請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23017
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡偉博 | |
dc.contributor.author | Che-Cheng Wu | en |
dc.contributor.author | 吳哲丞 | zh_TW |
dc.date.accessioned | 2021-06-08T04:37:58Z | - |
dc.date.copyright | 2009-08-20 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-17 | |
dc.identifier.citation | 1. Ratner, B.D. and S.J. Bryant, BIOMATERIALS: Where We Have Been and Where We are Going. Annual Review of Biomedical Engineering, 2004. 6(1): p. 41-75.
2. Chen, H., et al., Biocompatible polymer materials: Role of protein-surface interactions. Progress in Polymer Science, 2008. 33(11): p. 1059-1087. 3. Okajima, Y., S. Saika, and M. Sawa, Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. Journal of Cataract & Refractive Surgery, 2006. 32(4): p. 666-671. 4. Nakabayashi, N. and Y. Iwasaki, Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Bio-Medical Materials and Engineering, 2004. 14(4): p. 345-354. 5. Willis, S.L., et al., A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials, 2001. 22(24): p. 3261-3272. 6. Senaratne, W., L. Andruzzi, and C.K. Ober, Self-Assembled Monolayers and Polymer Brushes in Biotechnology: Current Applications and Future Perspectives. Biomacromolecules, 2005. 6(5): p. 2427-2448. 7. Bearinger, J.P., et al., Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater, 2003. 2(4): p. 259-264. 8. Blokhuis, T.J., et al., Properties of Calcium Phosphate Ceramics in Relation to Their In Vivo Behavior. The Journal of Trauma, 2000. 48(1): p. 179. 9. Mendelsohn, J.D., et al., Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films. Biomacromolecules, 2003. 4(1): p. 96-106. 10. Higuchi, A., et al., Bioinert Surface of Pluronic-Immobilized Flask for Preservation of Hematopoietic Stem Cells. Biomacromolecules, 2006. 7(4): p. 1083-1089. 11. Chien, H.-W., T.-Y. Chang, and W.-B. Tsai, Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films. Biomaterials, 2009. 30(12): p. 2209-2218. 12. Chen, C.S., et al., Geometric Control of Cell Life and Death. Science, 1997. 276(5317): p. 1425-1428. 13. Hoffman, A.S., Non-Fouling Surface Technologies. Journal of Biomaterials Science, Polymer Edition, 1999. 10: p. 1011-1014. 14. Ostuni, E., et al., A Survey of Structure-Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p. 5605-5620. 15. Chapman, R.G., et al., Surveying for Surfaces that Resist the Adsorption of Proteins. Journal of the American Chemical Society, 2000. 122(34): p. 8303-8304. 16. Cheng, G., et al., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007. 28(29): p. 4192-4199. 17. Zhang, Z., et al., The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials, 2008. 29(36): p. 4719-4725. 18. Li, G., et al., Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 2008. 29(35): p. 4592-4597. 19. Li, G., et al., Ultralow Fouling Zwitterionic Polymers Grafted from Surfaces Covered with an Initiator via an Adhesive Mussel Mimetic Linkage. The Journal of Physical Chemistry B, 2008. 112(48): p. 15269-15274. 20. Zhang, Z., et al., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-4291. 21. Dalsin, J.L., et al., Mussel Adhesive Protein Mimetic Polymers for the Preparation of Nonfouling Surfaces. Journal of the American Chemical Society, 2003. 125(14): p. 4253-4258. 22. Shen, M.M., Laura; Wagner, Matthew S.; Castner, David G.; Ratner, Buddy D.; Horbett, Thomas A., PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition, 2002 13: p. 367-390. 23. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16(24): p. 9604-9608. 24. http://cellbiology.med.unsw.edu.au/units/science/lecture0803.htm. 25. http://www.absoluteastronomy.com/topics/Cell_membrane. 26. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18(3-4): p. 261-275. 27. Vermette, P. and L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003. 28(2-3): p. 153-198. 28. Lowe, A.B. and C.L. McCormick, Synthesis and Solution Properties of Zwitterionic Polymers. Chemical Reviews, 2002. 102(11): p. 4177-4190. 29. Yang, W., et al., Film Thickness Dependence of Protein Adsorption from Blood Serum and Plasma onto Poly(sulfobetaine)-Grafted Surfaces. Langmuir, 2008. 24(17): p. 9211-9214. 30. Zhang, Z., S. Chen, and S. Jiang, Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315. 31. Chang, Y., et al., A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir, 2008. 24(10): p. 5453-5458. 32. Chang, Y., et al., Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226. 33. Zhang, Z., et al., Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. The Journal of Physical Chemistry B, 2006. 110(22): p. 10799-10804. 34. Ladd, J., et al., Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules, 2008. 9(5): p. 1357-1361. 35. Vaisocherova, H., et al., Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Analytical Chemistry, 2008. 80(20): p. 7894-7901. 36. Rodriguez Emmenegger, C., et al., Interaction of Blood Plasma with Antifouling Surfaces. Langmuir, 2009. 25(11): p. 6328-6333. 37. Zhang, Z., et al., Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 2006. 22(24): p. 10072-10077. 38. Chen, L., et al., Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer, 2000. 41(1): p. 141-147. 39. Lowe, A.B., N.C. Billingham, and S.P. Armes, Synthesis and Properties of Low-Polydispersity Poly(sulfopropylbetaine)s and Their Block Copolymers. Macromolecules, 1999. 32(7): p. 2141-2148. 40. Liaw, D.-J. and C.-C. Huang, Dilute solution properties of poly(3-dimethyl acryloyloxyethyl ammonium propiolactone). Polymer, 1997. 38(26): p. 6355-6362. 41. Kathmann, E.E., L.A. White, and C.L. McCormick, Water soluble polymers: 70. Effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer, 1997. 38(4): p. 879-886. 42. Lee, W.-F. and G.-Y. Huang, Poly(sulfobetaine)s and corresponding cationic polymers: 5. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide-maleic anhydride copolymer. Polymer, 1996. 37(19): p. 4389-4395. 43. Laschewsky, A., et al., Characterization of sulfobetaine monomers by nuclear magnetic resonance spectroscopy: a note. Polymer, 1995. 36(15): p. 3045-3049. 44. Weers, J.G., et al., Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. Langmuir, 1991. 7(5): p. 854-867. 45. Schulz, D.N., et al., Phase behaviour and solution properties of sulphobetaine polymers. Polymer, 1986. 27(11): p. 1734-1742. 46. Malcolm B. Huglin, M.A.R., Properties of poly[N-2-(methyacryloyloxy)ethyl-N,N-dimethyl-N-3-sulfopropylammonium betaine] in dilute solution. Die Makromolekulare Chemie, 1991. 192(10): p. 2433-2445. 47. Georgiev, G.S., et al., Self-Assembly, Antipolyelectrolyte Effect, and Nonbiofouling Properties of Polyzwitterions. Biomacromolecules, 2006. 7(4): p. 1329-1334. 48. Zhang, Z., T. Chao, and S. Jiang, Physical, Chemical, and Chemical-Physical Double Network of Zwitterionic Hydrogels. The Journal of Physical Chemistry B, 2008. 112(17): p. 5327-5332. 49. Ishihara K, N.H., Mihara T, Kurita K, Iwasaki Y, Nakabayashi N., Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research, 1998. 39: p. 323–330. 50. He, Y., et al., Molecular Simulation Studies of Protein Interactions with Zwitterionic Phosphorylcholine Self-Assembled Monolayers in the Presence of Water. Langmuir, 2008. 24(18): p. 10358-10364. 51. Ma, H., et al., 'Non-Fouling' Oligo(ethylene glycol)- Functionalized Polymer Brushes Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Advanced Materials, 2004. 16(4): p. 338-341. 52. Kazuhiko Ishihara, H.O.Y.E.T.U.A.W.N.N., Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research, 1992. 26(12): p. 1543-1552. 53. Huangfu, P.-b., et al., Cell outer membrane mimetic modification of a cross-linked chitosan surface to improve its hemocompatibility. Colloids and Surfaces B: Biointerfaces, 2009. 71(2): p. 268-274. 54. Reisch, A., et al., Polyelectrolyte Multilayers Capped with Polyelectrolytes Bearing Phosphorylcholine and Triethylene Glycol Groups: Parameters Influencing Antifouling Properties. Langmuir, 2009. 25(6): p. 3610-3617. 55. Salloum, D.S., et al., Vascular Smooth Muscle Cells on Polyelectrolyte Multilayers: Hydrophobicity-Directed Adhesion and Growth. Biomacromolecules, 2005. 6(1): p. 161-167. 56. Olenych, S.G., et al., Fibronectin and Cell Attachment to Cell and Protein Resistant Polyelectrolyte Surfaces. Biomacromolecules, 2005. 6(6): p. 3252-3258. 57. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik A Hadrons and Nuclei, 1959. 155(2): p. 206-222. 58. Guo, G., et al., Synthesis of Platinum Nanoparticles Supported on Poly(acrylic acid) Grafted MWNTs and Their Hydrogenation of Citral. Chemistry of Materials, 2008. 20(6): p. 2291-2297. 59. Ravi, P., S. Dai, and K.C. Tam, Synthesis and Self-Assembly of [60]Fullerene Containing Sulfobetaine Polymer in Aqueous Solution. The Journal of Physical Chemistry B, 2005. 109(48): p. 22791-22798. 60. Yoo, D., S.S. Shiratori, and M.F. Rubner, Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes. Macromolecules, 1998. 31(13): p. 4309-4318. 61. Bohmer, M.R., O.A. Evers, and J.M.H.M. Scheutjens, Weak polyelectrolytes between two surfaces: adsorption and stabilization. Macromolecules, 1990. 23(8): p. 2288-2301. 62. Wang, Y., P. Chen, and J. Shen, The development and characterization of a glutathione-sensitive cross-linked polyethylenimine gene vector. Biomaterials, 2006. 27(30): p. 5292-5298. 63. Choi, J. and M.F. Rubner, Influence of the Degree of Ionization on Weak Polyelectrolyte Multilayer Assembly. Macromolecules, 2005. 38(1): p. 116-124. 64. Cosgrove, T., T.M. Obey, and B. Vincent, The configuration of sodium poly(styrene sulfonate) at polystyrene/solution interfaces. Journal of Colloid and Interface Science, 1986. 111(2): p. 409-418. 65. Blaakmeer, J., et al., Adsorption of weak polyelectrolytes on highly charged surfaces. Poly(acrylic acid) on polystyrene latex with strong cationic groups. Macromolecules, 1990. 23(8): p. 2301-2309. 66. Thompson, K.L., E.S. Read, and S.P. Armes, Chemical degradation of poly(2-aminoethyl methacrylate). Polymer Degradation and Stability, 2008. 93(8): p. 1460-1466. 67. Tang, L., P. Thevenot, and W. Hu, Surface Chemistry Influences Implant Biocompatibility. Current Topics in Medicinal Chemistry, 2008. 8: p. 270-280. 68. 王 儷 穎, Effective charges of polyelectrolytes in solution. 國立中央大學圖書館 碩士論文, 2006. 69. Zhang, J., et al., Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials, 2005. 26(16): p. 3353-3361. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23017 | - |
dc.description.abstract | Nonfouling表面已經被廣泛使用在生醫材料和生物晶片,由於能夠抵抗非專一性的吸附。本研究選用nonfouling材料製備生物惰性表面,將具有雙離子性的磺基甜菜鹼單體(sulfobetaine mathacrylate)分別與兩種pH敏感性弱電解質單體丙烯酸(acrylic acid)和2-氨乙基甲基丙烯酸酯鹽酸鹽(2-aminoethyl methacrylate hydrochloride),利用自由基聚合法合成無規則性共聚物,藉以靜電作用力吸附於聚電解質修飾的表面,達到抗生物性貼附,而研究的目的是利用此機制去應用其他基材。本研究合成不同比例的磺基甜菜鹼和弱電解質共聚物,分別是0%(聚電解質)、10%、25%、50%、75%、100% 磺基甜菜鹼,主要探討共聚物吸附環境,例如pH和鹽濃度,藉由石英微量天平測量其吸附量的變化,進而影響血清蛋白吸附和纖維母細胞(L929)貼附。由於之前文獻已提出幾乎相同結構的磺基甜菜鹼和丙烯酸共聚物,利用靜電作用與聚丙烯胺鹽酸鹽堆疊共四層,具有抗蛋白質吸附和細胞貼附的能力,但並未細部討論吸附環境對生物性貼附的影響,因此,本研究將進一步探究其中原因。
對於不同比例之磺基甜菜鹼和丙烯酸共聚物,利用共聚物帶負電的特性吸附於三層PEI/PAA (Poly(ethylene imine) /Poly(acrylic acid)之聚電解質表面,當共聚物在酸性環境下吸附,能有效抑制細胞貼附,隨著磺基甜菜鹼比例增加,在50%磺基甜菜鹼之共聚物修飾的表面,最有效抑制蛋白質吸附和細胞貼附。當50%磺基甜菜鹼之共聚物在酸性環境且不同鹽濃度下吸附,皆能抑制細胞貼附,但在高鹽濃度,具有最佳抑制細胞貼附的能力。 對於另一種帶正電之磺基甜菜鹼和2-氨乙基甲基丙烯酸酯鹽酸鹽共聚物,其不同比例共聚物吸附於四層PEI/PSS聚電解質表面,只有75%磺基甜菜鹼之共聚物修飾的表面能有40%抑制細胞貼附,發現75%磺基甜菜鹼之共聚物直接吸附於未經聚電解質修飾的基材表面, 反而更有效減少細胞貼附。此外,當75%磺基甜菜鹼之共聚物在中性環境吸附於低解離度之PAA表面,也能有效減少細胞貼附。因此,本研究利用兩種具有相反電性之弱電解質和磺基甜菜鹼之共聚物,成功製備生物惰性表面。 | zh_TW |
dc.description.abstract | Nonfouling surface has been widely used in both biomaterials and biosensor, due to its resistancy in non-specific adsorption. In our study, non-fouling materials were used to fabricate bioinert surfaces, where effect on the interface with different pH values and salt concentration was investigated. Sulfobetaine methacrylate (SBMA), with its zwitterionic character, was polymerized into two oppositely charged random copolymers. It was either polymerized with a weak electrolytic acrylic acid, or 2-aminoethyl methacrylate by a conventional free radical polymerization. Through this method, electrostatic interaction may aid in adsorption of the copolymers on the polyelectrolyte-modified surface for obtaining the ideal resistance in biological adsorption. The objective is that the use of polyelectrolytic mechanism is applied on the all substrates. Examinations were done on the copolymers with different content of SBMA at 0 % (polyelectrolyte), 25%, 50%, 75% and 100 %, mainly investigating the effect of pH and salt content on the adsorption of the surface. Methods such as Quartz Crystal Microbalance (QCM) was used to examine the changes on surface adsorption in order to correlate it with the protein adsorption and L929 cell adhesion on the different surfaces through cell culture experiments. From previous studies, 4 layer of P(SBAA-co-AA) with PAH were examined to show resistancy in protein adsorption and cell adhesion, though the influence of surrounding factor on the biological adhesion was not further discussed. Thus, the goal of this study is to explore environmental factors on its influence for cell adhesion.
Using the negatively charged character of copolymer, copolymer with different ratio of SBMA and acrylic acid were adsorbed to form surfaces with 3 layers of PEI/PAA. As result, resistancy on cell adhesion was observed under acidic environment, where the resistance increases with increment in SBMA ratio, and the surface with 50% SBMA copolymer showed most resistancy in protein adsorption and cell adhesion without addition of salt. Inhibition of cell adhesion was also demonstrated in acidic environment under different salt concentration, where best cell adhesion resistancy was observed under high salt content. As for the other copolymer of positive-charged Poly(SBMA-co-AEMA) (poly(sulfobetaine methacrylate-co-2-aminoethyl methacrylate)), copolymer with different composition of SBMA were adsorbed to 4 layers of PEI/PSS surface. As result, only 75% SBMA copolymer showed 40% resistancy for cell adhesion, suggesting better resistance effect by the direct adsorption of the copolymer to the TCPS without polyelectrolyte modification as indicated on 75% SBMA copolymer. Nevertheless, great efficiency in decrement of cell adhesion was also observed under neutral environment for the 75% SBMA copolymer to low ionized PAA surface. Thus, through this research, bioinert surface were successfully created by electrostatic interaction to immobilize two types of opposite-charged poly(electrolyte-co-SBMA) copolymer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:37:58Z (GMT). No. of bitstreams: 1 ntu-98-R96524051-1.pdf: 2864470 bytes, checksum: 7ceaab2d8c597ed902a69aab1182dd46 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Abstract…………………………………………………………………IV
Figure…………………………………………………………………VIII Table……………………………………………………………………XII Chapter 1 Introduction……………………………………………………… ……1 1.1 Bioinert surface …………………………………………………2 1.2 Nonfouling surfaces………………………………………………3 1.3 PEG (poly(ethylene glycol))……………………………………4 1.4 Zwitterionic polymers……………………………………………5 1.4.1 Background……………………………… ………………………5 1.4.2 Phosphorylcholine (PC)………………………………… ……7 1.4.3 Carboxybetaine (CB) & Sulfobetaine (SB)……………… 11 1.4.4 Characteristic of Zwitterionic polymers………… ……12 1.4.5 Interaction of protein and zwitterions-modified surface………………………………………………………………… 17 1.5 Surface modification by nonfouling materials……………18 1.5.1 Self-assembled monolyer (SAM)……………………… ……18 1.5.2 Graft polymerization…………………………………………19 1.5.3 Hydrophobic interaction…………………………………… 19 1.5.4 Surface Grafting………………………………………………20 1.5.5 Ester hydrolysis………………………………………………21 1.5.6 Layer-by-layer deposition………………………………… 21 1.6 Research motivation…………………………………………… 22 1.7 Research objective………………………………………………23 Chapter 2 Materials and Methods………………………………… 24 2.1 Chemicals……………………………………………………………… 24 2.1.1 Preparation of polyelectrolyte mutilayer………………24 2.1.2 Materials of zwitterionic copolymers……………………24 2.1.3 QCM…………………………………………………………… …24 2.1.4 Cell culture……………………………………………………25 2.1.5 Lactate dehydrogenase (LDH) assay……………………… 25 2.2 Experimental instrument……………………………………… 26 2.3 Experimental materials…………………………………………26 2.4 Solution formula…………………………………………………27 2.5 Methods…………………………… ………………………………28 2.5.1 Synthesis of zwitterionic copolymers……………………28 2.5.2 Nonfouling surface fabrication……………………………29 2.5.3 The amount of copolymer or protein adsorption determined by QCM measurement………… …………………………29 2.5.4 Cell culture……………………………………………………31 2.5.5 Lactate dehydrogenase (LDH) assay…………………… …31 Chapter 3 Characterization of Nonfouling Properties for P(SBMA-co-AA) Surface…………………………………………………34 3.1 Characterization of P(SBMA-co-AA) copolymer…… ………34 3.2 Solubility of P(SBMA-co-AA) copolymer………… …………35 3.3 The amount of copolymer or protein adsorption… ………37 3.4 Cell attachment experiment……………………………………38 3.5 Discussion…………………………………………………………41 Chapter 4 Characterization of Nonfouling properties for P(SBMA-co-AEMA) surface………………………………………………64 4.1 Characterization of P(SBMA-co-AEMA) copolymer……… …64 4.2 Solubility of P(SBMA-co-AEMA) copolymer… ………………65 4.3 Cell attachment……………………………………… …………66 4.4 Discussion ………………………………………………………69 Chapter 5 Discussion…………………………………………………85 Chapter 6 Conclusion…………………………………………………88 Chapter 7 Future work…………………………………… …………90 Reference……………………………………………… ………………91 Appendix A………………………………………………………………97 Appendix B……………………………………………………………104 Appendix C……………………………………………………………105 | |
dc.language.iso | en | |
dc.title | 利用pH敏感性之弱電解質-磺基甜菜鹼共聚物
製備生物惰性表面 | zh_TW |
dc.title | Creating Bioinert Surface by pH-Sensitive
Weak Electrolyte-Sulfobetaine Copolymer | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邢怡銘,張雍,王孟菊 | |
dc.subject.keyword | 生物惰性,sulfobetaine,細胞貼附,蛋白質吸附, | zh_TW |
dc.subject.keyword | bioinert,sulfobetaine methacrylate,cell attachment,protein adsorption, | en |
dc.relation.page | 106 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。