Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23046
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳小梨(Show-Li Chen) | |
dc.contributor.author | Yu-Tzu Weng | en |
dc.contributor.author | 翁瑜孜 | zh_TW |
dc.date.accessioned | 2021-06-08T04:39:17Z | - |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-14 | |
dc.identifier.citation | Adams MD, Celniker SE, Holt RA, et al,. (2000). The genome sequence of Drosophila melanogaster. Science. 287, 2185-2195.
Adams MD and Sekelsky JJ. (2002). From sequence to phenotype: reverse genetics in Drosophila melanogaster. Natuer Reviews Genetics. 3, 189-198. Ajuh P, Kuster B, Panov K, C.B.M.Zomerdijk J, Mann M, I.Lamond A. (2000).Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J. 19, 6569-6581. Ajuh P and Lamond AI. (2003). Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domain of CDC5L and PLRG1. Nucleic Acids Res. 31, 6104-6116. Albers M, Diment A, Muraru M, Russell CS, Beggs JD. (2003). Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factor. RNA. 9, 138-150. Bau DT, Mau YC, Ding SL, Wu PE, Shen CY. (2007). DNA double-strand break repair capacity and risk of breast cancer. Carcinogenesis. 28, 1726-1730. Beck BD, Park SJ, Lee YJ, Roman Y, Hromas RA, Lee SH. (2008). Human Pso4 is a Metnase (SETMAR)-binding partner that regulates Metnase function in DNA repair. J. Biol. Chem. 283, 9023-9030. Brendel M, Bonatto D, Strauss M, Revers LF, Pungartnik C, Saffi J, Henriques JAP. (2003). Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat Res. 544, 179-193. Chan SP, Kao DI, Tsai WY, Cheng SC. (2003). The Prp19p-associated complex in spliceosome activation. Science. 302, 279-282. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 448, 151-156. Fortschegger K, Wagner B, Voglauer R, Katinger H, Sibilia M, Grillari J. (2007). Early embryonic lethality of mice lacking the essential protein SNEV. Mol. Cell. Biol. 27, 3123-3130. Genuardi M, Tsihira H, Anderson DE, Saunders GF. (1989). Distal deletion of chromosome 1p in ductal carcinoma of the breast. Am. J. Hum. Genet. 45, 73-82. Godthelp BC, Wiegant WW, van Duijn-Goedhart A, Scharer OD, van Buul PPW, Kanaar R, Zdzienicka MZ. (2002). Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res. 30,2172-2182. Grey M, Düsterhöft A, Henriques J.A.P , Brendel M.(1996). Allelism of PSO4 and PRP19 links pre-mRNA processing with recombination and error-prone DNA repair in Saccharomyces cerevisiae. Nucleic Acids Res. 24, 4009-4014. Grillari J, Ajuh P, Stadler G, Loscher M, Voglauer R, Ernst W, Chusainow J, Eisenhaber F, Pokar M, Fortschegger K, Grey M, Lamond AI, Katinger H. (2005). SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly. Nucleic Acids Res. 33, 6868-6883. Heikkinen K, Rapakko K, Karppinen SM, Erkko H, Knuutila S, Lundan T, Mannermaa A, Børresen-Dale AL, Borg A, Barkardottir RB, Petrini J, Winqvist R. (2006). RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 27, 1593–1599. Henriques JA, Vicente EJ, Leandro da Silva KV, Schenberg AC. (1989). Pso4: a novel gene involoved in error-prone repair in Saccharomyces cerevisiae. (1989). Mutat. Res. 218, 111-124. Kinner A, Wu W, Staudt C, Iliakis G. (2008). γ-H2AX in recognition and signaling of DNA double-strand breaks in the contex of chromatin. Nucleic Acids Res. 36,5678-5694. Kleinridders A, Pogoda HM, Irlenbusch S, Smyth N, Koncz C, Hammerschmidt M, Bruning JC. (2009). PLRG1 is an essential regulator of cell proliferation and apoptosis during vertebrate development and tissue homeostasis. Mol. Cell. Biol. 29, 3173-3185. Lee S, Ha S, Chung M, Kim Y, Choi Y. (2002). Mouse DAM1 regulates pro-apoptotic activity of BLK in mammary epithelial cells. Cancer Lett. 188, 121-126. Li X, Wang J, Manley JL. (2005). Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev. 19, 2705-2714. Li X and Heyer WD. (2008). Homologous recombination in DNA repair and DNA damage tolerance. Cell Res.(Review) 18, 99-113. Lin KT, Lu RM, Tarn WY. (2004). The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol. Cell. Biol. 24, 9176-9185. Lu X and Legerski RJ. (2007). The Prp19/Pso4 core complex undergoes ubiquitylation and structural alterations in response to DNA damage. Biochem Biophys Res Commun. 354, 968-974. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF. (2007). Topoisomerase IIβ-mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67, 8839-8846. Maass N, Rosel F, Schem C, Hitomi J, Jonat W, Nagasaki K. (2002). Amplification of the BCAS2 gene at chromosome 1p13.3–21 in human primary breast cancer. Cancer Lett. 185, 219-223. Mahajan KN and Mitchell BS. (2003). Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. PNAS. 100,10746-10751. Makarova OV, Makarov EM, Urlaub H, Will CL, Gentzel M, Wilm M, Luhrmann R.(2004). A subset of human 35S U5 proteins, indluding Prp19, function prioi to catalytic step 1 of splicing. EMBO J. 23, 2381-2391. McGuire SE, Roman G, Davis RL. (2004). Gene expression systems in Drosophila: a synthesis of time and space. TRENDS in Genetics (Review). 20, 384-391. Merlo GR, Siddiqui J, Cropp CS, Liscia DS, Lidereau R, Callahan R, Kufe DW. (1989). Frequent alteration of the DF3 tumor-associated antigen gene in primary human breast carcinomas. Cancer Res. 49, 6966-6971. Mitchell ELD, Santibanez-Koref MF. (1990). 1p13 is the mostfrequently involved band in structural chromosomal rearrangements in human breast cancer. Genes Chromosomes Cancer. 2, 278-289. Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A, Mann M. (1998). Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature genetics. 20, 5-6. Phelps CB and Brand AH. (1998). Ectopic gene expression in Drosophila using GAL4 system. Methods: A Compannion to Methods in Enzymology. 14, 367-379. Qi C, Zhu YT, Chang J, Yeldandi AV, Rao MS, Zhu YJ. (2005). Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochem Biophys Res Commun. 328, 393-398. Radtke F, Wilson A, MacDonald HR. (2005). Notch signaling in hematopoiesis and lymphopoiesis: lessons from Drosophila. BioEssays (Review) 27, 1117-1128. Revers LF, Cardone JM, Bonatto D, Saf J, Grey M, Feldmann H, Brendel M, Henriques JAP.(2002). Thermoconditional modulation of the pleiotropic sensitivity phenotype by the Saccharomyces cerevisiae PRP19 mutant allele pso4-1. Nucleic Acids Res. 30,4993-5003. Russell CS, Yehuda SB, Dix I, Kupiec M, Beggs JD. (2000). Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA. 6, 1565-1572 Silva IU, Mchugh PJ, Clingen PH, Hartley JA. (2000). Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell. Biol.. 20, 7980–7990. Tasi TC, Lee YL, Hsiao WC, Taso YP, Chen SL. (2005). NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptor. J Biol Chem. 280, 20000-20009. Wahl MC, Will CL, Luhrmann R. (2009). The splicesome: design priciples of a dynamic RNP Machine. Cell (Review). 136, 701-718. Worsham MJ, Pals G, Schouten JP, Miller F, Tiwari N, van Spaendonk R, Wolman SR. (2006). High-resolution mapping of molecular events associated with immortalization, transformation, and progression to breast cancer in the MCF10 model. Breast Cancer Res Treat. 96, 177-186. Zahang N, Kaur R, Lu X, Shen X, Li L, Legerski RJ. (2005). The Pso4 mRNA splicing and DNA repair complex interacts with WNR for processing of DNA interstrand cross-links. J. Biol. Chem. 280, 40559-40567. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23046 | - |
dc.description.abstract | BCAS2( Breast cancer amplification sequence 2 )是一個功能未明的核蛋白,位於染色體1p13.3-21 的位置,轉譯出225 個胺基酸組成的蛋白質產物,在人類組織中普遍表現。
BCAS2 在物種間具有高度保留性,人類BCAS2 的蛋白質序列與黑猩猩、狗、老鼠等哺乳類動物的相似度高達100%。本實驗室發現果蠅體內的基因CG4980 與人類BCAS2 相似度達59%,主要差異為CG4980 的N 端多了66 個胺基酸,顯示CG4980 為BCAS2 在果蠅內的同源基因。利用果蠅做為默化BCAS2的動物模式,我們發現缺乏BCAS2 會使果蠅出現胸節及翅膀的發育異常;外送入人類BCAS2 則可以挽救發育異常的形態。說明CG4980 與BCAS2 在生物體中功能相似,且對於果蠅的發育而言扮演著重要的角色。 BCAS2 在本實驗室的研究中,發現可以與抑癌基因p53 結合,抑制p53 的活性,默化BCAS2 會使具有p53 的細胞凋亡。本研究中則發現,在無p53 或p53 突變的細胞中默化BCAS2,不會造成細胞凋亡,但卻會發生細胞週期停滯在G2/M期。此外,在人類細胞中默化BCAS2 會造成細胞出現DNA 損傷的現象,DNA 損傷的標誌-γH2AX 會顯著上升。表示BCAS2 對於人類細胞的生長而言似乎是必須的。本研究也證明了BCAS2 藉由蛋白質N 端與Pso4 結合,參與在Pso4/Prp19 複 合體中,此複合體在酵母菌及人類細胞內都被報導出具有參與mRNA 剪切及DNA 修復的功能。我們利用in vivo 證實BCAS2 具有初mRNA 剪切的功能,也觀察到BCAS2 可以協助細胞抵抗外力造成的DNA 雙股斷裂,降低DNA 損傷反應。然而BCAS2 參與在剪切與修復功能中的詳細作用機轉仍尚未釐清。 本研究說明了BCAS2 是一個雙功能的蛋白質,它負責調控的功能與細胞的生長、發育有密切的關係,缺乏BCAS2 會造成細胞與個體的異常。未來可以此探討,BCAS2 的缺乏是否為疾病或癌症的指標之ㄧ。 | zh_TW |
dc.description.abstract | BCAS2 ( Breast cancer amplification sequence 2 ) is a novel gene locate on the chromosome 1p13.3-21 region and ubiquitously expressed in many human organs. BCAS2 cDNA contained a full coding region of 678 bp encoding 225 amino acids with the predicted molecular mass of 26 kDa. BCAS2 shows highly conserved in vertebrate. The predicted peptide sequence of the BCAS2 gene shows 100% homology to Pan troglodytes, Canis familiaris, Mus musculus and Rattus norvegicus.
In Drosophila melanogaster, we find that CG4980 is the homologene of human BCAS2. Accordingly, we use D. melanogaster as the animal model to investigate the function of BCAS2. We find that silenced CG4980 leads damaging phenotype on thorax and wing in D. melanogaster, and human BCAS2 overexpression can rescue the damage. Consequently, human BCAS2 plays a similar role to CG4980, and it seems CG4980 is an essential gene for fly development. Besides, BCAS2 is also important to human cell proliferation. Our lab has demonstrated that depletion of BCAS2 by siRNA can enhance p53 activity and cause cell apoptosis. In this study, silencing of BCAS2 in p53-null or p53-mutant cell lines results in cell cycle arrest at G2/M and DNA damage, increasing the expression of γH2AX, a marker for DNA damage. Then we find that BCAS2 can interact with Pso4 by N terminal. It demonstrates that BCAS2 indeed involve in Pso4/Prp19 complex. Pso4/Prp19 complex is identified as a splicing complex, plays an important role in pre-mRNA splicing. Besides, Pso4/Prp19 complex also can regulate some type of DNA repair. We find that BCAS2 shows pre-mRNA splicing activity by in vivo splicing assay. Moreover, while treated with DNA damage matter, BCAS2 overexpression can assist cells to resist DNA damage and down regulate the expression of γH2AX. Together with our finding, BCAS2 may be a bifunctional protein, with independent function in RNA splicing and DNA repair, and play important roles in regulating organism development and cell proliferation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:39:17Z (GMT). No. of bitstreams: 1 ntu-98-R96445129-1.pdf: 2797111 bytes, checksum: 14bd56ac644b9db26f20b3ec57615f6f (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝 中文摘要 英文摘要 緒論 BCAS2 的發現與特性………………………………………………………...……...1 BCAS2 的功能………………………………………………………......................…2 BCAS2與Pso4 複合體……………………………………………………..…………3 BCAS2 在生物體內的功能……………………………………………...…………...5 黑腹果蠅( Drosophila melanogaster )的動物模式特性及基因表現系統…………..6 研究目的………………………………………………………………………………...8 材料與方法……………………………………………………………………………...9 結果 在果蠅模式內降低BCAS2 表現會造成發育異常…………………………………24 降低dBCAS2 表現所造成的發育異常可由人類BCAS2 挽救……………………26 在人類細胞中降低BCAS2 表現會導致細胞週期停滯……………………………28 降低BCAS2 表現會導致細胞DNA發生損傷…………………………………......29 BCAS2可與Pso4 結合………………………………………………………………30 BCAS2 藉由蛋白質N端與Pso4 結合………………………………………………31 BCAS2 具有初mRNA剪切的功能…………………………………………………31 大量表現BCAS2 可協助細胞抵抗DNA 雙股斷裂的損傷………………….........32 討論…………………………………………………………………………………….35 參考文獻……………………………………………………….………………………40 圖及附錄……………………………………………………………………………….45 | |
dc.language.iso | zh-TW | |
dc.title | BCAS2為果蠅發育及哺乳類細胞生長之重要蛋白質 | zh_TW |
dc.title | BCAS2 is an essential protein of Drosophila development and mammalian cell proliferation | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳君泰,曹友平,鄧述諄,李財坤 | |
dc.subject.keyword | BCAS2,果蠅,RNA剪切,DNA修復,γH2AX,Pso4, | zh_TW |
dc.subject.keyword | BCAS2,Drosophila melanogaster,pre-mRNA splicing,DNA repair,γH2AX,Pso4/Prp19 complex, | en |
dc.relation.page | 62 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
Appears in Collections: | 微生物學科所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-98-1.pdf Restricted Access | 2.73 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.