Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭石通
dc.contributor.authorMing-Yuan Chengen
dc.contributor.author鄭名淵zh_TW
dc.date.accessioned2021-06-08T04:41:40Z-
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-11
dc.identifier.citation王怡潔 (2006). 耐熱番茄與不耐熱番茄中SAM3與SUS3基因之分析及比較。國立台灣大學植物科學研究所碩士論文。
陳正次、韓森、郭忠吉、歐培納 (2003). 夏季鮮食番茄的品種改良。中華農學會報 第四卷。
陳郁蕙 (2007). 耐熱番茄雄蕊表達基因E8-6和Clone 7 之分離與分析。國立台灣大學植物科學研究所碩士論文。
劉浩雲 (2006). 耐熱番茄與不耐熱番茄中RSG與LeHsc70-1基因之分析及比較。國立台灣大學植物科學研究所碩士論文。
Abdalla, A. A. and Verkerk, K. (1968). Growth, flowering and fruit set of the tomato at high temperature. Neth. J. Agr. Sci. 16: 71-76.
Abdul-Baki, A.A. (1991). Tolerance of tomato cultivars and selected germplasm to heat stress. J. Amer. Soc. Hort. Sci. 116: 1113-1116.
Abiko, M., Akibayashi, K., Sakata, T., Kimura, M., Kihara, M., Itoh, K., Asamizu, E., Sato, S., Takahashi, H., and Higashitani, A. (2005). High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex. Plant Reprod. 18: 91-100.
Adams, D.O., and Yang, S.F. (1979). Regulation of ethylene biosynthesis during the onset of ripening in apple fruit tissue. Plant Physiol. 63: 90-90.
Alcazar, R., Marco, F., Cuevas, J.C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A.F., and Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 28: 1867-1876.
Apelbaum, A., Goldlust, A., and Icekson, I. (1985). Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiol. 79: 635.
Ariasa, M., Carbonellb, J., and Agustı, M. (2005).Endogenous free polyamines and their role in fruit set of low and high parthenocarpic ability citrus cultivars. J. Plant Physiol. 162: 845-853.
Bae, H., Kim, S.H., Kim, M.S., Sicher, R.C., Lary, D., Strem, M.D., Natarajan, S., and Bailey, B.A. (2008). The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol. Biochem. 46: 174-188.
Bouchereau, A., Aziz, A., Larher, F., and Martin-Tanguy, J. (1999). Polyamines and environmental challenges: recent development. Plant Sci. 140: 103-125.
Bowles, D.J. (1990). Defence-related proteins in higher plants. Annu. Rev. Biochem. 59: 873-907.
Capell, T., Escobar, C., Liu, H., Burtin, D., Lepri, O. and Christou, P. (1998). Overexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Appl. Gen. 97: 246-254.
Chang, K.S., Lee, S.H., Hwang, S.B. and Park, K.Y. (2000). Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.). Plant J. 24:45–56
Chen, R.D., Zimmermann, E., Xu, S.X., Liu, G.S., and Smith, A.G. (2009). Characterization of an anther- and tapetum-specific gene and its highly specific promoter isolated from tomato. Plant Cell Rep. 28: 539.
Chibi, F., Angosto, T., Garrido, D. and Matilla A. (1993). Requirement of polyamines for in-vitro maturation of the mid-binucleate pollen of Nicotiana tabacum. J. Plant Physiol. 142: 452-456.
Dios, P., Matilla, A.J., and Gallardo, M. (2006). Flower fertilization and fruit development prompt changes in free polyamines and ethylene in damson plum (Prunus insititia L.). J. Plant Physiol. 163: 86-97.
Escribano, M.I., and Merodio, C. (1994). Relevance of polyamine levels in cherimoya (Annona cherimola Mill.) fruit ripening. Physiol. Plant. 73:201–205.
Enns, L.C., Kanaoka, M.M., Torii, K.U., Comai, L., Okada, K. and Cleland, R.E. (2005). Two callose synthases, GSL1 and GSL2, play an essential and redundant role in plant and pollen development and in fertility. Plant Mol. Biol. Rep. 59: 333-349.
Flores, H.E., and Galston, A.W. (1982). Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701-706.
