Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23058
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張倉榮
dc.contributor.authorChia-Chuan Hsuen
dc.contributor.author許家銓zh_TW
dc.date.accessioned2021-06-08T04:39:53Z-
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-13
dc.identifier.citation參考文獻
1.陳志彰,2000,人工溼地改善水質之績效,國立台灣海洋大學河海工程學系碩士學位論文。
2.許鎮龍,2000,生物擔體渠道淨化二級生物處理放流水之特性探討,國立中央大學環境工程研究所博士論文。
3.邱文彥,2001,人工溼地應用規劃與法制課題,台灣溼地,第二十三期,四。
4.歐文生,2004,人工溼地之研究,台灣溼地,第六十二期,五。
5.陳柏州,2004 ,以人工濕地淨化水質之研究,國立高雄第一科技大學環境與安全衛生工程系碩士論文。
6.陳輝照,2004,人工溼地模場設立之探討,國立屏東科技大學環境工程與科學研究所碩士論文。
7.賴衍臻,2005,地下流式人工溼地對都市污水淨化之成效,國立台灣大學生物環境系統工程學研究所碩士論文。
8.徐文瑞,2005,變動操作參數對明渠生態工法處理二級污水處理廠放流水較律評估之研究,朝陽科技大學環境與管理學系碩士論文。
9.陳榮凱,2007,以QUAL2K 水質模式模擬狹長型人工濕地之研究,國立高雄第一科技大學環境與安全衛生工程系碩士論文。
10.盧師敏,2007,人工溼地水質淨化與能值分析研究-以高屏溪舊鐵橋人工溼地為例,國立中山大學海洋環境及工程學系碩士論文。
11.蔡皓程,2007,垂直流人工溼地氮循環過程研究與操作機制探討,國立中山大學海洋環境及工程學系碩士論文。
12.蔡萬寶,2007,以在槽式礫間接觸氧化法改善河川水質之效益評析,國立中央大學環境工程研究所碩士在職專班論文。
13. 邑靜,2007,人工溼地淨化系統之處理效能探討-以彰化縣洋子厝溪為例,國立中興大學環境工程學系在職專班碩士論文。
14.郭正翔,2009,牡蠣殼礫間處理對水質淨化之研究,國立台灣大學生物環境系統工程學研究所碩士論文。
15.張初福,2009,牡蠣殼礫間接觸淨化河川水質之經濟效益研究,國立台灣大學生物環境系統工程學研究所碩士論文。
16.維基百科-微生物學與生物學。(Web site)
http://zh.wikipedia.org/
17.Akratos, C.S., Papaspyros, J.N.E., Tsihrintzis, V.A., (2008), An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands, Chemical Engineering Journal, 143, 96–110.
18.Armentano, T.V., Verhoeven, J. T. A.,(1990), Biogeochemical cycles: global, Wetlands and Shallow Continental Water Bodies, edited by Patten, B. C., SPB Academic Publishing, The Hague, 281–311, 1990.
19.Bacca, R.G., Arnett, R.C., (1976), A Limnological Model for Eutrophic Lakes and Impoundment. Battele Inc., Pacific Northwest Laboratories, Richland.
20.Barros, P., Ruiz, I., Soto, M., (2008), Performance of an anaerobic digester-constructed wetland system for a small community, Ecological Engineerin, 33, 142–149.
21.Boyle J.D. and Scott J.A., (1984), The role of benthic films in the oxygen balance in East Devon River, Wat. Res., 18(9), 1089-1099.
22.Bramryd, T., (1980), The role of peatlands for gobal carbon dioxide balance, Proc. 6th Internet. Peat Congress, Int. Peat Soc., Duluth, Minnesota, Int. Peat Soc., Helsinki,9
23.Chanvan, P.V., Dennett, K.E., (2008), Wetland Simulation Model for Nitrogen, Phosphorus, and Sediments Retention in Constructed Wetlands, Water Air Soil Pollut, 187, 109–118.
24.Chapra, S.C., (1997), Surface Water-Quality Model, McGraw-Hill Edition, Civil Engineering Series, 298.
25.Charley, R.C., Hooper, D.G., Mclee, A.G., (1980), Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations. Water Research, 14, 1387–1396.
