請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22995完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宗賢(Tsung-Hsien Lin) | |
| dc.contributor.author | Yu-Yu Chen | en |
| dc.contributor.author | 陳昱諭 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:36:57Z | - |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | [1] G. I. Bourdopoulos, A. Pnevmtikakis, V. Anastassopoulos and T. L. Deliyannis, Delta-Sigma Modulators: Modeling, Design and Applications, Imperial College Press, 2003
[2] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters, John Wiley & Sons, New York, 2004 [3] J. A. Cherry, W.M. Snelgrove, and W. Gao, “On the Design of a Fourth-Order Continuous-Time LC Delta-Sigma Modulator for UHF A/D Conversion,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 6, pp. 518–530, Jun. 2000 [4] T. S. Kaplan, J. F. Jensen, C. H. Fields, and M. C. F. Chang, “A 1.3-GHz IF Digitizer Using a 4th-Order Continuous-Time Bandpass Delta-Sigma Modulator,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 127–130, 2003 [5] B. K. Thandri and J. Silva-Martinez, “A 63 dB SNR, 75-mW Bandpass RF Delta-Sigma ADC at 950 MHz Using 3.8-GHz Clock in 0.25-um SiGe BiCMOS Technology,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 269–279, Feb. 2007 [6] T. H. Tao, L. Toth, and J. M. Khoury, “Analysis of Timing Jitter in Bandpass Sigma-Delta Modulators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 8, pp. 991–1001, Aug. 1999 [7] E. Sanchez-Sinencio and J. Silva-Martinez, “CMOS transconductance amplifiers, architectures and active filters: a tutorial,” IEEE Proceedings: Circuits, Devices and Systems, vol. 147, pp. 3- 12, 2000 [8] J. Silva-Martinez, M.S.J. Steyaert, and W.M.C. Sansen, “A Large-Signal Very Low-Distortion Transconductor for High-Frequency Continuous-Time Filters,” IEEE J. Solid-State Circuits, vol. 26, pp. 946-955, July. 1991 [9] K. Yool, D. Lee, G. Han, S. M. Park and W. S. Oh, “A 1.2V 5.2mW 40dB 2.5Gb/s Limiting Amplifier in 0.18um CMOS Using Negative-impedance Compensation,” ISSCC Dig. Tech. Papers,, pp. 56–57, Feb. 2007 [10] A. Rylyakov and T. Zwick, “96-GHz Static Frequency Divider in SiGe Bipolar Technology,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1712-1715, Oct. 2004 [11] J. Bastos, A. M. Marques, M. Steyaert, and W. Sansen, “A 12-Bit Intrinsic Accuracy High-Speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959-1969, Dec. 1998 [12] S. Yan and E. Sánchez-Sinencio, “A Continuous-Time Delta-Sigma Modulator with 88-dB Dynamic Range and 1.1-MHz Signal Bandwidth,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 75-86, Jan. 2004 [13] J. A. Cherry and W. M. Snelgrove, “Excess Loop Delay in Continuous-Time Delta-Sigma Modulators”, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 4, pp. 376–389, April 1999 [14] S. Yan and E. Sanchez-Sinencio, “A Continuous-Time Sigma-Delta Modulator with 88-dB Dynamic Range and 1.1-MHz Signal Bandwidth”, ISSCC Dig. Tech. Papers,, pp. 62-63, Feb. 2003 [15] P. Fontaine, A. N. Mohieldin and A. Bellaouar, “A Low-Noise Low-Voltage CT ΔΣ Modulator with Digital Compensation of Excess Loop Delay”, ISSCC Dig. Tech. Papers,, pp. 498-499, Feb. 2005 [16] G. Mitteregger et al., “A 14b 20mW 