Fredlund, J.O., Johansson, M.C., Dahlberg, E., and Oredsson, S.M. (1995). Ornithine decarboxylase and S-adenosylmethionine decarboxylase expression during the cell-cycle of Chinese-hamster ovary cells. Exp. Cell Res. 216: 86-92.
Gappa, M.D. and Benavides, M.P. (2008). Polyamines and abiotic stress: recent advance. Amino Acids 34: 35-45.
Galston, A.W., and Sawhney, R.K. (1990). Polyamines in plant physiology. Plant Physiol. 94: 406-410.
Gemperlova, L., Cvikrova, M., Fischerove, L., Binarova, P., Fisher, L. and Eder, J. (2009). Polyamine metabolism during the cell cycle of synchronized tobacco BY-2 cell line. Plant Physiol. Biochem. (preview).
Hu, W.W., Gong, H. and Pua, E.C. (2005). The pivotal roles of the plant S-adenosylmethionine decarboxylase 5' untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiol. 138: 276-286.
Huang, C.K., Chang, B.S., Wang, K.C., Her, S.J., Chen, T.W., Chen, Y.A., Cho, C.L., Liao, L.J., Huang, K.L., Chen, W.S., and Liu, Z.H. (2004). Changes in polyamine pattern are involved in floral initiation and development in Polianthes tuberose. J. Plant Physiol. 161: 709-713.
Icekson, I., Goldlust, A., and Apelbaum, A. (1985). Influence of ethylene on S-adenosylmethionine decarboxylase activity in etiolated pea seedlings. Plant Physiol. 69: 411-415.
Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I. and Tachibana, S. (2004). Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 45: 712-722.
Katz, Y.S., Galili, G., and Amir, R. (2006). Regulatory role of cystathionine-c-synthase and de novo synthesis of methionine in ethylene production during tomato fruit ripening. Plant Mol. Biol. 61:255–268.
Kim, Y.J., Lee, S.H., and Park, K.Y. (2004). A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco. FEBS Lett. 578: 229-235.
Kumar, A., Mark, A.. Taylor, S.A. Arif, M, and Davies, H.V. (1996). Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J. 9: 147-158.
Kusano, T., Berberich, T., Tateda, C., and Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta. 228: 367-381.
Kusano, T., Yamaguchi, K., Berberich, T. and Takahashi, Y. (2007). Advances in polyamine research in 2007. J. Plant Res. 120: 345-350.
Linsalata, M. and Russo, F. (2008). Nutritional factors and polyamine metabolism in colorectal cancer. Nutrition. 24: 382-389.
Logemann, J., Lipphardt, S., Lorz, H., Hauser, I., Willimitzer, L. and Schell, J. (1989). 5' upstream sequences from the wunl gene are responsible for gene activation by wounding in transgenic plants. Plant Cell 1: 151-158.
Logemann, J. and Schell, J. (1989). Nucleotide sequence and regulated expression of a wound-inducible potato gene (wun1). Mol. Gen. Genet. 219: 81-88.
Malmberg, R.L. and Mclndoo, J. (1983). Abnormal floral development of a tobacco mutant with elevated polyamine levels. Nature 305: 623-625.
Martin-Tanguy, J. (1997). Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol. Plant 100: 675-688.
Martinez-Madrid, M.C., Flores, F., and Romojaro, F. (2002). Behaviour of abscisic acid and polyamines in antisense ACC oxidase melon (Cucumis melo) during ripening. Funct. Plant Biol. 29: 865–872.
Mea, M.D., Serafini-Fracassini, D. and Del Duca, S. (2007). Programmed cell death: similarities and differences in animals and plants. A flower paradigm. Amino Acids 33: 395-404.
Mehta, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K., and Mattoo, A.K.(2002). Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat. Biotechnol. 20: 613-618.
Pachalidis, K.A., and Roubelakis-Angelakis, K.A. (2005). Sites and regulation of polyamine catabolism in tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol. 138: 2174-2184.
Peet, M.M., Sato, S., and Gardner, R.G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell and Environ. 21: 225-231.
Penarrubia, L., Aguilar, M., Margossian, L., and Fischer, R.L. (1992). An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4: 681-687.
Parasad, P.V., Craufurd, P.Q., and Summerfield, R.J. (1999). Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Annu. of Bot. 84: 381-386.
Roy, M. and Wu, R. (2001). Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci. 160: 869-875.
Saftner, R.A., and Baldi, B.G. (1990). Polyamine levels and tomato fruit development: possible interaction with ethylene. Plant Physiol. 92:547–550.
Sato, S., Peet, M.M., Thomas, J.F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell and Environ. 23: 719-726.
Sawhney, V.K., and Bhadula, S.K. (1988). Microsporogenesis in the normal and male-sterile stamenless-2 mutant of tomato (Lycopersicon esculentum). Can. J. Botany 66: 2013-2021.
Siebertz, B., Logemann, J., Willmitzer, L., and Schell, J. (1989). cis-analysis of the wound-inducible promoter wun1 in transgenic tobacco plants and histochemical localization of its expression. Plant Cell 1: 961-968.
Smith, T.A. (1985). Polyamines. Annu. Rev. Plant Physiol. 36: 117-143.
Song, J., Nada, K., and Tachibana, S. (2001). The early increase of S-adenosylmethionine decarboxylase activity is essential for the normal germination and tube growth in tomato (Lycopersicon esculentum Mill.) pollen. Plant Sci. 161: 507-515.
Song, J., Nada, K., and Tachibana, S. (2002). Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant Cell Physiol. 43: 619-627.
Tabor, C.W., and Tabor, H. (1984). Polyamines. Annu. Rev. Biochem. 53: 749-790.
Tang, W. and Newton, R.J. (2005). Polyamines promote root elongation and growth by increasing root division in regenerated Virginia pine (Pinus virginiana Mill) plantlets. Plant Cell Rep. 24: 581-589.
Tarenghi, E., Martin-Tanguy, J. (1995). Polyamines, floral induction and floral development of strawberry (Fragaria ananassa Duch.). Plant Growth Reg. 17: 157-165.
Tassoni, A., Watkins, C.B., and Davies, P.J. (2006). Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. J. Exp. Bot. 57: 3313-3325.
Wi, S.J., Kim, W.T., and Park, K.Y. (2006). Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep. 25: 1111-1121.
Xu, S.X., Liu, G.S., and Chen, R.D. (2006). Characterization of an anther- and tapetum- specific gene and its highly specific promoter isolated from tomato. Plant Cell Rep. 25: 231-240.
Yen, S.K., Chung, M.C., Chen, P.C., and Yen, H.E. (2001). Environmental and developmental regulation of the wound-induced cell wall protein WI12 in the halophyte ice plant. Plant Physiol.127: 517-528.
Ziosi, V., Bregoli, A.M., Fregola, F., Costa, G., and Torrigiani, P. (2009). Jasmonate-induced ripening delay is associated with up-regulation of polyamine levels in peach fruit. J. Plant Physiol. Ahead of print.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23095-
dc.description.abstract番茄雄蕊在高溫底下發育會受損,花粉萌發率及著果率也會跟著下降,實驗室之前利用Suppression Subtractive Hybridization (SSH)所建立之cDNA library中,已找到會被熱誘導之基因S-adenosylmethionine synthetase (SAMS) 和 Wun1基因。S-adenosylmethionine decarboxylase (SAMDC)基因是SAMS的下游基因,被認為是製造多元胺之關鍵酵素,而多元胺含量則對於花朵發育有很重要的影響,但多元胺對於雄蕊之發育影響之研究卻極為有限。目前研究指出,多元胺參與對抗多種非生物性逆境,包含鹽類、低溫、酸性逆境等,而SAMDC的大量表現,卻可以抵抗這些生物逆境,關於多元胺及溫度對於花發育的影響目前的了解都極有限。為探討SAMDC基因的功能,本研究以轉殖番茄的方式大量表現SAMDC,以研究此基因的表現對於雄蕊和花粉發育的影響。但有研究指出若僅表現SAMDC基因主要編碼區而沒有表現其上游編碼區(uORF),則可能會造成毒性讓植物死亡,因此進而製作了包含及不包含uORF的兩個SMADC基因構築。同時,文獻指出以35S啟動子過量表現SAMDC,植物的生長情況會比野生型快速,為了避免營養器官生長造成之影響,選用雄蕊專一表現啟動子將之表現在不耐熱番茄4783中,結果發現,不含上游閱讀框架的SAMDC轉殖番茄花朵無法正常發育;包含uORF的SAMDC轉殖番茄則會產生較多的花粉、較好之花粉萌發率且高溫下萌發花粉管生長情形良好,而花粉產量提升可能因為SAMDC表現量增加進而造成多元胺增加,加速細胞週期的進行,導致花粉數目增加。本研究之另一個對象Wun1是經傷害後會大量表現的蛋白,推測其功能為可保護植物細胞壁,其表現也會受到高溫的誘導,但是在4783以轉殖番茄的方式大量表現Wun1在植物中,卻發現轉殖植物的花粉萌發率降低,且花粉的型態發生改變,可能是因為callose生合成受影響所造成。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T04:41:40Z (GMT). No. of bitstreams: 1
ntu-98-R96b42013-1.pdf: 1466113 bytes, checksum: 329e13248a4cea8ee7d7881c2747ca3d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
中文摘要.............................................................................................................I
英文摘要.............................................................................................................II
縮寫與中英對照表…………………………………………………………...III
第一章 前言.....................................................................................................1
一、番茄與熱境.........................................................................................1
二、高溫生長下雄蕊差異表現基因之分離………….............................1
三、在番茄中具有耐熱潛力之基因.........................................................2
四、多元胺(polyamine)與SAMDC (S-adenosyl-methionine decarboxylase)
…………………………………………………………………………….2
五、TomA 108啟動子…………………………………………………………7
六、Wun1………………………………………………………………………7
七、研究目的與方向………………………………………………….…7

第二章 材料與方法.........................................................................................9
一、材料.....................................................................................................9
二、番茄雄蕊RNA的萃取......................................................................9
三、聚合酵素連鎖反應(The polymerase chain reaction, PCR)及real-time PCR……………………..…..............................................................10
四、多元胺之萃取與測量……………………………………..…….....12
五、質體構築與挑選………………………………..……………….....13
六、轉殖番茄所用之質體構築………………………………….…......15
七、農桿菌之轉形……………………………....………………….......16
八、轉殖番茄………………………………………..……..….…..........17
九、植物基因組DNA抽取…………………………...…….…………19
十、番茄花粉外表型的觀察………………………………...……........20
第三章 結果............................................................................................................22
I SAMDC之功能研究…………………………………………………...22
一、不同溫度下生長之番茄雄蕊,在未開花期的SAMDC基因表現量及多元含量.……......….……………………………………….....22
二、確認溫度對TomA 108啟動子的影響………………………….…23
三、番茄轉殖用載體的構築………….……………….……….…….....23
四、目標基因於轉殖番茄的篩選與表現……………….……….….…24
五、雄蕊內多元胺與乙烯生合成路徑各基因表現分析………….......27
II Wun1之功能研究…….………..………………………….……….….27
一、番茄轉殖用載體的構築………….………….…….……………......27
二、目標基因於轉殖番茄的篩選與表現……………….………...........28
第四章 討論……………………………………………………….………...31
一、高溫對於番茄雄蕊的影響……..……..……..……………….…….31
SAMDC之功能探討..……………………………….………………..…31
二、溫度對於番茄雄蕊SAMDC表現及多元胺多寡之影響………….…....31
三、SAMDC對於雄蕊及花粉發育之探討………………………………....33
四、SAMDC對於耐熱性質之探討………………………………………..…..34
五、番茄雄蕊內多元胺與乙烯生合成路徑之基因交互關係…………..……35
Wun1之功能探討 .………….…………………….……………………36
六、Wun1對於耐熱性質之探討…………………………………………..36
七、結論………………………………………………………………...37
第五章 參考文獻………………………………………….………….....….39
圖表…………………………………………….……………………………..46
dc.language.isozh-TW
dc.title番茄中的S-adenosylmethionine decarboxylase (SAMDC) 和Wun1基因對於雄蕊發育和花粉萌發的影響zh_TW
dc.titleEffect of S-adenosylmethionine decarboxylase (SAMDC) and Wun1 genes on stamen development and pollen germination in tomatoen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林讚標,鄭秋萍,張孟基,洪傳揚
dc.subject.keyword番茄,熱,多元胺,雄蕊,花粉,zh_TW
dc.subject.keywordtomato,heat,polyamine,stamen,pollen,en
dc.relation.page66
dc.rights.note未授權
dc.date.accepted2009-08-11
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved