflectance spectra measured with a single source-detector separation or fitting spatially-resolved reflectance at a single wavelength. Further development of the method could improve noninvasive assessment of physiological status and pathological conditions of stratified squamous epithelium and superficial stroma. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:41:50Z (GMT). No. of bitstreams: 1 ntu-100-D96945005-1.pdf: 1416136 bytes, checksum: 896fe4b501ea7235cbbf1e7ff8e03732 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III Table of Contents V Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Research objective and dissertation overview 2 Chapter 2:Background 3 2.1 Fundamentals and technique review of HSIS 3 2.2 Theoretical principle of FTS-based HSIS 5 2.3 Introduction to PNPs 8 2.4 Introduction to DRS 10 2.5 Photon propagation in turbid media via Monte Carlo 15 Chapter 3: Optical design and systematic calibration 20 3.1 Optical configurations 20 3.2 Spatial and spectral resolution 22 3.3 Spectral calibration 25 Chapter 4: Detections and applications of PNPs 28 4.1 Measuring scattering spectra of PNPs 28 4.2 Quantifications of microarray-based PNPs 32 4.3 LSPR detection of PNPs 36 4.4 Comparison and discussion 39 Chapter 5: Quantifications of the optical properties of layered media by analyzing spatially-resolved DRS data 42 5.1 Modified HSIS for DRS measurements 43 5.2 Forward Monte Carlo model 45 5.3 Inversion procedure to quantify optical properties 48 5.4 Quantifying optical properties of homogeneous liquid phantoms 50 5.5 Quantifying optical properties of two-layered tissue models from simulated DRS data 57 5.6 Comparison and discussion 63 Chapter 6: Summary and conclusion 70 References 73 | |
| dc.language.iso | en | |
| dc.subject | 空間解析漫散射光譜 | zh_TW |
| dc.subject | 多光譜影像系統 | zh_TW |
| dc.subject | 傅氏轉換 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | Hyperspectral imaging system | en |
| dc.subject | spatially-resolved diffuse reflectance spectroscopy | en |
| dc.subject | plasmonic nanoparticle | en |
| dc.subject | Fourier transform | en |
| dc.title | 多光譜影像系統於生物醫學之應用 | zh_TW |
| dc.title | Biomedical applications of a hyperspectral imaging system based on Fourier transform spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭柏齡,林致廷,邱爾德,魏培坤 | |
| dc.subject.keyword | 多光譜影像系統,傅氏轉換,奈米粒子,空間解析漫散射光譜, | zh_TW |
| dc.subject.keyword | Hyperspectral imaging system,Fourier transform,plasmonic nanoparticle,spatially-resolved diffuse reflectance spectroscopy, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