26.Donmingos, R.F., Benedetti , M.F., Croue, J.P., Pinheiro J.P., (2004), Electrochemical methodology to study labile trace metal/natural organic matter complexation at low concentration levels in natural waters, Analytica Chimica Acta, 521, 77-86.
27.Downing, A.L., (1966), Population dynamics in biological system. Proc. 3rd Int. Conf. Wat. Poll. Res., WPCF, Munich, Germany, Series 2, 117-137.
28.Engineering Toolbox. (Wet Site)
http://www.engineeringtoolbox.com/
29.Ferrara, R.A., Hermann, D.P.F., (1980), Dynamic nutrient cycle model for waste stabilisation ponds. J. Environ. Eng. Div., ASCE, 106, 1, 37–55.
30.Gantzer, C.J., Kollig, H.P., Rittmann, B., (1988), Predicting the rate of trace-organic compound removal by natural biofilms, Water research. Vol 22. No 2 191-200.
31.Gidley, T.M., (1995), Development of a Constructed Subsurface Flow Wetland Simulation Model. M.S. Thesis, North Carolina State University, Raleigh, NC.
32.Golterman, H.L., (1984), Sediments, modifying and equilibrating factors in the chemistry of freshwater Verh. int. Ver. Limnol. 22, 23.
33.Grant, W.D., Long, P.E., (1985), Environmental Microbiology. In: Hutzinger O (Ed). The Handbook of Environmental Chemistry, 1, part D. Springer-Verlag, 125-237.
34.Haag, A., (2006), Basic Water Quality Model for the River Neckar: Part 1 –model development, parameter sensitivity and identifiability, calibration and validation, Acta hydrochim. hydrobiol. , 34, 533 – 548.
35.Henrichs, M., Langergraber, G., Uhl, M., (2007), Modelling of organic matter degradation in constructed wetlands for treatment of combined sewer overflow, Science of the Total Environment , 380, 196–209.
36.Henze, M., (2000), Activated Sludge Models, Water Science and Technology, 39, (1), 165-182.
37.Henze, M., Harremoes, P., Jansen, J.C., Arvin, E., (1997), Wastewater Treatment: Biological and Chemical Processes, Springer-Verlag, Berlin, Germany.
38.Hill , D., (2006), Diffusion coefficients of nitrate, chloride, sulphate and water in cracked and uncracked Chalk, European Journal of Soil Science , Volume 35 Issue 1, 27-33.
39.Jorgensen, S.E., Nielsen, S.N., Jorgensen, L.A., (1991), Handbook of Ecological Parameters and Ecotoxicology, Elsevier, Amsterdam.
40.Kadlec, J.A., (1986), Nutrient dynamics in wetlands. In: Reddy, K.R., Smith, W.H. (Eds.), Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publishing, Orlando, FL, 393-419.
41.Laanbroek, H.J., (1990), Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review, Aquat. Bot., 38, 109.
42.Laanbroek, H.J., Pfennig, N., (1981), Oxidation of short-chain fatty acids by sulphate-reducing bacteria in freshwater and in marine sediments, Arch. Microbiol, 128, 330-335.
43.Lopes, J.F., Silva, C., (2006), Temporal and spatial distribution of dissolved oxygen in the Ria de aveiro lagoon, Ecological Modelling, 197, 67–88.
44.Luederitz, V., Eckert, E., Weber, M.L., Lange, A., Gersberg, R.M., (2001), Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands, Ecological Engineering, 18, 157-171.
45.Martin, J.F., Reddy, K.R., (1997), Interaction and spatial distribution of wetland nitrogen processes, Ecol. Model, 105, 1-21.
46.Mayo, A.W., (2005), Kinetics of bacterial mortality in granular bed wetlands, Physics and Chemistry of the Earth, 29, 1259–1264.
47.Mayo, A.W., Bigambo, T, (2005), Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development, Physics and Chemistry of the Earth, 30, 658–667.
48.Mayo, A.W., Mutamba, J., (2005), Modelling nitrogen removal in a coupled HRP and unplanted horizontal flow subsurface gravel bed constructed wetland, Physics and Chemistry of the Earth 30, 673–679.
49.McCarty, P.L., (1975). Stoichiometry of biological reactions. Prog. Water Technol., 7, 157-172.
50.Metcalf and Eddy, Inc., (1995), Wastewater Engineering: Treatment, Disposal and Reuse, McGraw-Hill Ltd., New Delhi.
51.Mieleitner, J., Reichert, P., (2006), Analysis of the transferability of a biogeochemical lake model to lakes of different trophic state, Ecological Modelling, 194, 49–61.
52.Mitsch, W.J., Gosselink, J.G., (1986), Wetlands, Van Nostrand Reinhold Company, New York.
53.Morris, M.C., (1999), The effects of substrate particle size, depth and vegetation on ammonia removal in a vertical flow constructed wetland. , Vymazal, J. (Ed.) Nutrient Cycling and Retention in Natural and Constructed Wetlands, Backhuys Publishers, Leiden, The Netherland, 31-40.
54.Noorvee, A., Repp, K., Poldvere, E., Mander, U., (2005), The Effects of Aeration and the Application of the k-C* Model in a Subsurface Flow Constructed Wetland, Journal of Environmental Science and Health, 40, 1445–1456.
55.O'Melia, C.R., Hahn, M.W., Chen, C.T., (1997), Some effects of particle size in separation processes involving colloids. Wat. Sci. Technol., 36, 4, 119–126.
56.Omlin, M., Reichert, P., Forster, R., (2001), Biogeochemical model of Lake Zurich: model equations and results, Ecological Modelling, 141, 77–103.
57.Orme, A.R., (1990), Wetland morphology, hydrodynamic and sedimentation, in Wetlands: A Threatened Lascape, Wolliams, M., Ed., Basil Blackwell, Oxford, 42.
58.Payne, W.J., (1981), Denitrification, John Wiley and Sons, New York.
59.Perez, J., Picioreanu, C., Loosdrecht, M.V., (2005), Modeling biofilm and floc diffusion processes based on analytical solution of reaction-diffusion equations, Water Research, 39, 1311–1323.
60.Pierrou, U., (1976), The global phosphorus cycle, Nitrogen, Phosphorus, and Sulphur-Global Cycles, Svensson, B.H., Soderlund, R., eds., Ecol. Bulls. (Stockholm), 22, 75.
61.Poirier, M.R., (2000), Minimum Velocity Required to Transport Solid Particles from the 2H-Evaporator to the Tank Farm, Westinghouse Savannah River Company, Aiken, SC 29808.
62.Polprasert, C., Khatiwada, N.R., (1998), An integrated kinetic model for water hyacinth ponds used for wastewater treatment, Wat. Res., 32, 1, 179–185.
63.Reddy, K. R., Jessup, R. E. , Rao, P. S. C., (1988), Nitrogen dynamics in a eutrophic lake sediment, Hydrobiologia,159, 177-188.
64.Reddy, K.R., and Graetz, D.A., (1988), Carbon and nitrogen dynamics in wetland soils, The Ecology and Management of Wetlands, vol. 1, Hook, D.D. et al., eds., Timber Press, Portland, Ore., 307-318.
65.Reichert, P., (1998), Aquasim 2.0-user manual. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Switzerland.
66.Reichert, P., Borchardt, D., Henze, M., Rauch1, W., Shanahan, P., Somly
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23058-
dc.description.abstract本研究係整合並修改國內外應用廣泛的生化反應方程式,將之放入AQUASIM 2.1水質模擬運算程式中,對人工溼地中的生化反應程序進行動態模擬,而人工溼地水質運算系統,是以混合反應槽(Mixed Reactor,零維)和飽和土體柱(Saturated Soil Column,一維)分別結合生物膜模式(Biofilm Reactor),用此兩組運算模式描述人工溼地動態循環的水理情況,並調整模式中數學運算方程式加入各類生化反應之相關運算式,架構出完整人工溼地水質模擬模式,用以模擬牡蠣殼地下流式人工溼地之出流水質,再對模擬結果做分析,評估生物膜淨化水質之效果。
模式在參數檢驗與模式驗證上採用郭(2009)牡蠣殼礫間處理對水質淨化之研究[14]實測資料作為模式應用之數據,以敏感度分析得出各物質循環中之敏感參數,以提高模式校正效率並了解人工溼地中淨化水質之主要生化反應。研究中以統計方法進行水質項目出流濃度之實測削減量與模擬削減量誤差比較,以驗證模式的適用性。研究結果可得人工溼地敏感參數輸入值範圍,並評估不同設計規格之人工溼地水質淨化功效,作為日後人工溼地系統規劃、設計、操作、管理、診斷之參考與後續模式發展研究之依據。
zh_TW
dc.description.abstractThis study aims at simulating water treatment efficiency of an oyster-shell subsurface flow constructed wetland and assessing the effects of biofilms on water quality improvement by a dynamic simulation model of biochemical processes in wetlands developed by some wildly-applied equations. AQUASIM 2.1 was used as the interface of mathematical calculations to develop the simulation model. Specifically, the Mixed Reactor and Saturated Soil Column were linked with the Biofilm Reactor respectively as two different types of hydrologic systems. The equations of biochemical processes in wetlands were combined into two hydrologic systems respectively to develop water quality simulation models for constructed wetlands.
Field sampling data conducted by Guo(2009) were applied in this study for model calibration and validation. To improve the efficiency of model calibration and realize the major factors of water quality in wetlands, sensitivity analysis of parameters in each nutrient cycle was performed before model calibration stage. The error comparison between the simulation and measured outflow concentrations was carried on through statistical analysis to validate the availability of the model. Consequently, the results of the study, including the finding of feasible ranges for major affecting parameter values and the predicted water treatment efficiencies of constructed wetlands with various designs, are expected to give some valuable information for design, construction, manipulation, management, and diagnosis of constructed wetlands in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:39:53Z (GMT). No. of bitstreams: 1
ntu-98-R96622022-1.pdf: 2970723 bytes, checksum: 207d757b8f182057314e2f5f48ce2a36 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目 次
口試委員會審定書
謝誌 I
中文摘要 III
ABSTRACT IV
目 錄 V
表目錄 VII
圖目錄 X
第一章 緒論 1
1.1前言 1
1.2 研究目的 2
1.3 溼地 2
1.3.1 人工溼地 3
1.3.2 人工溼地水質淨化機制 5
1.3.3 礫間接觸處理法 6
第二章 文獻回顧 13
2.1 人工溼地現地實驗 13
2.2 人工溼地數值模擬 14
2.3 AQUASIM相關研究 15
第三章 研究方法與步驟 23
3.1 AQUASIM 23
3.2水質模式架構 24
3.2.1混合反應槽(零維模式) 24
3.2.2 飽和土體(一維模式) 25
3.3 生物膜 26
3.3.1生物膜模式架構 27
3.3.2生物膜生物作用模式 33
3.4 溼地內生物、化學、物理機制之模擬 35
3.4.1 模式變數與參數 35
3.4.2 人工溼地消耗營養物質之數學模式 43
3.4.3 計量矩陣 56
3.4.4 人工溼地動態水質模式 56
3.5 模式之誤差來源 57
3.6模擬資料 58
3.6.1 實驗溼地背景資料 58
3.6.2 實驗目的 58
3.6.3人工溼地設計規格 59
第四章 參數檢驗與模式驗證 81
4.1敏感度分析 81
4.3水質模式比較 85
第五章 結果討論 106
5.1模式結果討論 106
5.2生物膜模式之影響評估 108
5.3 飽和土體水質模式(一維)之貢獻 109
第六章 結論與建議 115
6.1結論 115
6.2建議 117
參考文獻 120
附錄 128
dc.language.isozh-TW
dc.subject牡蠣殼zh_TW
dc.subject地下流式人工溼地zh_TW
dc.subject水質模擬zh_TW
dc.subject生物膜zh_TW
dc.subjectAQUASIMzh_TW
dc.subjectWater quality simulationen
dc.subjectOyster shellen
dc.subjectAQUASIMen
dc.subjectBiofilmen
dc.subjectSubsurface flow constructed wetlanden
dc.title地下流式人工溼地水質模擬研究zh_TW
dc.titleWater Quality Simulation in a Subsurface-Flow Constructed Wetlanden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張文亮,許少華,方文村,游進裕
dc.subject.keyword地下流式人工溼地,水質模擬,生物膜,AQUASIM,牡蠣殼,zh_TW
dc.subject.keywordSubsurface flow constructed wetland,Water quality simulation,Biofilm,AQUASIM,Oyster shell,en
dc.relation.page130
dc.rights.note未授權
dc.date.accepted2009-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved