請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23000
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪振發 | |
dc.contributor.author | Bang-Jean Lin | en |
dc.contributor.author | 林邦駿 | zh_TW |
dc.date.accessioned | 2021-06-08T04:37:11Z | - |
dc.date.copyright | 2009-08-18 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-17 | |
dc.identifier.citation | Aanhold, J.I.; Meijer, G.J.; and Lemmen, P.P.M., 1998, Underwater Shock Response Analysis of a Floating Vessel, Shock and Vibration, 5., pp.53-59
Abbott, H.L., 1881, Report Upon Experiments and lnvestigations to Develop a System of Submarine Mines for Defending the Harbors of the United States, Professional Papers of Thecorps of Engineers, No.23. Belytschko, T., Liu, W.K., Moran B., 2000. Nonlinear finite elements for continua and structures. John Wiley & Sons, 241-247. Brett, J.M.; Yiannakopoulos, G.; and Schaaf, van der, P.J., 2000, Time-resolved Measurement of the Deformation of Submerged cylinders Subject to Loading from a Nearby Explosion, J. Impact Engineering, 24, pp.875-890. Butterworth, S., 1950, Report on the Theoretical Shape of the Pressure-Timecurve and on the Growth of the Gas Bubble, compendium on Underwater Explosions Research, vol.l, Office of Naval Research. Brett, J. M., Yiannakopoulos, G. and van der Schaaf, P. J., 2000. Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion, International Journal of Impact Engineering, 2000, 24 (9), pp. 875-890. Brett, J. M. and Yiannakopolous, G., 2008. A study of explosive effects in close proximity to a submerged cylinder. International Journal of Impact Engineering, 35, (4), 2008, pp. 206-225. Casadei, F., Halleux, J. P., Sala, A., and Chillè, F., “Transient fluid–structure interaction algorithms for large industrial applications,” Computer Methods in Applied Mechanics and Engineering, Vol.190, No. 24-25, pp.3081-3110, 2001. Chertock, G., 1970, Transient Flexural Vibration of Ship-Like StructuresExposed to Underwater Explosions, J. Acoust.Soc.Soc. Am., Vol.48, No.1, pp.170-180. Cole, R.H., 1948, Underwater Explosions, Princeton University Press, Princeton, N.J.. Cole, R.H., 1965, Underwater Explosions, Dover Pub. Inc, New York Compendium on Underwater Explosions Research, Office of Naval Research, vols. 1, 2, and 3. Cowper, G.R. and P.S. Symonds, 1957, “Strain Hardening and Strain Rate Effects in the Impact Loading ofcantilever Beams,” Brown University Division of Applied Mathematics Report. No 28. Chertock, G., 1970, Transient Flexural Vibration of Ship-Like Structures Exposed to Underwater Explosions, J. Acoust.Soc. Am., vol.48, No.1, 1970, pp.170-180. Chakrabarty, J., 1998. Theory of Plasticity. 