Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王佩華
dc.contributor.authorLu-Chin Leeen
dc.contributor.author李律槿zh_TW
dc.date.accessioned2021-06-08T04:40:12Z-
dc.date.copyright2011-08-18
dc.date.issued2011
dc.date.submitted2011-08-16
dc.identifier.citation戈福江、陳立治。1952。臺灣畜牧獸醫文獻集,第 9 頁。臺灣研究叢刊第十七種「臺灣之畜產資源」,台灣。
王佩華。1994。台灣山羊血型之研究。碩士論文。國立台灣大學畜產學研究所。台北市。
台灣省政府農林廳。1984。台灣省畜牧獸醫事業養牛篇,第 49 頁。台灣省政府農林廳,南投。
行政院農業委員會統計室。2007。農業統計年報,第 121 頁。行政院農業委員會, 台北市。
林德育、陳若菁、黃鈺嘉、林炯仁、陳坤照、陳水財、莊璧華、吳明哲。2008。台灣山羊黏多醣症基因型頻率。畜產研究 41 (3): 213-220。
李培芬、陳宛均、徐秀君、黃佩俐、莊聖儀、余忠翰、許榕榕、連裕益、李依紋、
蕭人瑄、賴玓、陳韻如、劉益忠。2006。臺灣的自然資源與生態資料庫Ⅲ農
林漁牧,第 186-193 頁。行政院農業委員會林務局,台北市。
李律槿、陳怡蓁、苗雨蒔、林恩仲、林德育、莊碧華、黃政齊、凃柏安、簡執中、王佩華。2008。臺灣現有山羊品種骨形態發生蛋白 15 基因多態性與繁殖力之研究。第 16 屆亞太酪農研討會,第 149-150 頁。
吳明哲、黃鈺嘉、李世昌。2005。山羊育種與保種。羊協一家親 37: 26-41。
莊璧華、黃耀興、黃志 、賈玉祥。2005。臺灣土山羊保種。羊協一家親 35: 4-6。
施義章、黃耀興、劉立乾。1996。本土性家畜品種特性之調查-台灣山羊。畜產研
究 29 (4): 347-351。
陳德卿。1972。中國畜牧年鑑,第 386頁。中國畜牧雜誌社,台灣。
曹博宏、楊价民、黃耀興。1998。努比亞與台灣黑山羊及其雜交後裔黑羊之仔公羊生長與屠宰性狀比較。中畜會誌 27 (3): 367-381。
黃政齊、謝瑞春、張宏仁、蘇安國、溫上湘。1993。努比亞與本地山羊生產性能之研究。畜產研究 26 (2): 175-187。
黃政齊。2005。波爾山羊的品種標準。羊協一家親 35: 8-10。
黃森源。2001。我國養羊產業之現況與展望。羊協一家親 21: 26-39。
溫上湘。1990。本省山羊改良計畫。畜產推廣簡訊 6: 2-3。
溫上湘、蘇安國、謝瑞春、楊深玄、吳錦賢、張宏仁。1997。肉用山羊改良:利用努比亞山羊與本地黑山羊雜交級進。畜產研究 30 (3): 231-236。
楊深玄、黃政齊、蘇國安、王得吉、林信宏、康定傑。2007。臺灣山羊保種。畜試種原典藏計畫滿二十年研討會專輯。行政院農委會畜產試驗所,台南縣。
董傳河。2008。濟寧青山羊多胎性狀候選基因研究。博士論文。中國農業科學院。北京。
廖仁寶、陳若菁、陳美如、黃鈺嘉、吳明哲。2007。山羊 DQA2 胺基酸序列之變異。中畜會誌 36 (增刊): 77。
賴永裕、李世昌、黃鈺嘉、吳明哲。2004。畜產生物品種資源,第 11-17 頁。行
政院農委會畜產試驗所,台南縣。
謝瑞春。2002。波爾山羊之引種與利用。羊協一家親 25: 6-27。
謝瑞春、黃政齊、蘇安國、吳錦賢。1997。台灣本地黑山羊種原保存與其經濟性狀之調查。畜產研究 30 (2): 205-213。
謝瑞春。1998。肉羊之雜交繁殖與選育。台灣省畜產試驗所四十週年所慶家畜禽遺傳育種研討會論文集,第 101-110 頁。台灣省畜產試驗所專輯第 57 號,台南縣。
Aaltonen, J., M. P. Laitinen, K. Vuojolainen, R. Jaatinen, N. Horelli-Kuitunen, L. Seppa, H. Louhio, T. Tuuri, J. Sioberg, R. Butzow, O. Hovata, L. Dale, and O. Ritvos. 1999. Human growth differentiation factor 9 (GDF9) and its novel homolog GDF9B are expressed in oocytes during early folliculogenesis. J. Clin. Endocrinol. Metab. 84 (8): 2744-2750.
Amoah, E. A., and M. J. Bryant. 1983. Gestation period, litter size and birth weight in the goat. Amim. Prod. 36: 105-110.
Araujo, A. M., S. E. F. Guimaraes, T. M. M. Machado, P. S. Lopes, C. S. Pereira, F. L. R. Silva, M. T. Rodrigues, V. S. Columbiano, and C. G. Fonseca. 2006. Genetic diversity between herds of Alpine and Saanen dairy goats and the naturalized Brazilian Moxoto breed. Genet. Mol. Biol. 29: 67-74.
Barker, J. S. F., S. G. Tan, O. S. Selvaraj, and T. K. Mukherjee. 1997. Genetic Variation within and relationships among populations of Asian water buffalo (Bubalus bubalis). Anim. Genet. 28: 1-13.
Barker, J. S. F., S. G. Tan, S. S. Moore, T. K. Mukherjee, J. L. Matheson, and O. S. Selvaraj. 2001. Genetic variation within and relationships amomg populations of Asian goats (Capra hircus). J. Anim. Breed. Genet. 118: 213-223.
Barry, G. H. 2007. Phylogenetic tree made easy: a how-to manual. 3rd. Sinauer Associates Inc., U. S.
Bodin, L., F. Bocquier, and F. Eychenne. 1998. Effect of reducing feeding supply on ovulation rate in hyper-prolific meat Lacaune breed. Proc. Eur. Assoc. Anim. Prod. 49: 208.
Bolormaa, S, A. Ruvinsky, S. Walkden-Brown, and J. van der Werf. 2008. DNA-based parentage verification in two Australian goat herds. Small Rumin. Res. 80: 95-100.
Bubnoff, von A., and K. W. Y. Cho. 2001. Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev. Biol. 239: 1-14.
Buchanan, F.C., L. J. Adams, R. P. Littlejohn, J. F. Maddox, and A. M. Crawford. 1994. Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics 22: 397-403.
Campbell, Q. P. 1984. The development of a meat producing goat in South Africa. Proc. 2nd World Congress on Sheep and Beef Cattle Breeding. pp: 214-230.
Canon, J., D. Garcia, M. A. Garcia-Atance, G. Obexer-Ruff, J. A. Lenstra, P. Ajmone-Marsan, and S. Dunner. 2006. Geographical partitioning of goat diversity in Europe and the Middle East. Anim. Genet. 8: 327-334.
Chu, M. X., C. L. Jiao, Y. Q. He, J. Y. Liu, and G. H. Chen. 2007. Association between PCR-SSCP of bone morphogenetic protein 15 gene and prolificacy in Jining Grey goats. Anim. Biotech. 18: 263-274.
Dube, J. L., P. Wang, J. Elvin, K. M. Lyons, A. J. Celeste, and M. M. Matzuk. 1998. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol. Endocrinol. 12 (12): 1809-1817.
Duffy, D. L., G. W. Montgomery, J. Hall, C. Mayne, S. C. Healey, J. Brown, D. I. Boomsma, and N. G. Martin. 2001. Human twinning is not linked to the region of chromosome 4 syntenic with the sheep twinning gene FecB. Am. J. Med. Genet. 1100: 182-186.
Efron, B. 1979. Bootstrap methods: another look at the jackknife. Ann. Statist. 7: 1-26.
Ensminger, M. E., and R. O. Parker. 1986. Sheep and goat science. pp. 52-58. The Interstate Printer and Publishers, Inc. Danville, Illinois, U. S. A.
Felsenstein, J. 1993-2002. Phylogeny Inference Package (PHYLIP). Genomes scuences, Department of Genetics, University of Washington, Seattle, WA. Software available at: http://evolution.gs.washington.edu/phylip.html.
Gall, C. 1983. Goat production. pp. 80-126. Academic Press. London.
Gall, C. 1996. Goat breeds of the world. Margraf, Weikersheim, Germany.
Galloway, S. M., K. P. McNatty, L. M. Cambridge, M. P. E. Laitinen, J. L. Juengel. T. S. Jokiranta, R. J. McLaren, K. Luiro, K. G. Dodds, G. W. Montgomery, A. E. Beattie, G. H. Davis, and O. Ritvos. 2000. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25: 279-283.
Garber, R. A., and J. W. Morris. 1983. General equation for the average power of exclusion for genetic systems of n codominant alleles in one-parent and in noparent cases of disputed parentage. In: Walker RH (ed) Inclusion Probabilities in Parentage Testing. American Association of Blood Banks, Arlington, Virginia. pp. 277-280.
Guo, S. W., and E. A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 48: 361-372.
Glowatzki-Mullis, M., J. Muntwyler, and C. Gaillard. 2006. Cost-effective parentage verification with 17-plex for goats and 19-plex for sheep. Anim. Genet. 38: 86-88.
Glowatzki-Mullis, M., J. Muntwyler, E. Baumle, and C. Gaillard. 2008. Genetic diversity measures of Swiss goat breeds as decision-making support for conservation policy. Small Rumin. Res. 74: 202-211.
Goldstein, D., and C. Schlotterer. 1999. Microsatellites: evolution and applications. Oxford Univ. Press Oxford.
Goudarzi, K. M., D. Lslo, J. P. Furet, and J. A. Aranguren. 1997. Analysis of genetic relationship between 10 cattle breeds with 17 microsatellites. Anim. Genet. 28: 338-345.
Goudet, J. 2002. FSTAT (version 2.9.3.2): a program to estimate and test gene diversities and fixation indices. Available from http://www.unil.ch/ izea/ software/ fstat.html.
Grundel, H., and I. Reetz. 1981. Exclusion probabilities obtained by biochemical polymorphisms in dogs. Anim. Blood Groups and Biochem. Genet. 12: 123-132.
Hanrahan, J. P., S. M. Gregan, P. Mulsant, M. Mullen, G. H. Davis, R. Powell, and S. M. Galloway. 2004. Mutations in the genes for oocyte derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70: 900-909.
Haenlein, B. F., and D. L. Ace. 1984. Extension goat handbook. pp. 38-80. USDA, Washington DC.
He, Y. Q., M. X. Chu, J. Y. Wang, L. Fang, and S. C. Ye. 2006. Polymorphism on BMP15 as a candidate gene for prolificacy in six goat breeds. J. Anhui Agric. Univ. 33: 61-61.
Hickford, J. G. H., H. Zhou, S. Slow, and Q. Fang. 2004. Diversity of the ovine DQA2 gene. J. Anim. Sci. 82: 1553-1563.
Hua, G. H., S. L. Chen, J. T. Ai, and L. G. Yang. 2007. None of polymorphism of ovine fecundity major genes FecB and FecX was tested in goat. Anim. Reprod. Sci. 108: 279-286.
Huang, J. C., S. H. Wen, H. J. Chang, and A. K. Su. 1990. Crossbreeding Native goat with Nubian. Proc. the 5th AAAP, Taipei. 3: 273.
Iamartino, D., A. Bruzzone, A. Lanza, M. Blasi, and F. Pilla. 2005. Genetic diversity of Southern Italian goat populations assessed by microsatellite markers. 57: 249-255.
Jamieson, A. 1965. The genetics of transferrin in cattle. Heredity 20: 419-441.
Jamieson, A. 1979. Electromorphs and erroneous pedigrees. Proceedings of the XVIth International Conference on Animal Blood Groups and Biochemical Polymorphism, Leningrad. The National Committee of the USSR. p. 27. (Abstract).
Jamieson, A. 1994. The effectiveness of using codominant polymorphic allelic series for (1) checking pedigrees and (2) distinguishing full-sib pair members. Anim. Genet. 25 (Suppl. 1): 37-44.
Jamieson, A., and St. C. S. Taylor. 1997. Comparison of three probability formulae for parentage exclusion. Anim. Genet. 28: 397-400.
Juengel, J. L., N. L. Hudson, D. A. Heath, P. Smith, and K. L. Reader. 2002. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 67: 1777-1789.
Li, M.-H., S.-H. Zhao, C. Bian, H.-S. Wang, H. Wei, B. Liu, M. Yu, B. Fan, S.-L. Chen, M.-J. Zhu, S.-J. Li, T.-A. Xiong, and K. Li. 2002. Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis. Genet. Sel. Evol. 34:729-744.
Luikart, G., M. -P. Biju-Duval, O. Ertugrul, Y. Zagdsuren, C. Maudet, and P. Taberlet. 1999. Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus). Anim. Genet. 30: 431-438.
Mandon-Pepin, B., A. Oustry-Vaiman, B. Vigier, F. Piumi, E. Cribiu, and C. Cotinot. 2003. Expression profiles and chromosomal localization of genes controlling meiosis and follicular development in the sheep. Biol. Reprod. 68 (3): 985-995.
McNatty, K. P., S. M. Galloway, T. Wilson, P. Smith, N. L. Hudson, A. O’Connell, A. H. Bibby, D. A. Heath, G. H. Davis, J. P. Hanrahan, and J. L. Juengel. 2005. Physiological effects of major genes affecting ovulation rate in sheep. Genet. Sel. Evol. 37 (Suppl. 1): 25-38.
Moore, R. K., F. Otsuka, and S. Shimasaki. 2003. Molecular basis of bone morphogenetic protein-15 signaling in granulose cells. J. Biol. Chem. 278: 304-310.
Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283-292.
Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, NY, USA.
Norman, C. 1987. Meat production and meat quality from Boer goats. Proceedings of the IV International Conference on Goats. pp. 211-238.
O’Connell, M, M. C. Dillon, and J. M. Wright. 1998. Development of primers for polymorphic microsatellite loci in the Pacific herring. Mol. Ecol. 7: 357-363.
Olsen, J. B., P. Bentzen, and J. E. Seeb. 1998. Characterization of seven microsatellite loci derived from pink salmon. Mol. Ecol. 7: 1083-1090.
O’Reilly, P. and J. M. Wright. 1995. The evolving technology fingerprinting and its application to fisheries an aquaculture. J. Fish Biol. 47: 29-55.
Otsuka, F., Z. Yao, T. Zee, S. Yamamoto, G. F. Erickson, and S. Shimasaki. 2000. Bone morphogenetic protein-15. Identification of target cells and biological function. J. Biol. Chem. 275 (50): 39523-39528.
Otsuka, F., S. Yamamoto, G. F. Erickson, and S. Shimasaki. 2001. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J. Biol. Chem. 276 (14): 11387-11392.
Otsuka, F. and S. Shimasaki. 2002. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: Its role in regulating granulosa cell mitosis. Proc. Natl. Acad. Sci. U. S. A. 99: 8086-8065.
Park, S. D. E. 2001. Trypanotolerance in West African cattle and the population genetic effects of selection. Ph. D. Thesis. Trinity College, University of Dublin, Ireland.
Pennetier, S., S. Uzbekova, C. Perreau, P. Papillier, P. Mermillod, and R. Dalbies-Tran, 2004. Spatiotemporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissue, oocytes, and preimplantation embryos. Biol. Reprod. 71 (4): 1359-1366.
Peter, C., M. Bruford, T. Perez, S. Dalamitra, G. Hewitt, G. Erhardt, and the ECONOGENE Consortium. 2007. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 38: 37-44.
Raymond, M., and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.
Rousset, F., and M. Raymond. 1995. Testing heterozygote excess and deficiency. Genetics. 140: 1413-1419.
Saitbekova, N., C. Gaillard, G. Obexer-Ruff, and G. Dolf. 1999. Genetic diversity in Swiss goat breeds based on microsatellite analysis. Anim. Genet. 30: 36-41.
Saitou, N., and M. Nei. 1987. The Neighbor-joining method: a method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (4): 406-425.
SanCristobal, M., C. Chevalet, C. S. Haley, R. Joosten, A. P. Rattink, B. Harlizius, M. A. M. Groenen, Y. Amigues, M.-Y. Boscher, G. Russell, A. Law, R. Davoli, V. Russo, C. Desautes, L. Alderson, E. Fimland, M. Bagga, J. V. Delgado, J. L. Vega-Pla, A. M. Martinez, M. Ramos, P. Glodek, J. N. Meyer, G. C. Gandini, D. Matassino, G. S. Plastow, K. W. Siggens, G. Laval, A. L. Archibald, D. Milan, K. Hammond, and R. Cardellino. 2006. Genetic diversity within and between European pig breeds using microsatellite markers. Anim. Genet. 37: 189-198.
SAS. 2007. SAS/STAT User’s guide, Release 9.0 ed. Cary, NC, USA SAS Instiute Inc.
Schlotterer, C. 2004. The evolution of molecular markers - just a matter of fashion? Nat. Rev. Genet. 5: 63-69.
Sechi, T., M. G. Usai, S. Miari, L. Mura, S. Casu, and A. Carta. 2007. Identifying native animals in crossbred populations: the case of the Sardinian goat population. Anim. Genet. 38: 614-620.
Sheridan, R., A. V. Ferreira, and L. C. Hoffman. 2003. Production efficiency of South African Mutton Merino lambs and Boer goat kids receiving a low or a high energy feedlot diet. Small Rumin. Res. 50: 75-82.
Silva, J. R., R. van den Hurk, H. T. van Tol, B. A. Roelen, and J. R. Figueiredo. 2005. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol. Reprod. Dev. 70 (1): 11-19.
Smith, C. H., P. C. Lubout, and K. A. Ramsay. 1986. Studies with indigenous smallstock. Reproductive and preweaning performance of veld goats and improved Boer goats. S. Africa. Soc. Anim. Sci. Congress. pp.1-19.
Thompson, J. N., M. Z. Jones, G. Dawson, and P. S. Huffman. 1992. N-Acetylglucosamine 6-Sulphatase Deficiency in a Nubian Goat: A Model of Sanfilippo Syndrome Type D (Mucopolysaccharidosis IIID). J. Inher. Metab. Dis. 15: 760-768.
Urist, M. R. 1965. Bone: formation by autoinduction. Science 150: 893-899.
van Zeveren, A., L. Peelman, A. van de Weghe, and Y. Bouquet. 1995. A genetic study of four Belgian pig populations by means of seven microsatellite loci. J. Anim. Breed. Genet. 112: 191-204.
Visscher, P. M., J. A. Woolliams, D. Smith, and J. L. Williams. 2002. Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection. J. Dairy Sci. 85: 2368-2375.
Vitt, U. A., S. Mazerbourg, C. Klein, and A. J. Hsueh. 2002. Bone morphogenetic protein receptor typeⅡ is a receptor for growth differentiation factor-9. Biol. Reprod. 67: 473-480.
Wang, G. L., X. Z. Mao, G. H. Davis, Z. S. Zhao, L. J. Zhang, and Y. Q. Zeng. 2003. DNA test in Hu sheep and Han sheep (small tail) showed the existence of Booroola (FecB) mutations. J. Nanjing Agric. Univ. 26: 104-106.
Wozney, J. M., V. Rosen, A. J. Celeste, L. M. Mitsock, M. J. Whitters, R. W. Kriz, R. M. Hewick, and E. A. Wang. 1998. Novel regulators of bone formation: molecular clones and activities. Science 242: 1528-1534.
Wright, S. 1965. The interpretation of population structure by F-Statistics with special regard to systems of mating. Evolution 19 (3): 395-420.
Xiang-Long, Li, and A. Valentini. 2004. Genetic diversity of Chinese indigenous goat breeds based on microsatellite markers. J. Anim. Breed. Genet. 121: 350-355.
Yang, L., S. H. Zhao, K. Li, Z. Z. Peng, and G. W. Montgomery. 1999. Determination of genetic relationships among five indigenous Chinese goat breeds with six microsatellite markers. Anim. Genet. 30: 452-455.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23065-
dc.description.abstract臺灣養羊產業為乳品及肉品產業的其他來源之一,且品種保存為種畜生產的重要基礎。然而過去的文獻顯示,在 DNA 層面上臺灣本地山羊的遺傳歧異度尚未研究清楚,又骨形態發生蛋白 15 基因(bone morphogenetic protein 15 gene, BMP15 gene)已證實對許多綿羊及山羊品種為多產基因。臺灣黑山羊品種以多產聞名,本研究利用微衛星標幟探討臺灣黑山羊與其他外國山羊族群的遺傳歧異度,並偵測臺灣本地山羊不同族群 BMP15 基因 exon 2 的多態性與多產之相關。
本研究蒐集來自 6 個山羊品種共 503 頭山羊之血樣(臺灣黑山羊 134、努比亞 185、撒能 46、阿爾拜因 90、波爾 16及吐根堡 32 頭),運用 15 組微衛星標幟進行遺傳變異分析。結果顯示所有的微衛星標幟在所檢測的族群中皆具有多態性,而平均期望雜合度(average expected heterozygosities, HE)與觀測期望雜合度(observed heterozygosities, HO)分別為 0.655±0.026 與 0.602±0.034。不同山羊族群之間的分化程度(FST)為 0.174,範圍從 0.111(SRCRSP001)到 0.292(OarFCB20)。平均期望雜合度於山羊族群的範圍從 0.577±0.034(恒春臺灣黑山羊)到 0.731±0.030(佳里B阿爾拜因),再經由 Fisher 精確檢定後結果顯示所有族群皆符合哈溫平衡(P>0.05)。更進一步地利用鄰近相接法(neighbor-joining)繪製親緣關係樹,結果顯示主要可以分成兩大群集:臺灣黑山羊和其他外國山羊族群,然而波爾族群則另單獨成一分支。而外國山羊族群群集又可分成兩個次群集:努比亞與其他山羊族群(阿爾拜因、撒能與吐根堡族群)群集。此外恆春與花蓮臺灣黑山羊群集有很高的再取樣值(bootstrap value, 96%)。
本研究另蒐集共 6 個品種 447 頭之山羊血樣,並藉由定序分析 BMP15 基因的多態性。結果顯示所有檢測的山羊族群 BMP15 基因皆為 A963/C1050 haplotype,而臺灣本地山羊之平均母羊產羔數(litter size)為 1.93 ± 0.15 頭。同時也在 BMP15 基因exon 2 上第 870 個位置發現新的 C/G 單一核苷酸變異(single nucleotide polymorphism, SNP),C 與 G 交替基因頻率的範圍為 0.52~1.00 到 0.00~0.48,所檢測的山羊族群中皆存在 C/C 基因型,但 G/G 基因型僅存在恆春及花蓮黑山羊族群(25.40 vs. 9.59%)。進一步分析 BMP15 基因新的 SNP 與產羔數的關係,結果顯示在臺灣黑山羊族群 BMP15 基因型與產羔數無顯著差異(P>0.05)。
  綜合所述,雜合度的指標(HE, HO, and F-統計值)可供為臺灣本地山羊遺傳歧異度的參考依據,且不同山羊族群之間的遺傳關係與其來源相似。此外,檢測臺灣本地山羊族群之 BMP15 基因 A963/C1050 位置顯示不具有多態性,因此可能需要尋找 BMP15 基因的多態性與多產性的相關。
zh_TW
dc.description.abstractGoats are one of the important sources of meat and milk in addition to cow in Taiwan. In general, preservation of goat breeds is essential for animal productions. In previous studies, genetic diversity of Taiwan native goats still has not been studied clearly on DNA level. The studies have shown that a major gene, bone morphogenetic protein 15 gene (BMP15), is responsible for prolificacy in goat and sheep. The Taiwan Black is a prolific goat breed in Taiwan. Thus, the objectives of this study were to investigate genetic diversity between Taiwan Black goats and other exotic breeds from different populations based on microsatellite markers, and to detect the polymorphism on the exon 2 of BMP15 gene in populations of Taiwan native goat.
In this study, a total of 503 blood samples were collected from six goat breeds (134 Taiwan Black, 185 Nubian, 46 Saanen, 90 Alpine, 16 Boer, and 32 Toggenburg goats), and genotyped using 15 microsatellite markers. The results showed that all microsatellite markers were polymorphic in all the populations in this study. The average expected heterozygosities (HE) and observed heterozygosities (HO) per locus in all populations were 0.655±0.026 and 0.602±0.034, respectively. The average differentiation among populations (FST) was 0.174, and ranged from 0.111 (SRCRSP001) to 0.292 (OarFCB20). The average expected heterozygosities (HE) over all loci varied from 0.577±0.034 (Taiwan Black goats from Hengchun) and 0.731±0.030 (Alpine from Jiali B). The Fisher’s exact test showed that all populations were in Hardy-Weinberg equilibrium (P>0.05). The genetic diversity of Taiwan native goats was analyzed further by neighbor-joining tree. The results suggested that there were mainly two clusters: Taiwan Black goats and others exotic goats, whereas Boer goats were clearly in one branch. There were two subgroups in the cluster of others exotic goats: Nubian goats and the others (Alpine, Saanen, and Toggenburg). Furthermore, the cluster of Taiwan Black goats from Hengchun and Hualien had high bootstrap value (96%).
In BMP15 gene, a total of 447 blood samples were collected from six goat breeds and genotyped by DNA sequencing. The results showed that all the tested goats had A963/C1050 haplotype in BMP15 gene. The average litter size of all the tested does was 1.93 ± 0.15 heads. Besides, our results found that there was a novel C/G single nucleotide polymorphism (SNP) in BMP15 gene exon 2 at the 870 site. The ranges of C and G allele frequencies were 0.52~1.00 and 0.00~0.48, respectively. The C/C genotype was found in all the tested populations, but the G/G genotype was only in Taiwan Black goat populations from Hengchun and Hualien (25.40 vs. 9.59%). There was not significance difference between the BMP15 genotypes and litter size (P>0.05) in the novel SNP of BMP15 gene.
In conclusion, the values of heterozygosities (HE, HO, and F-statistics) suggested that Taiwan native goats were a reservoir of goat diversity. Relationships between populations agreed with what know about their origin. In addition, the results of polymorphism at A963/C1050 site in BMP15 gene indicated that none of polymorphism in all Taiwan native goat breeds, so it is necessary to further study about relationship between BMP15 gene polymorphic and the prolificacy in Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:40:12Z (GMT). No. of bitstreams: 1
ntu-100-R96626022-1.pdf: 1377595 bytes, checksum: 8e01123db9452b373bb774a6f6d5f692 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄……………………………………………………………………...Ⅰ
圖次……………...………………………………………………………Ⅱ
表次……………………………………………………………………….Ⅲ
附表次…………………..………………………………………………Ⅳ
中文摘要………………………………………………………………….. 1
英文摘要………………………………………………………………….. 3
壹、前言………………………………………………………..…….. 5
貳、文獻檢討…………………………………………...……... 7
一、臺灣黑山羊與外來山羊品種之介紹與發展………….………. 7
二、分子標幟的多態性分析………………………............20
三、山羊親子關係的鑑定………………………………….……….26
四、多態性在族群的研究………………………………………..…28
五、骨形態發生蛋白15基因的研究…………………...…34
參、材料與方法……………………………………………….…..……...38
肆、結果………………………………………………………...……...…47
伍、討論…………………………………………………………...……...64
陸、結論………………………………………………………………….68
柒、參考文獻…………………………………………………………….69
捌、附錄………………………….………………………………………78
dc.language.isozh-TW
dc.title利用微衛星標幟探討臺灣本地山羊之遺傳歧異度zh_TW
dc.titleGenetic Diversity in Taiwan Native Goats Based on Microsatellite Markersen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor林恩仲(eclin01@ntu.edu.tw)
dc.contributor.oralexamcommittee宋永義,黃政齊(jchuang@mail.tlri.gov.tw),蕭振文
dc.subject.keyword臺灣本地山羊,遺傳歧異度,微衛星標幟,骨形態發生蛋白 15 基因,多產性,zh_TW
dc.subject.keywordTaiwan native goat,genetic diversity,microsatellite marker,bone morphogenetic protein 15 gene (BMP15),prolificacy,en
dc.relation.page93
dc.rights.note未授權
dc.date.accepted2011-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved