請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝國煌 | |
| dc.contributor.author | Chia-Yen Lin | en |
| dc.contributor.author | 林嘉彥 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:38:00Z | - |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | 1. Robert W. Gore, 1976, “Process for producing porous products”, U.S. Patent 3953566
2. Robert W. Gore, Samuel B. Allen, Jr., 1980, “Waterproof laminate”, U.S. patent 4194041 3. Turjanmaa, K, “Incidence of immediate allergy to latex gloves in hospital personnel”, Contact Dermatitis, 17 (1987) 270 4. Jaeger D, Kleinhans D, Czuppon AB, Baur X, “Latex-specific proteins causing immediate-type cutaneous, nasal, bronchial, and systemic reactions”, J. Allergy and Clinical Immunology, 89, (1992) 759 5. Yunginger JW, Jones RT, Fransway AF, Kelso JM, Warner MA, Hunt LW, “Extractable latex allergens and proteins in disposable medical gloves and other rubber products” J. Allergy and Clinical Immunology, 93, (1994) 836 6. Turjanmaa K, Laurila K, Makinekiljunen S. Reunala T, “Rubber contact urticaria – allergenic properties of 19 brands of latex gloves”, Contact Dermatitis, 19, (1988), 362 7. G. R. Lomax, J. Coated Fabr., 15 (1985) 40 8. H. Traubel, New Materials Permeable to Water Vapor, Springer-Verlag, Berlin, 1999, 40~104 9. Farbenfabriken Bayer, W Brenschede; DBP 888 766 10. W.4, Die herstellung von polyurethane-kunstledern nach dem koagulationsverfahren coating, (1983) 128 11. M Katz, et al, “Polyurethane polymer”, 1961, U.S. patent 2973333 12. Fuji Shanshin Film KK; W Neno, H Kawaguchi; “Process for the production of a fine porous film”, 1970, U.S. patent 3520874 13. Schroer W, Schutze D-I, Thoma W, “Wasserdampfdurchlassige kompakte Textilbeschichtungen mit polyurethanen” Coating, September (1992) P290 14. Saito N et al. “Synthesis and hydrophilic multi functional hydroxylierter polyacrylamide”, Macromolecules, (1996), 29, p313 15. Pandya M. V., Seshande, d. D.; Hundiwale, D.G. J of Appl. Polym Sci, 1986, 32, 4945 16. Pandya M. V., Seshande, d. D.; Hundiwale, D.G. J. of Appl. Polym Sci, 1988, 35, 1803 17. Cooper, S. L.; Philips, R.A.; Stevenson, J.C.; Nagoajan, M.R.J Macromol Sci Phys B. 27(2&3), 1988, 245 18. Kim, B. K.; Kim, T. K. J. of Appl Polym Sci, 1991, 43, 2295 19. C. Chen, B. Han, J. Li, T. Shang. J.Zou. W. Jiang, “ A new model on the diffusion of small molecules penetrants in dense polymer membranes, J. Memb. Sci. 187 (2001) 109 20. Z. F. Wang, B. Wang. Y.R. Yang, C. P. Hu, “Correlactions between gas permeation and free-volume hole properties of polyurethane membranes”, Eur. Polym. J. 39 (2003) 2345 21. Zallen, R. “The Physicas of Amorphous Solids”, John Wiley & Sons: New York, 1983 22. Cohen, M. H.; Grest, G. S. Phys Rev B 1979, 20, 1077 23. Turnbull, D.; Cohen, M. H. J. Chem. Phys. 1970, 52, 3038 24. Elias, H. H. Macromolecules, 2nd ed; Plenum Press: New York, 1984 25. Tanabe, Y.; Muller, N; Fischer, E. W. Polym. J. 1984, 16, 445 26. Yu, W. C.; Sung, C. S. Macromolecules 1988, 21, 365 27. Victor, J. G.; Torkelson, J. M. Macromolecules 1988, 21, 3490 28. Yu, Z.; McGervey, J. D.; Jamieson, A. M.; Simha, R. Macromolecules 1995, 28, 6268 29. Cohen MH, Turnbull D. J Chem Phys 1959; 31:1164 30. Haraya K. Hwang ST. J Membr Sci 1992; 71:13 31. Park JK, Paul DR. J Membr Sci 1997;125:23 32. Kobayashi R, Haraya K, Jattori S, Sasuga T. Polymer 1994;35:925 33. Hill AJ, Weinhold S, Stack GM, Tant MR. Eur Polym J 1996;32:843 34. Eastmond GC, Daly JH, McKinnon AS, Pethrick RA. Polymer 1999;40,3605 35. Nagel C. Gunther-Schade K, Fristch D, Strunskus T, Faupel F. Macromolecules 2001;34:1788 36. McGonigle EA, Liggat JJ, Pethrick RA, Jenkins SD, Daly JH, Hayward D. Polymer 2001;42:2431 37. Yampolskii YP, Korikov AP, Shantarovich VP, Nagai K, Freeman BD, Masuda T, et al. Macromolecules 2001; 34:1788 38. Fujita H. Polym J 1991;23:1499 39. Wang Z. F.; Wang B.; Yang Y.R.; Hu C. P.; European Polymer Journal, 39 (2003), 2345 40. Huang SL. Ruaan RC, Lai JY. J Membr Sci 1997;123:71 41. Huang SL. Lai JY. J Membr Sci 1995;105:137 42. A. O. Porto, G. Goulart Silva, W. F. Magalhaes, J. Polym Sci B: Polym Phys 37:219-226, 1999 43. Yu, Z. ; Yahsi, U.; McGervey, J.D.; Jamieson, A.M.; Simha, R. Macromolecules 1995, 28, 6268 44. Ban. M.; Kyoto, M; Uedono, A.; Kawano, T.; Tanigawa, S. J Polym Sci Part B Polym Phys 1996, 34, 1189 45. Z. F. Wang, B. Wang. X. M. Ding, M. Zang, L. M. Liu, N. Qi, J. L. Hu, J. of Membrn Sci, 241, 2004, 355-361 46. M. F. Ferreira Marques, C. Lopes Gil, P. M. Gordo, Zs Kajcsos, A. P. de Lima, D. P. Queiroz, M. N. de Pinho, Radiation Physics and Chemistry, 68, 2003, 573-579 47. Santerre JP, Brash JL. Ind Eng Chem Res 1997;36:1352 48. Kesting RE, Fritzche AK. Polymeric gas separation membranes. New York: John Wiley, 1993 49. I. Yilgor, E. Yilgor, Polymer 40, 1999, 5575~5581 50. S. Mondal, J. L. Hu, Journal of Membrane Science, 274, 2006, 219~226 51. K. H. Hsieh, C. C. Tsai, D. M. Chang, Journal of Membrane Science, 56, 1991. 279~287 52. K.H.Hsieh, C. C. Tsai, S. M. Tseng, Journal of Membrane Science, 49, 1990, 341-350 53. C. Hepborn, Polyurethane Elastomers, Applied Science Publishers, 1982, 48 54. Yokoyama, T., Hydrogen Bond in Polyurethanes, in: Advances in Urethane Science and Technology, Vol. 6, Westport, Tchnomic, p.1029, 1978 55. Tanaka, T., Yokoyama, T. & Yamaguchi, Y., J, Polym. Sci., A-1, 6, 2153, 1969 56. Zdrahala, R. J., Geskin, R. M., Hagen, S, L., & Gritchfield, F. E., J, Appl. Polym. Sci., 24 (6), 2041,1979 57. C. Hepborn, Polyurethane Elastomers, Applied Science Publishers, 1982, 35 58. Bogdanov, B., Toncheva, V, Schacht, E, et al, Polymer 40, 11, 1999, 3171-3182 59. Asif, A, Shi, WF, Shen, XF, et al, Polymer 46, 24, 2005, 11066-11078 60. Z. Wirpsza, Polyurethanes Chemistry, Technology and Applications, Ellis Horwood Limited, 1993, p118-123 61. Speckhard, T. A; Cooper, S, Rubb. Chem. Tec., 59, 1986, 405~413 62. Cuve, L; Pascault, J.P.; Boiteux, G.; Noiteux, G. Polymer, 33, 1993, 18 63. Ono, K; Shimada, H, Nishimura, T, J. Appl. Polym. Sci., 21, 1977, 3223 64. Huang, G. J. Appl. Polym Sci, 63, 1997, 1309 65. Wang Z. F.; Wang B.; Yang Y.R.; Hu C. P.; European Polymer Journal, 39 (2003), 2345 66. Huang SL. Ruaan RC, Lai JY. J Membr Sci 1997;123:71 67. Huang SL. Lai JY. J Membr Sci 1995;105:137 68. S. Mondal, J. L. Hu, Journal of Membrane Science 276, 2006, 16-22 69. S. Mondal, J. L. Hu, Journal of Membrane Science 274, 2006, 219-226 70. Iskender Yilgor, Emel Yilgor, Polymer 40, 1999, 5575-5581 71. M. S. Yen, K. L. Cheng, Journal of Applied Polymer Science, 52, 1994, 1707-1717 72. K. H. Hsieh, C. C. Tsai and S. M. Tseng, Journal of Membrane Science, 49, 1990, 341-350 73. I. Yilgor, E. Yilgor, Polymer 40, 1999, 5575~5581 74. S. Mondal, J. L. Hu, Journal of Membrane Science, 274, 2006, 219~226 75. K. H. Hsieh, C. C. Tsai, D. M. Chang, Journal of Membrane Science, 56, 1991. 279~287 76. M. F. Ferreira Marques, C. Lopes Gil, P. M. Gordo, Zs Kajcsos, A. P. de Lima, D. P. Queiroz, M. N. de Pinho, Radiation Physics and Chemistry, 68, 2003, 573-579 77. Santerre JP, Brash JL. Ind Eng Chem Res 1997;36:1352 78. Kesting RE, Fritzche AK. Polymeric gas separation membranes. New York: John Wiley, 1993 79. Z. F. Wang, B. Wang, N. Qi, X.M. Ding, J. L. Hu, Materials Chemistry and Physics, 88, 2004, 212-216 80. Z. F. Wang, B. Wang, X.M. Ding, Ming Zhang, Li Ming Liu, Ning Qi, Journal of Membrane Science, 241, 2004, 355-361 81. C. Hepborn, Polyurethane Elastomers, Applied Science Publishers, 1982, 17-18 82. Michele Modesti, Alessandra Lorenzetti, European Polymer Journal 37, 2001, 949-954 83. Petrovic Z. S., Zhang W., et al, Jornal of Polymers and the Environment, 19, 1-2, 2002, 5-12 84. Kwon H, Kim SB, Kim YC, Polymer Korea, 29, 5, 2005, 457-462 85. Kim SH, Kim BK, Lim H, Macromolecular Research, 16, 5, 2008, 467-472 86. Z. F. Wang, B. Wang, N. Qi, X.M. Ding, J. L. Hu, Materials Chemistry and Physics, 88, 2004, 212-216 87. Z. F. Wang, B. Wang, X.M. Ding, Ming Zhang, Li Ming Liu, Ning Qi, Journal of Membrane Science, 241, 2004, 355-361 88. Cuve, L; Pascault, J.P.; Boiteux, G.; Noiteux, G. Polymer, 33, 1993, 18 89. Ono, K; Shimada, H, Nishimura, T, J. Appl. Polym. Sci., 21, 1977, 3223 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23018 | - |
| dc.description.abstract | 此論文主要探討聚胺酯薄膜的合成,物性,應用,及如何利用溫度的改變控制其透水蒸氣性。此論文中,我們在控制其它變數的情況下,一一改變了: 硬鍵含量,親水軟鍵含量,以及異氰酸酯數,並觀察與其相對應的機械性質改變,熱性質改變,切面表面形態改變,及透水蒸氣性質的改變。另外,我們在親水軟鍵含量,異氰酸酯數的這兩組實驗中,找到合理的數據支持聚胺酯薄膜的透水蒸氣性和溫度的關係符合阿瑞尼士方程式,而可藉此方程式預測在某一溫度下的透水蒸氣性,以達到用溫度準確控制聚胺酯薄膜透水蒸氣性能的目的。然而,在此論文發現聚胺酯薄膜在玻璃轉化溫度區間,透水蒸氣性質增加了3200 %,從實驗數據及原子力顯微鏡(AFM)中,我們得知聚胺酯薄膜軟區(Soft Domain)中的聚氧乙烯二醇(PEG)扮演最主要也最關鍵的水蒸氣輸送角色。 | zh_TW |
| dc.description.abstract | The study is about hydrophilic polyurethane film and its properties and applications, and how its water vapor permeability can be controlled via temperature. We varied polyurethane formulations of hard segment concentration, hydrophilic segment concentration, and isocyanate index to see how these variables affect mechanical properties, thermal properties, morphology, and water vapor permeability of the hydrophilic polyurethane film. Also, water vapor permeability at different temperature is found to be temperature dependent following Arrhenius equation. However, the water vapor permeability near glass transition temperature exhibited very different behavior and does not follow the Arrhenius equation. An abrupt 3200 % water permeability increase is observed at the glass transition temperature region. And from the experiment data and AFM (Atomic Force Microscope) we found that polyethylene glycol (PEG) of soft domain plays a critical role in water vapor permeability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:38:00Z (GMT). No. of bitstreams: 1 ntu-98-D91549005-1.pdf: 1885926 bytes, checksum: bf27be917851bafbe3ed3393d7ca11db (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Chapter 1: Introduction 1
1.1 Background of Developing Water Vapor Permeable Film 1 1.2 Microporous Membranes for Water Vapor Permeable Application 3 1.3 Hydrophilic Monolithic Film for Water Permeable Application 5 1.4 Water Vapor Permeability: Fractional Free Volume 6 1.4.1 Effect of Hard Segment Content on Fractional Free Volume 10 1.4.2 Effect of Soft Segments on Fractional Free Volume 11 1.4.3 Effect of Molecular Weight on Fractional Free Volume 12 1.4.4 Effect of Temperature on Fractional Free Volume 12 1.5 Free Volume Theory Applied on Water Vapor Permeability 14 1.6 Water Vapor Permeability of Hydrophilic Film: Hydrophilicity 16 1.7 Considering Both the Free Volume and Hydrophilicity 20 Chapter 2: Experiment and Equipment 22 2.1 Material 22 2.2 Synthesis Hydrophilic Polyurethane Film with DMF 24 2.3 Equipment and Testing Methods 27 Chapter 3: Synthesizing and Analyzing Hydrophilic Polyurethane Film with Different Hard Segment Concentration 32 3.1 Abstract 32 3.2 Introduction 33 3.3 Calculation and Synthesizing Hydrophilic Polyurethane Film with Various Hard Segment Concentrations 33 3.4 Mechanical Properties 35 3.5 Thermal Properties 37 3.6 Morphology 40 3.7 Water Vapor Permeability 42 3.8 Conclusions 44 Chapter 4: Synthesizing and Analyzing Hydrophilic Polyurethane Film with Different Hydrophilic Soft Segment Concentration 47 4.1 Abstract 47 4.2 Introduction 48 4.3 Calculation and Synthesizing Hydrophilic Polyurethane Film with Different Hydrophilic Soft Segment Concentration 48 4.4 Mechanical Properties 50 4.5 Thermal Properties 53 4.6 Morphology 55 4.7 Water Vapor Permeability 57 4.8 Conclusions 59 Chapter 5: Synthesizing and Analyzing Hydrophilic Polyurethane Film with Different Isocyanate Index 61 5.1 Abstract: 61 5.2 Introduction 62 5.3 Calculation and Synthesizing Hydrophilic Polyurethane Film with Different Isocyanate Index 62 5.4 Mechanical Properties 63 5.5 Thermal Properties 66 5.6 Morphology 68 5.7 Water Vapor Permeability 70 5.8 Conclusions 72 Chapter 6: The Water Vapor Transport Mechanism of Hydrophilic Polyurethane Film 75 6.1 Abstract 75 6.2 Introduction 75 6.3 The Hydrophilicity Effect on Water Vapor Permeability 76 6.4 The Crosslink Effect on Water Vapor Permeability 81 6.5 Conclusion 84 Chapter 7: Arrhenius Relation of Water Vapor Permeability versus Temperature above Tg and the Water Vapor Permeability at near-Tg-region 85 7.1 Abstract 85 7.2 Introduction 86 7.3 The Arrhenius Relation of WVP versus Temperature of Different PEG Weights in Polyurethane Film 87 7.4 The Arrhenius Relation of WVP versus Temperature of Different Isocyanate Index in Polyurethane Film 90 7.5 The Water Vapor Permeability near Tg of PU6 PEG 100% of Soft Segment of Polyurethane Film 93 7.6 The Water Vapor Permeability near Tg of PU 9 of Isocyanate Index 1.2 (PEG 60% and PBA 40% of Soft Segment) 97 7.7 Conclusion 99 References 101 | |
| dc.language.iso | en | |
| dc.subject | 玻璃轉化溫度 | zh_TW |
| dc.subject | 聚胺酯薄膜 | zh_TW |
| dc.subject | 硬鍵 | zh_TW |
| dc.subject | 親水軟鍵 | zh_TW |
| dc.subject | 異氰酸酯數 | zh_TW |
| dc.subject | hydrophilic polyurethane film | en |
| dc.subject | glass transition temperature | en |
| dc.subject | water vapor permeability | en |
| dc.subject | hydrophilic segment | en |
| dc.subject | hard segment | en |
| dc.title | 透氣聚胺酯薄膜的合成及應用 | zh_TW |
| dc.title | The Synthesis and Application of Water Vapor Permeable Polyurethane Film | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 邱文英,廖文彬,王怡仁,韓錦鈴 | |
| dc.subject.keyword | 聚胺酯薄膜,硬鍵,親水軟鍵,異氰酸酯數,玻璃轉化溫度, | zh_TW |
| dc.subject.keyword | hydrophilic polyurethane film,hard segment,hydrophilic segment,water vapor permeability,glass transition temperature, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