640 MHz CMOS CT ΔΣ ADC with 20MHz Signal Bandwidth and 12b ENOB”, ISSCC Dig. Tech. Papers,, pp. 131-140, Feb. 2006 [17] L. Dorrer et al., “A 3-mW 74-dB SNR 2-MHz Continuous-Time Delta-Sigma ADC with a Tracking ADC Quantizer in 0.13-um CMOS”, IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2416-2427, Dec. 2005 [18] S. Pesenti, P. Clement and M. Kayal, “Reducing the Number of Comparators in Multi-Bit Delta-Sigma Modulators”, IEEE Trans. Circuits Syst. I, Regular Papers., vol. 55, no. 4, pp. 1011–1022, May 2008 [19] M. Z. Straayer and M. H. Perrott, “A 12-Bit, 10-MHz Bandwidth, Continuous-Time Delta-Sigma ADC with a 5-Bit, 950-MS/s VCO-Based Quantizer,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 805-814, Apr. 2008 [20] R. T. Baird and T. S. Fiez, “Linearity Enhancement of Multibit Delta-Sigma A/D and D/A Converters Using Data Weighted Averaging,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 42, no. 12, pp. 753-762, Dec. 1995 [21] T. H. Kuo, K. D. Chen and H. R. Yeng, “A Wideband CMOS Sigma–Delta Modulator with Incremental Data Weighted Averaging,” IEEE J. Solid-State Circuits, vol. 37, no. 1, pp. 11-17, Jan. 2002 [22] K. D. Chen and T. H. Kuo, “An Improved Technique for Reducing Baseband Tones in Sigma–Delta Modulators Employing Data Weighted Averaging Algorithm Without Adding Dither,” IEEE Trans. Circuits Syst. II, vol. 46, no. 1, pp. 63–68, Jan. 1999 [23] S. D. Kulchycki, R. Trofin, K. Vleugels and B. A. Wooley, “A 77-dB Dynamic Range, 7.5-MHz Hybrid Continuous-Time/Discrete-Time Cascaded Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 796-804, Apr. 2008 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22995 | - |
| dc.description.abstract | 本論文的第一部份,提出了一個新架構的四階的連續時間三角積分調變器,此調變器應用在RF端的高速類比數位轉換器,不經過降頻至基頻,直接在高頻載波上做數位化,而在此調變器的架構上使用數位輔助濾波器,將使回授數位類比轉換器(feedback DAC)從原本四個降至兩個,同時可只使用不歸零數位類比轉換器(NRZ- DAC),減少時間抖動對系統效能的影響。此三角積分調變器使用台積電0.13微米互補式金氧半製程所實現,使用微米互補式金氧半製程可提供和後端數位電路整合至單一晶片的可能性。此高速類比數位轉換器使用3.6 GHz的取樣頻率和900 MHz的輸入信號,在200 kHz的頻寬下可以得到67 dB的訊號雜訊比和55 dB的動態範圍。在1.2 V的供應電壓下,此晶片需要消耗51 mW的功率。
本論文的第二部份,提出了一個新的數位補償濾波器來改善在連數時間三角積分器中的特有問題,延遲時間的影響,此補償技巧觀念來自在負回授系統中相位補償的概念,在數位端做一個補償濾波器,同時部分雜訊轉移函數(NTF)會被數位端負責,將使類比電路的漂移效應(RC variation)減低,並發現有降低數位類比轉換器(DAC)的回授數目的好處。在電路實現上,此數位補償濾波器可利用簡單的邏輯架構完成,又可產生使用數位類比轉換器時的隨機化,降低因數位類比轉換器的不對稱所產生的諧波(harmonic distortion),目前系統模擬已證實此模型對延遲時間補償的有效性,和電路上實現對數位類比轉換器的隨機化的產生。 | zh_TW |
| dc.description.abstract | This thesis presents the design and circuit implementation of a fourth-order continuous-time bandpass delta-sigma ADC with only two non-return-to-zero (NRZ) feedback DACs and a digitally-aided loop filter, to replace the four original feedback paths. The goal of this work is to reduce the effect of clock jitter in RF delta-sigma ADC. This ADC applies for direct digitization of the RF signal at the 900-MHz center frequency by using the 3.6-GHz sampling frequency. A prototype modulator is fabricated in 0.13-um CMOS process. A CMOS implementation of the modulator provides the feasibility of integrating the following DSP blocks on the same chip. Measurement results of this ADC show the SNR of 67 dB in signal bandwidth of 200 kHz around 900-MHz frequency, while the whole ADC consumes 42.5 mA from 1.2-V supply voltage.
A newly proposed prototype which can tolerate excess-loop delay to at most one period without any compensated path is described in the second part of this thesis. It is based on the idea that placing a zero to compensate the phase caused by loop delay in a negative feedback system. The realization of this zero is in digital domain, and part of the noise transfer function (NTF) in the analog domain is pushed to the digital domain to reduce the time-constant shifts in analog circuit. Moreover, the number of required DAC units is reduced, and the simple logic implementation of the compensation digital filter provides implicit DAC randomization. System simulation results display the effectiveness of the proposed model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:36:57Z (GMT). No. of bitstreams: 1 ntu-98-R95943018-1.pdf: 25570834 bytes, checksum: bfa161cb41efd33c5b8c78deb7e99713 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Research Motivation 1 1.2 Thesis Organization 3 Chapter 2 Fundamentals of Delta-Sigma Modulators 5 2.1 Introduction 5 2.1.1 Quantization Noise 5 2.1.2 Oversampling 8 2.1.3 Noise Shaping 9 2.2 Discrete-Time to Continuous-Time Equivalence 11 2.3 DAC Pulse Shapes 13 2.4 Architecture 14 2.4.1 Lowpass Delta-Sigma Modulator 14 2.4.2 Bandpass Delta-Sigma Modulator 16 2.5 Non-Ideal Effect in Continuous-Time Delta-Sigma Modulator 20 2.5.1 Clock Jitter 20 2.5.2 Excess Loop Delay 21 2.6 Summary 22 Chapter 3 Design and Implementation of a Continuous-Time Bandpass Delta-Sigma Modulator 23 3.1 Introduction 23 3.2 Design of a Conventional Continuous-Time Bandpass Modulator 24 3.3 The Proposed Continuous-Time Bandpass Modulator 29 3.4 Finite Quality Factor of the Bandpass Loop Filter 35 3.5 The Issues of Proposed System and System Behavior Simulation 38 3.6 Circuit Implementation and Simulation Results 45 3.6.1 Q-enhanced LC Bandpass Filter 45 3.6.2 Comparator 49 3.6.3 High-Speed Digital Lowpass Filter 53 3.6.4 Current-Steering DAC 60 3.7 Transistor Level Simulation Results 62 3.8 Test Setup and Experimental Results 63 3.8.1 Test Setup 63 3.8.2 DUT Printed Circuit Board 65 3.8.3 Experimental Results 67 3.9 Discussion and Summary 73 Chapter 4 Excess Loop Delay Compensation Technique for Continuous-Time Delta-Sigma Modulator: Compensation Filter 75 4.1 Introduction 75 4.2 Compensation Techniques for Excess Loop Delay 75 4.2.1 Conventional Compensation Technique 75 4.2.2 1-z-1 Compensation Filter 77 4.3 Circuit Implementation 84 4.3.1 1-z-1 Block 84 4.3.2 Tri-State DAC Unit 86 4.4 System Simulation Results 87 4.4.1 The Effect of Excess Loop Delay 88 4.4.2 The Effect of DAC Mismatch 89 4.5 Summary 97 Chapter 5 Conclusions and Future Work 99 5.1 Conclusions 99 5.2 Future Work 100 References 103 | |
| dc.language.iso | en | |
| dc.subject | 帶通三角積分調變器 | zh_TW |
| dc.subject | 數位輔助 | zh_TW |
| dc.subject | Bandpass Delta-Sigma Modulator | en |
| dc.title | 900 MHz 帶通三角積分調變器使用數位輔助迴路濾波器 | zh_TW |
| dc.title | A 900-MHz Bandpass Delta-Sigma Modulator with a Digitally-Assisted Loop Filter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾英哲,李泰成 | |
| dc.subject.keyword | 帶通三角積分調變器,數位輔助, | zh_TW |
| dc.subject.keyword | Bandpass Delta-Sigma Modulator, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 24.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