2nd ed. McGraw Hill, Singapore, 72-74. Chung, Chin-Ki, “Nonlinear dynamic response of submarine pipelines in contact with the oceanfloor”, Unversity of Houston, PhD, 1987. Cichocki, K., “Effects of underwater blast loading on structures with protective elements”, International Journal of Impact Engineering, Vol. 22, No.6, pp.609-617, 1999. Deruntz J.A., 1989, The Underwater Shock Analysiscode and its Application, 60th Shock and Vibration Symposium, Virginia Beach, Virginia. DeRuntz Jr., J.A., 1989. The underwater shock analysis code and its applications. In: 60th Shock and Vibration Symposium, Proceedings, 1, pp. 89-107. Dobratz, B.M., Crawford, P.C., 1985, LLNL Explosives Handbook. Lawrence Livermore National Laboratory. Felippa, C.A., 1980, A Family of Early-Time Approximations for Fluid-Structure Interaction, J. Applied Mechanics, vol.47, pp.703-708. Geers, T. L., 1971. Residual potential and approximate methods for three dimensional fluid–structure interaction problems. The Journal of the Acoustical Society of America 49, 1505–1510. Geers, T. L., 1978. Doubly asymptotic approximations for transient motions of submerged structures. The Journal of the Acoustical Society of America 64, 1500–1508. Geers, T.L. and Felippa, C.A., 1983, Doubly Asymptotic Approximation for Vibration of Submerged Structures, J. Acoust. Soc.Am., vol.73, No.4, April, pp.1152-1159. Greenhorn, J., 1988, The Assement of Surface Ship Vulnerability to Underwater Attach, Trans. RINA, pp.233-244. Geers, T.L. and Felippa, C.A., 1983, Doubly Asymptotic Approximation for Vibration of Submerged Structures, J. Acoust. Soc.Am., vol.73, No.4, April, 19833, pp.1152-1159. Gong, S.W., Lam, K.Y., and Lu, C., “Structural analysis of a submarine pipeline subjected to underwater shock”, International Journal of Pressure Vessels and Piping, Vol.77, pp.417~423, 2000. Hilber, H.M., Hughes, T.J.R., Taylor, R.L., 1978. Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthquake Engineering and Structural Dynamics 6, 99–117. Hibbitt, H.D., Karlsson, B.I., 1979. Analysis of pipe whip, Report NP-1208. Electric Power Research Institute. Hollyerand , R.S., 1959, Direct Shock-Wave Damage to Merchant Ships from Non-contact Under Water Explosions, SNAME, pp.773-784. Hull at Impulsive Force, 關西造船協會誌, 225, pp.167-174. Hung, C.F.; Hsu, P.Y.; Chiang L.C.; and Chu, L.N., Numerical Simulation of Structural Dynamics to Underwater Explosion., TEAM’99 Keelung. Hung, C.F.; Lu, Y.F., 2000, Hull Whipping to Underwater Explosion, TEAM’2000 Vladivostok, Russia Hung, CF. Hsu PY and Hwang-Fu JJ, 2003, Elastic response of an air-backed plate to underwater explosion, to be published in J. Impact Engineering. Huang, H., 1969. Transient interaction of plane acoustic waves with a spherical elastic shell. Journal of Acoustical Society of America 45, 661-670. Huang, H., 1970. An exact analysis of the transient interaction of acoustic plane waves with a cylinder elastic Shell, Journal of Applied Mechanics 37, 1090-1099. Huang, H., 1979. Transient response of two fluid-coupled spherical elastic shells to an incident pressure pulse. Journal of the Acoustical Society of America 65, 881-887. Hung, C. F., Hsu, P. Y., Hwang-Fuu, J. J., 2005. Elastic shock response of an air-backed plate subjected to underwater explosion. International Journal of Impact Engineering 31, 151-168. Hunter, K. S., 1996, 'Underwater Explosion Bubble Dynamics, Master Thesis, Department of Mechanical Engineering,' University of Colorado. Hwang-Fuu, J. J., 2002. The estimation of detonator and datasheet explosive underwater explosion equivalent weight. Journal of the Explosive and Propellants, ROC 18 (1), 13-27. Hung, C.F.; J.J. Hwang-Fuu, C. L. Chow, 2005, Comparison Study on Dynamic Response of Cylindrical Shell Structures Subjected to Underwater Explosion, TEAM Conference 2005, Singapore. Itoh, S.; Nodamitsu, Y.; Nagano, S.; Fujita, M.; and Honda, T., 1997, Underwater Explosion and Equation of Stat for a product Gas. , Trans. of the Japan Soc. Of Mechanical Engineer, Part B, 63, 611, pp.2349-2355. Itoh, S.; Nadamitsu, Y. , 1997,Investigation on Properties of Under Water Shock Waves Generated in Underwater Explosion of High Explosion. , J. Pressure Vessel Technology, v. 119, no. 4, pp. 498-502. Iakovlev, S., 2004. Influence of a rigid coaxial core on the stress-strain state of a submerged fluid-filled circular cylindrical shell subjected to a shock wave. Journal of Fluids and Structures 19, 957-984. Jones, N., Jouri, W.S., & Brich, R.S. ,1984, On the scaling of ship collision damage in Proceedings, 3rd International Congress on Marine Technology, Athens, International Maritime Association of East Mediterranean, Phivos Publishing Co., Greece, 1984, 287-294. Jones, N. ,1984, Scaling of inelastic structures loaded dynamically, in Structural Impact and Crashworthiness, Vol.1, G.A.O. Davies, Ed., Elsevier Applied Science Publishers, 45-74. Jones, N., & Jouri, W.S., 1987, A study of plate tearing for ship collision and grounding damage, Journal of Ship research, 31:4, 253-268. Jones, N. ,1989, Structural Impact, Cambridge University Press. JWL Equations of State Coeffs. for High Explosives Lee Finger & Collins. UCID-16189. Jan 1973. Keil, A.H., 1961,The Response of Ship to Underwater Explosions, SNAME, pp. 366-410. Kwon, Y.W. and Cunningham, R. E., 1997, Comparison of USA-DYNA Finite Element Models for A Stiffened Shell Subject to Underwater Shock, Computer and Structures, Vol.66, No.1, 1997, pp.127-144. Kwon, Y.W. , 1993, Underwater Shock Response of a Cylinder Subjected to a Side-on Explosions, Computers and Structures, 1993, Vol.48, no.4, pp.637-646. Lamb, H., 1923, The Early Stages of a Submarine Explosion, Philosophical Magazine, Vol.45, pp. 257-265. Lam, K. Y., Zong, Z., and Wang, Q. X., “Dynamic response of a laminated pipeline on the seabed subjected to underwater shock,” Composites Part B: Engineering, Vol.34, No.1, pp.59-66, 2003. Lee, S.G.; Park, J.K., 1999, Shock Response Analysis of Submerge Structures under Underwater Explosions, TEAM’99 Keelung. Lee, S.G.; Kwon, J. I.; Chung, S. M., 2000, Shock Response Analysis under Underwater Explosion Considering Cavitation, TEAM’2000 Vladivostok Lai, W. H., 2007. Transient dynamic response of submerged sphere shell with an opening subjected to underwater explosion, Ocean Engineering 34 (5-6), 653-664. Liang, C.C., Tai, Y.S., 2005. Shock responses of a surface ship subjected to non-contact underwater explosions, Ocean Engineering 33, 748-772. LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulation, B.M. Dobratz, P.C. Crawford, Jan 31 1985. LS-DYNA, 2006, Keyword User’s Manual, Version 971, 2006, Livermore Software Technology Corporation Molyneaux, T.C.K. and Li, L.Y. , 1994, Numerical Simulation of Underwater Explosion, Computers and Fluids, V. 23, n.7, pp. 903-911. Mair, H. U. 1999a Review: Hydrocodes for structural response to underwater explosions, Shock and Vibration 6, 81-96. Mair, H. U. 1999b Benchmarks for submerged structure response to underwater explosion, Shock and Vibration, 6, 169-181. Olson, M. D., G. N. Nurick, J. R. Fagnan, 1993, Deformation and Rupture of Blast Loaded Square Plates, International Journal of Impact Engineering, Vol.23, pp. 273-279 (1993). Park, K.C., Felippa, C.A., DeRuntz, J.A. Jr., 1977. Stabilization of staggered solution procedures for fluid–structure interaction analysis. In Computational Methods for Fluid Structure Interaction Problems, vol. 26. American Society of Mechanical Engineers, New York, pp. 95–124. Rajendran, R. and Narasihmhan, K., 2001, Linear Elastic Shock Response of Plane Plates Subjected to Underwater Explosion, J. Impact Engineering, 25, pp.493-506. Rajendran, R. ; Vendhan, C.P. and Rao, V.B., 2000, Non-linear Transient Dynamic Response of Rectangular Plates under Shock Loading, J. Impact Engineering, 24, pp.999-1015 Rajendran, R. and K. Narasimhan, 2002b, Damage Prediction of Clamped Circular Plates Subjected to Contact Underwater Explosion, International J. of Impact Engineering, Vol. 25, pp. 373-386 (2001). Rajendran, R. and K. Narasimhan,2001a, Linear Elastic Shock Response of Plates Subjected to Underwater Explosion, International J. of Impact Engineering, 25, pp.493-506 (2001). Rajendran, R., Narasimhan, K., 2006, Deformation and fracture behaviour of plate specimens subjected to underwater explosion-a review, International Journal of Impact Engineering, Vol.32, pp.1945-1963. Ramajeyathilagam, K. C.P. Vendhan V., B. Rao, 2000, Non-Linear Transient Dynamic Response of Rectangular Plates Under Shock Loading, International Journal of Impact Engineering, Vol.24, pp. 999 –1015 (2000). Ramajeyathilagam, K., Vendhan, C.P., 2004, Deformation and rupture of thin rectangular plates subjected to underwater shock, International Journal of Impact Engineering, Vol.30, pp.699-719. Ruzicka, G.C., and Geers, T.L., 1989, Transient Response Analysis of Multiple Submerged Structures, Finite Element in Analysis and Design, vol.6, pp.153-172, 1989. Sany, H.G., 1957, Unterwasser-Explosionen Hydromechanische Vorgaenge und Wirkungen, Jahrbuch der STG, 1957, pp. 222-235. Schleyer, G.K. and Hsu, S.S., 2000, A modeling Scheme for Predicting the Response of Elastic-Plastic Structures to Pulse Loading, J. Impact Engineering, 24, pp.759-777. Seo, Young-Tae, “Bottom stability of submarine pipeline under dynamic loadings, ” Unversity of Texas at Austin, PhD, 1981. Shin, Y.S., Santiago, L.D., 1998. Surface ship shock modeling and simulation:two-dimensional analysis, Shock and Vibration 5, 129-137. Symonds, P.S., 1967, Survey of Methods of Analysis for Plastic Deformation of Structures under Dynamic Loading, Brown University, Division of Engineering Report.BU/NSRDC/1-67 Sprague, M.A., Geers, T.L., 1999, Response of empty and fluid-filed, submerged spherical shells to plane and spherical, step-exponential acoustic waves, Shock and Vibration 6, 147-157. Taylor, GI., 1950, The pressure and impulse of submarine explosion waves on plates, Compendium Underwater Explosion Res ONR, 1:1155-74 TNO, 1994, A Short Course on Marine Structure Response to Under Water Explosions, Center for Mechanical Engineering TNO. Umemoto, K.; T. Yoshikawa; K. Nozawa; H. Sakaue; T. Sano, 1997, Structural Response of a Submerged Structure Subjected to underwater Explosion Loads, (1st, report: A Study on Shock Loading to a Cylindrical Shell Structure),日本造船協會論文集, 182號, 1997, pp.837-849. Wardlaw, A. B., Jr. and Luton, J. A. 2000, Fluid-structure interaction mechanisms for close-in explosions, Shock and Vibration 7, 265-275. 米田尚弘,岩田節雄,谷川雅之, S.M.H Rashed, 河原充, 1994, 三次元水中衝擊波之浮体構造物之衝擊應答, 日本造船協會論文集, 175, pp.349-357. 戴毓修,2000,載具結構及裝備抗震強度之研究,中正理工學院國防科學研究所博士學位論文。 余孟泉,1998,船體受水下爆震衝擊之結構動態反應研究,臺灣大學造船及海洋工程學研究所碩士論文。 呂岳峰,2000,水下爆震三維船體顫震分析,臺灣大學造船及海洋工程學研究所碩士論文。 徐培譽,2004,水下爆震對結構之衝擊,臺灣大學造船及海洋工程學研究所博士論文 周宗燐,2005,水下爆震三維船體顫震分析,臺灣大學造船及海洋工程學研究所碩士論文。 洪振發,黃萬偉 ,2005, 船舶結構遭錐狀體撞擊時的撕裂破壞之研究,Journal of Taiwan Society of Naval Architects and Marine Engineers, Vol.24, No.2, pp.121-132, 2005 鄭貴華,2007, 金屬三明治結構之水下爆震,國立台灣大學工程科學及海洋工程研究所碩士論文 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23000 | - |
dc.description.abstract | 早期水下爆炸現象、爆震波傳遞以及結構受爆震衝擊後的動態反應等資料,必須靠昂貴且耗時的水下爆炸實驗才能獲得,進行破壞實驗的模型僅能使用一次,獲得的結果亦有限,常須進行多次破壞試驗才能取得足夠資訊,同時試驗模型與量測設備的費用以及場地之環境安全的維護成本也相當高。有效的水下爆炸數值分析方法,不但可以降低試驗的次數與開支,同時也能提昇預估水下爆炸對結構破壞的能力。近年來電腦軟硬體的快速發展,使得數值分析技術可取代大部份的實驗,而且合理的模型與有效的分析方法也可較實驗取得更多有用的資料。本文探討有限元素分析水下爆炸對結構爆震反應的特性及其應用,分成三個部份:(一)基本有限元素分析特性探討:本文將探討近距離爆炸所需建立全有限元素網格的數量控制,並找出適當模擬炸藥的多物質有限元素模型,針對不同分析目的選用不同的分析工具。(二)分析驗証:本文對水下爆炸的炸藥模型與水域網格對爆震波分析結果之影響進行基本研究,其次針對Ramajeyathilagam與Vendhan(2004)以探討水下背面為空氣的嵌板之近距離爆炸試驗模型進行有限元素分析,首先建立一個0.55m x 0.45m x 0.002m的嵌板與0.6m x 0.6m x 0.5m的水域模型,
進行與文獻試驗相同爆炸條件的分析,以檢討本文分析模式的正確性。接著整理近年來對三種不同圓柱殼結構,分別是無加強環肋、外加強環肋及內加強環肋結構,本研究選擇接近潛艦比例之圓柱殼結構模型進行小模型水下爆炸對結構衝擊的數值分析與試驗研究。圓柱結構模型的長與直徑之比例取接近潛艦的長寬比,並且考慮具環向加強肋骨之圓柱殼結構狀況,以檢討有無環向加強肋骨,對於水下爆炸圓柱殼抗爆震能力之影響。(三) 應用問題的研究:探討傳統加強肋及不同金屬三明治結構,在遭受到水下爆炸中爆震波衝擊的動態分析,比較其動態反應。 | zh_TW |
dc.description.abstract | The underwater explosion phenomenon, shock wave and the dynamic response of the structures attacked by shock pressure could only be acquired by expansive and time-consuming experiments of underwater explosion in early days. The model of failure mode can only be used once and the available results are often limited; hence, it is necessary to conduct numerous experiments to acquire sufficient data while the costs of the experiment are extremely high. The effective numerical analysis method for underwater explosion can not only reduce the times and the cost of experiments but also improve the prediction abilities of the damage of structures to underwater explosion. Due to the rapid development of computation hardware recently, the application of numerical analysis technique may replace most experiments, and effective solution tools with reasonable models can obtains more usable information. The study was aimed at exploring the characteristics and its application of finite element analysis to the dynamic response of structures subjected to UNDEX. The study was contains three parts; the basic study on the foundmental characteristics of the FEM analysis the verifications and the applications. Firstly, the study explored the quantity control of finite element grids, and the reasonable model of explosive and choose different analytical methods depending on the analysis purposes. Secondly, the study conducted basic research is on the FE models of explosives for underwater explosion and the effects of mesh at water domain on the results of shock pressure. Then a plate model adopted from the experiment model of Ramajeyathilagam and Vendhan (2004) with water domain were established. The analysis results were compared with experiment results.The experimental and numerical studies of three different cylindrical shell structures were performed; which were un-stiffened cylindrical structure, outside cylindrical structure and inside cylindrical structure. The ratio of the experiment model of cylindrical structure is similar in length and width ration of submarine. Finally, the dynamic responses of the traditional stiffened plate structure and various types of sandwich structures attacked by the shock pressure in underwater explosion were conducted. From the results of the anti-shock performance between different types of structures were compared. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:37:11Z (GMT). No. of bitstreams: 1 ntu-98-D93525010-1.pdf: 6702208 bytes, checksum: 9f21251e7495f90bc5f490754842d794 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要 I
英文摘要 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 5 1.2.1 解析法與試驗法 5 1.2.2 數值分析法 10 1.2.3 試驗與數值分析相結合 18 第二章 水下爆炸相關理論與現象描述 20 2.1 爆震波的壓力歷時變化 22 2.2 水下爆炸能量分佈 26 2.2.1 水面及水底邊界對衝擊波傳遞的影響 27 2.2.2 衝擊波作用於結構上的外力 32 2.3 LS/DYNA 程式的理論基礎與計算方法 33 2.3.1 波傳問題 35 2.4 流固耦合 38 2.4.1 ALE 演算法的特點 44 2.5 以雙漸進近似法(DAA)處理結構表面與爆震波的交互作用 45 2.5.1 結構浸水表面運動方程式 50 2.6 龍骨爆震因子 54 2.7 水下爆炸對結構衝擊波壓之簡易估算 56 第三章 炸藥模型及流體元素的網格探討 61 3.1 炸藥、水及空氣的材料模型 62 3.2 炸藥模型選定的使用 65 3.3 網格影響 85 3.4 小結 94 第四章 嵌板受近距離水下爆炸衝擊的損壞分析 96 4.1 水下爆炸衝擊壓力負荷 100 4.2 高速衝擊力對結構材料強度之影響 103 4.3 研究模型 106 4.3.1 爆炸狀況 107 4.3.2 有限元素分析 108 4.4 分析結果與討論 113 4.4.1 考慮主爆震波與次衝擊波的影響 113 4.5 小結 126 第五章 圓柱體爆震分析 128 5.1 有限水域內小劑量高靈敏度炸藥當量之修正 128 5.2 水下爆炸試驗安排 131 5.2.1 試驗材料模型 132 5.3 試驗爆炸距離及爆炸水深 141 5.3.1 試驗環境對量測結果的影響及量測值之修正 142 5.3.2 爆炸衝擊壓力量測結果之修正 144 5.3.3 修正後量測爆壓極值與經驗估算式計算結果的比較 148 5.4 數值分析 149 5.4.1 非對稱反應之調整 151 5.5 比較結果與討論 153 5.5.1 觀測距離= 210 cm 153 5.5.1.1加速度 153 5.5.1.2動態應變 161 5.5.2 觀測距離= 35 cm 163 5.6 小結 166 第六章 金屬三明治結構抗爆震能力比較 169 6.1 模型確認 170 6.2 研究模型 178 6.3 分析結果比較 181 6.3.1 加速度比較 181 6.3.2 位移量比較 187 6.3.3 能量比較 194 6.4 小結 198 第七章 結論 199 7.1 未來展望 205 參考文獻 207 | |
dc.language.iso | zh-TW | |
dc.title | 水下爆炸對結構之爆震反應 | zh_TW |
dc.title | Shock Response of Structure Subjected to Underwater Explosion | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳永祥,王偉輝,梁卓中,林武文,王政盛,邱進東 | |
dc.subject.keyword | 水下爆炸,ALE,金屬三明治結構,有限元素法,LS-DYNA, | zh_TW |
dc.subject.keyword | UNDEX,ALE,Metal Sandwich Structures,FEM,LS-DYNA, | en |
dc.relation.page | 214 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 6.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。