請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23071
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宗賢(Tsung-Hsien Lin) | |
dc.contributor.author | Yu-Hsien Fang | en |
dc.contributor.author | 方語賢 | zh_TW |
dc.date.accessioned | 2021-06-08T04:40:30Z | - |
dc.date.copyright | 2009-08-18 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-13 | |
dc.identifier.citation | [1] J. Kim, J.-K. Kim, B.-J. Lee, M.-S. Hwang, H.-R. Lee, S.-H. Lee, N. Kim, D.-K. Jeong, and W. Kim, “Circuit Techniques for a 40Gb/s transmitter in 0.13-um CMOS,” in IEEE ISSCC 2005 Dig. Tech. Papers, pp. 150-151, Feb. 2005.
[2] A. Babakhani, X. Guan, A. Komijani, A. Natarajan, and A. Hajimiri, “A 77-GHz 4-element phased array receiver with on-chip dipole antennas in silicon,” in IEEE ISSCC 2006 Dig. Tech. Papers, pp. 180-181, Feb. 2006. [3] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Broderson, “A highly integrated 60-GHz CMOS front-end receiver,” in IEEE ISSCC 2007 Dig. Tech. Papers, pp. 190-191, Feb. 2007. [4] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003. [5] B. D. Muer and M. Steyaert, CMOS Fractional-N Synthesizers Design for High Spectral Purity and Monolithic Integration, Kluwer Academic Publishers, 2003. [6] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” IEEE ISCAS, vol. 2, pp. 545-548, May 1999. [7] T.-H. Lin, Lecture notes: Sensor Interface IC Design, NTU. [8] C.-K. Chiu, Design and Realization of CMOS RF Frequency Synthesizer, Master Thesis, NTU, 2001. [9] F. M. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Trans. on Communications, vol. 28, pp. 1849-1858, Nov. 1980. [10] J. Lee, “High-Speed Circuit Designs for Transmitters in Broadband Data Links,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1004-1015, May. 2006. [11] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000. [12] C. Wann, J. Harrington, R. Mih, S. Biesemans, S. K. Han, R. Dennard, O. Prigge, C. Lin, R. Mahnkopf, and B. Chen, “CMOS with active well bias for low-power and RF/analog applications,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 158-159, Jun. 2000. [13] S. Narendra, A. Keshavarzi, B. A. Bloechel, S. Borkar, and V. De, “Forward body bias for microprocessors in 130-nm technology generation and beyond,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 696-701, May. 2003. [14] H. Su, H. Wang, T. Xu, and R. Zeng, “Effects of Forward Body Bias on High-Frequency Noise in 0.18-um CMOS Transistors,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 972-979, Apr. 2009. [15] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, Inc, 2001. [16] A. Jayaraman, B. Terry, B. Fransis, P. Sullivan, M. Lindstrom, and J. O'Connor, “A Fully Integrated Broadband Direct-Conversion Receiver for DBS Applications,” in IEEE ISSCC 2000 Dig. Tech. Papers, pp. 140-141, Feb. 2000. [17] W. Eberle, M. Badaroglu, V. Derudder, S. Thoen, P. Vandenameele, L. V. der Pere, M. Verdara, B. Gyselinckx, M. Engels, and I. Bolsens, “A Digital 80Mb/s OFDM Transceiver IC for Wireless LAN in the 5GHz Band,” in IEEE ISSCC 2000 Dig. Tech. Papers, pp. 74-75, Feb. 2000. [18] M. Danesh, J. R. Long, R. A. Hadaway, and D. L. Harame, “A Q-Factor Enhancement Technique for MMIC Inductors,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Dig. Paper, pp. 217-220, June. 1998. [19] H.-M. Hsu, J.-G. Su, S.-C. Wong, Y.-C. Sun, C.-Y. Chang, T.-Y. Huang, C.-C. Tsai, C.-H. Lin, R.-S. Liou, R.-Y. Cgang, T.-H. Yeh, C.-H. Chen, C.-F. Huang, H.-D. Huang, and C.-W. Chen, “Silicon Integrated High Performance Inductors in a 0.18-um CMOS Technology for MMIC,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 199-200, Jun. 2001. [20] Y. Cao, R. A. Groves, X. Huang, N. D. Zamdmer, J.-O. Plouchart, R. A. Wachnik, T.-J. King, and C. Hu, “Frequency-Independent Equivalent-Circuit Model for On-Chip Spiral Inductors,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 419-426, Mar. 2003. [21] O. H. Murphy, K. G. McCarthy, C. J. P. Delabie, A. C. Murphy, and P. J. Murphy, “Design of Multiple-Metal Stacked Inductors Incorporating an Extended Physical Model,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2063-2072, Jun. 2005. [22] R.-L. Bunch and S. Raman, “Large-Signal Analysis of MOS Varactors in CMOS —Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1325-1332, Aug. 2003. [23] C. Cao and Kenneth K. O, “Millimeter-wave voltage-controlled oscillators in 0.13-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297-1304, June. 2006. [24] M. Tiebout, H.-D. Wohlmuth, and W. Simburger, “A 1-V 51-GHz Fully Integrated VCO in 0.12-um CMOS,” in IEEE ISSCC 2002 Dig. Tech. Papers, pp. 300-301, Feb. 2002. [25] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114-GHz VCO in 0.13-um CMOS Technology,” in IEEE ISSCC 2005 Dig. Tech. Papers, pp. 404-405, Feb. 2005. [26] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcinski, K. Wu, B. J. Gross, and M. Kim, “A 44-GHz Differentially Tuned VCO with 4-GHz Tuning Range in 0.12-um SOI CMOS,” in IEEE ISSCC 2005 Dig. Tech. Papers, pp. 416-417, Feb. 2005. [27] J.-C. Chien and L.-H. Lu, “40-GHz Wide-Locking-Range Regenerative Frequency Divider and Low-Phase-Noise Balanced VCO in 0.18-um CMOS,” in IEEE ISSCC 2007 Dig. Tech. Papers, pp. 544-545, Feb. 2007. [28] D. Huang, W. Hant, N.-Y. Wang, T. W. Wu, Q. Gu, R. Wong, and M.-C. F. Chang, “A 60-GHz CMOS VCO using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction,” in IEEE ISSCC 2006 Dig. Tech. Papers, pp. 314-315, Feb. 2006. [29] C. Lee, CMOS High-Speed Analog Key Components for Broadband Receives, Ph.D. Dissertation, NTU, 2007. [30] J. Lee, Lecture notes: Design of Communication ICs, NTU. [31] M. Alioto and G. Palumbo, “CML and ECL: Optimized Design and Comparison,” IEEE Trans. Circuits Syst. -I, vol. 46, no. 11, pp. 1330-1341, Nov. 1999. [32] T. O. Dickson, K. H. K. Yau, T. Chalvatzis, A. M. Mangan, E. Laskin, R. Beerkens, P. Westergaard, M. Tazlauanu, M.-T. Yang, and S. P. Voinigescu, “The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1830-1845, Aug. 2006. [33] R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” in Proc. Inst. Radio Eng., vol. 27, pp. 446-456, Jul. 1939. [34] R. Adler, “A study of locking phenomena in oscillators,” in Proc. Inst. Radio Eng., vol. 34, pp. 351-357, Jun. 1946. [35] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and Design of Injection-Locked LC Dividers for Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1425-1433, Sep. 2004. [36] J. Lee and B. Razavi, “A 40-GHz Frequency Divider in 0.18-um CMOS Technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004. [37] J. Kim, J.-K. Kim, B.-J. Lee, N. Kim, D.-K. Jeong, and W. Kim, “A 20-GHz Phase-Locked Loop for 40-Gb/s Serialing Transmitter in 0.13-um CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 899-908, Apr. 2006. [38] M. Meghelli, A. V. Rylyakov, S.Zier, M. Sorna, and D. Friedman, “A 0.18-um SiGe BiCMOS Receive and Transmitter Chipset for SONET OC-768 Transmission Systems,” in IEEE ISSCC 2003 Dig. Tech. Papers, pp. 230-490, Feb. 2003. [39] Linear Technology, LT3020—100mA, Low Voltage, Very Low Dropout Linear Regulator Data Sheet, Sep. 2004. [40] A. Mazzanti and F. Svelto, “Balanced CMOS LC-tank analog frequency dividers for Quadrature LO Generation,” in Proc. IEEE Custom IC Conference, pp. 575-578, May. 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23071 | - |
dc.description.abstract | 本論文之主要研究為可操作於一伏特之兩百億赫茲的鎖相迴路設計,並且提出一個具有交叉耦合電容之電感電容式壓控震盪器。此壓控震盪器利用其與交叉耦合對之輸入寄生電容串聯之結構,使輸出震盪頻率大約提升了約1-GHz之多;此外,此壓控震盪器使用雙端差動、結構對稱且具有高品質因素之電感,並且降低交叉耦合對之等效轉導值,因此達到了相位雜訊在1-MHz位移頻率時為-106 dBc/Hz之效能,而此時之功率消耗為1-mW。
另外一個在鎖相迴路中扮演關鍵性的電路區塊係非除頻器莫屬,面對20-GHz如此高之輸入頻率,第一、二級除頻器乃採用注入鎖定式之除頻器,藉由選擇適當之負載電感,前兩級注入鎖定式除頻器皆操作於合理之中心頻率,但為了能確保除頻器可以正確除頻,因此,可除頻範圍變成高速除頻器之最重要的設計指標,本論文亦提供一個快速且略為精確之可除頻範圍評估,以增加注入鎖定式除頻器之設計效率。 本研究中,在注入鎖定式除頻器之後,使用電流模式邏輯之除頻器當做第三∼六級之除頻器,達到其寬的可除頻範圍之特性,佈局後之模擬結果顯示出可除頻範圍為1.2∼7.3-GHz,因此此除頻器可以在可能發生的PVT偏移之下正常操作。 實際電晶體層與全波電磁分析之共同模擬結果顯示此鎖相迴路鎖定在20.6-GHz,並且在1-MHz之迴路頻寬、參考頻率為160.93-MHz之條件下,達到了-46.6 dBc的參考突波,此時,整個鎖相迴路之功率消耗為18.5-mW。 | zh_TW |
dc.description.abstract | In this work, a 20-GHz PLL with a 1-V supply is designed, where a pair of cross-coupled capacitors, Cf, is proposed and added to the LC-VCO. The two capacitors are inserted between the output and the gate of cross-coupled pair in the LC-VCO, and therefore lower the equivalent capacitance at output while looking into the series connection of Cf and the gate capacitance of cross-coupled pair. The LC-VCO uses this configuration, and therefore makes the output oscillation frequency raised by 1.0 GHz approximately. Besides, the LC-VCO employing a differential, geometrically symmetrical with high Q inductor and lowering the transconductance of cross-coupled pair accomplishes a phase noise of -106-dBc/Hz at 1-MHz offset with a minimum power of 1-mW.
Frequency divider plays an essential role in a PLL system. In divider chain, the injection-locked frequency dividers are employed in the first and the second stage dividers. By selecting an adequate load inductor, the first and the second injection-locked frequency dividers operate at desired center frequency accordingly. Whereas, in order to ensure the frequency dividers can functionally work, a parameter, locking range, therefore becomes the most important design target especially for high-speed frequency dividers applications. This thesis provides a rapid and roughly accurate estimation of divider locking range, so as to increase design efficiency in injection-locked frequency dividers. In the divider chain of this work, current-mode logic based frequency dividers are adopted in four-stage cascaded-dividers after two-cascaded-stage injection-locked frequency dividers, arriving at a wide-locking-range characteristic. According to the post-layout simulations of the third to the seventh stages frequency dividers, they achieve a 1.2 to 7.3-GHz locking range wide. This result demonstrates the third to seventh stage frequency dividers can correctly operate under possible PVT variations. The transistor-level and 2.5-D EM co-simulation results of the PLL reveal that the PLL is locked at 20.6 GHz, and it achieves a magnitude of -46.6-dBc reference spurs with a 1-MHz loop bandwidth and a 160.93-MHz reference frequency, while consuming 18.5 mW from a 1-V supply. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:40:30Z (GMT). No. of bitstreams: 1 ntu-98-R95943035-1.pdf: 2827015 bytes, checksum: b795c527fcbba321c2ebe2477b407112 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Contents
Abstract v Contents vii List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contributions of this Thesis 2 1.3 Organization of this Thesis 3 Chapter 2 Introductions to Phase-Locked Loop 5 2.1 Phase-Locked Loop Fundamentals 5 2.2 Basics of PLL Building Blocks 6 2.2.1 PFD, CP, and Loop Filter 7 2.2.2 Voltage-Controlled Oscillator 10 2.2.3 Frequency Divider 12 2.2.4 Analysis of PLL Loop Parameters 14 2.2.4.1 Second-order, Type-2 PLL 14 2.2.4.2 Third-order, Type-2 PLL 17 2.3 Phase Noise 19 2.4 Summary 21 Chapter 3 A 1-V 20-GHz Phase-Locked Loop in 0.18-mm CMOS 23 3.1 Challenges for Low-Voltage Operation 23 3.2 Method of Reducing Power 25 3.3 Circuit Implementation 27 3.3.1 Architecture 28 3.3.2 Phase Frequency Detector and Charge Pump 28 3.3.3 Loop Filter 30 3.3.4 Voltage-Controlled Oscillator 31 3.3.5 Frequency Divider 45 3.3.5.1 Static CML Frequency Divider 45 3.3.5.2 Injection-Locked Frequency Divider 55 3.4 Simulation Results 64 Chapter 4 Experimental Results 67 4.1 Testing Environment Setup 67 4.2 Printed Circuit Board Design 68 4.2.1 Chip Pin Configurations and PCB Design 68 4.2.2 Voltage Supply Generator 71 4.3 Experimental Results 72 Chapter 5 Conclusions and Future Work 73 5.1 Research Summary 73 5.2 Future Work/Improvement 74 Bibliography 75 List of Figures Fig. 1 1 Block diagram of an optical transceiver 2 Fig. 2 1 Typical PLL building blocks 5 Fig. 2 2 Linear phase-domain model of a typical PLL 6 Fig. 2 3 (a) D flip-flop based PFD, (b) two possible timing diagrams 8 Fig. 2 4 PFD transfer characteristic 8 Fig. 2 5 PFD with charge pump 9 Fig. 2 6 (a) Non-idealities due to small phase difference, (b) Dead zone 10 Fig. 2 7 (a) VCO symbol, (b) VCO gain 11 Fig. 2 8 Trade-off between the phase noise and the KVCO 12 Fig. 2 9 Change the divide ratio by channel selection 13 Fig. 2 10 (a) First order loop filter, (b) bode plot of a second-order open loop PLL, (c) abrupt voltage drop on the VCO control voltage 15 Fig. 2 11 (a) Second order loop filter, (b) bode plot of a third-order open loop PLL, (c) improvement in abrupt voltage drop on the VCO control voltage 17 Fig. 2 12 (a) Ideal signals, (b) real signals 20 Fig. 3 1 Effect of forward-body biasing 24 Fig. 3 2 Comparisons of capacitors between small and large magnitude input 26 Fig. 3 3 Cross section of MOSFET (a) triode region, (b) saturation region 26 Fig. 3 4 A 1-V 20-GHz PLL Architecture 28 Fig. 3 5 All NAND gates PFD with additional delay stage 29 Fig. 3 6 (a) Simplified charge pump, (b) detailed charge pump implementation 30 Fig. 3 7 A 2nd order passive loop filter 31 Fig. 3 8 A typical feedback system 32 Fig. 3 9 The quality factor of the differential inductor 34 Fig. 3 10 NMOS capacitor of (a) accumulation, (b) depletion, (c) inversion mode 35 Fig. 3 11 MOS varactor structures and C-V curves 36 Fig. 3 12 Proposed LC-VCO (a) Complete schematic, (b) tuning curves of the VCO with and without DC bias scheme 38 Fig. 3 13 LC-VCO small signal model with varactors and inductor neglected 39 Fig. 3 14 Effect of ground-coupled noise (a) With tail current source, (b) without tail current source 40 Fig. 3 15 Equivalent model with varactors neglected 41 Fig. 3 16 Simulated tuning curves of the proposed LC-VCO with and without Cf 42 Fig. 3 17 LC-VCO noise analysis with half circuit only 43 Fig. 3 18 Phase noise optimization 44 Fig. 3 19 Static CML frequency divider model 46 Fig. 3 20 (a) A typical D Flip-Flop divider, (b) divide-by-2 waveform 47 Fig. 3 21 Equivalent model of a static CML frequency divider 47 Fig. 3 22 Operational range of the static CML frequency divider 49 Fig. 3 23 Schematic of CML latches (a) With current source, (b) without current source 50 Fig. 3 24 A master-slave D flip-flop 51 Fig. 3 25 (a) Static CML frequency divider, (b) its locking range 52 Fig. 3 26 Simulated locking range of the static CML frequency divider with 6 extreme corners 53 Fig. 3 27 Layout of static CML frequency dividers 54 Fig. 3 28 Post-layout simulations of the 3rd-6th frequency dividers 55 Fig. 3 29 LC-tank frequency divider generic topology 56 Fig. 3 30 Behavior model of the injection-locked frequency divider 56 Fig. 3 31 Phase response of a frequency divider with a dc and a sinusoidal input current 57 Fig. 3 32 (a) Schematic of the injection-locked frequency divider, (b) LO port feedback frequency divider 60 Fig. 3 33 Timing diagram of the injection-locked frequency divider 60 Fig. 3 34 Simulated locking range of the (a) 1st injection-locked frequency divider, (b) 2nd injection-locked frequency divider 62 Fig. 3 35 Locking process of the 1-V 20-GHz PLL 65 Fig. 3 36 Output spectrum of the PLL 65 Fig. 4 1 Measurement environment 67 Fig. 4 2 Pin configurations and power domain definition, (b) Die photograph with total size 69 Fig. 4 3 (a) Signal board view, (b) DC board view 70 Fig. 4 4 The low-dropout (LT3020) regulator schematic 71 List of Tables Table. 3 1 Loop filter design parameters 31 Table. 3 2 Performance comparison between three high-speed topologies 63 Table. 3 3 1-V 20-GHz PLL design parameters 64 Table. 3 4 Performance summary comparisons 66 | |
dc.language.iso | en | |
dc.title | 於0.18微米互補式金氧半製程實現之一伏特兩百億赫茲鎖相迴路設計 | zh_TW |
dc.title | Design of a 1-V 20-GHz Phase-Locked Loop in 0.18-um CMOS | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾英哲,陳信樹(Hsin-Shu Chen) | |
dc.subject.keyword | 鎖相迴路,壓控震盪器,米勒除頻器,除頻器,參考突波,低電壓, | zh_TW |
dc.subject.keyword | Phase-locked loop (PLL),voltage-controlled oscillator (VCO),Miller divider,frequency divider,reference spurs,low-voltage, | en |
dc.relation.page | 79 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。