Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22970
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林世明
dc.contributor.authorYi-Jiun Tsaien
dc.contributor.author蔡怡均zh_TW
dc.date.accessioned2021-06-08T04:35:46Z-
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-18
dc.identifier.citationReference
[1] '台灣資測會年度記者會,' 2009.
[2] 行政院經濟建設委員會, '中華民國臺灣97 年至145 年人口推計,' 2008.
[3] 秦慶瑤, '2007 年生技產業回顧與展望,' 生物技術開發中心, 2008.
[4] 廖美智, '2008 年第四季我國生技產業回顧與展望,' 生物技術開發中心, 2009.
[5] '台灣經濟部工業局,' 2003.
[6] L. C. Clark and C. Lyons, 'ELECTRODE SYSTEMS FOR CONTINUOUS
MONITORING IN CARDIOVASCULAR SURGERY,' Annals of the New York
Academy of Sciences, vol. 102, pp. 29-&, 1962.
[7] J. Wang, 'Glucose biosensors: 40 years of advances and challenges,'
Electroanalysis, vol. 13, pp. 983-988, Aug 2001.
[8] 巫鴻章, '現地水環境汙染偵測用生物微感測器開發,' 台灣環保產業雙月刊,
vol. 28, pp. 12-15, 1994.
[9] 吳宗正, '生物感測器.'
[10] 'http://www.ysi.com/index.html.'
[11] 'http://www.3test.us/monitor1.php.'
[12] 'http://www.tgvt.com.tw/catalog/zoomin.php?productid=83.'
[13] 謝振傑, '光纖生物感測器,' 物理雙月刊, vol. 28, 2006.
[14] P. B. Luppa, L. J. Sokoll, and D. W. Chan, 'Immunosensors - principles and
applications to clinical chemistry,' Clinica Chimica Acta, vol. 314, pp. 1-26, Dec
2001.
[15] 'http://www.biacore.com/lifesciences/index.html.'
[16] 'http://www.q-sense.com/index.asp.'
[17] 蔡坤達, '影響我國生物科技產業國際競爭力相關因素之研究,' 國立成功大學
企業管理研究所碩士論文, 2002.
[18] D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, 'Electrochemical
biosensors - Sensor principles and architectures,' Sensors, vol. 8, pp. 1400-1458,
Mar 2008.
[19] 林佳珈, '穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂
毒胜肽穿膜機制之影響,' 國立中央大學化學工程與材料工程研究所碩士論文,
1994.
[20] B. Eggins, 'Chemical sensors and biosensors.,' Analytical Techniques in the
Sciences, 2002.
[21] A. Chaubey and B. D. Malhotra, 'Mediated biosensors,' Biosensors &
Bioelectronics, vol. 17, pp. 441-456, Jun 2002.
[22] 陳俊光, '同時解析分子質量與液相阻尼之相位補償式石英微質量天平,' 國立
83
台灣大學應用力學研究所博士論文, 2007.
[23] Y.-S. Yang, 'Construction of a Field Effect Transistor System for Ultrasensitive,
Real-Time,Label-Free and Portable Biomedical Diagnosis,' 2008.
[24] A. M. Ben, Y. Korpan, M. Gonchar, A. V. Elskaya, and M. A. Maaref,
'Formaldehyde assay by capacitance versus voltage and impedance measurements
using bi-layer bio-recognition membrane.,' Biosensors & Bioelectronics, vol. 22,
pp. 575-581, 2006.
[25] 'http://www.intlsensor.com/pdf/electrochemical.pdf.'
[26] 賴威任, '電流式酵素電極檢測於新式交流電化學量測和生物燃料電池先期開
發,' 國立台灣大學應用力學研究所碩士論文, 2006.
[27] B. A. Kuznetsov, G. P. Shumakovich, O. V. Koroleva, and A. I. Yaropolov, 'On
applicability of laccase as label in the mediated and mediatorless
electroimmunoassay: effect of distance on the direct electron transfer between
laccase and electrode,' Biosensors & Bioelectronics, vol. 16, pp. 73-84, Jan 2001.
[28] D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, 'Electrochemical
biosensors: recommended definitions and classification,' Biosensors &
Bioelectronics, vol. 16, pp. 121-131, Jan 2001.
[29] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, 'Molecular
Biology of the cell ' 2002.
[30] S. Sotiropoulou, V. Gavalas, V. Vamvakaki, and N. A. Chaniotakis, 'Novel carbon
materials in biosensor systems,' Biosensors & Bioelectronics, vol. 18, pp. 211-215,
Mar 2003.
[31] W. J. Sung and Y. H. Bae, 'Glucose oxidase, lactate oxidase, and galactose oxidase
enzyme electrode based on polypyrrole with polyanion/PEG/enzyme conjugate
dopant,' Sensors and Actuators B-Chemical, vol. 114, pp. 164-169, Mar 2006.
[32] J. Kim, J. W. Grate, and P. Wang, 'Nanostructures for enzyme stabilization,'
Chemical Engineering Science, vol. 61, pp. 1017-1026, Feb 2006.
[33] J. R. LaGraff and Q. Chu-LaGraff, 'Scanning force microscopy and fluorescence
microscopy of microcontact printed antibodies and antibody fragments,' Langmuir,
vol. 22, pp. 4685-4693, May 2006.
[34] R. Wacker, H. Schroder, and C. M. Niemeyer, 'Performance of antibody
microarrays fabricated by either DNA-directed immobilization, direct spotting, or
streptavidin-biotin attachment: a comparative study,' Analytical Biochemistry, vol.
330, pp. 281-287, Jul 2004.
[35] R. Danczyk, B. Krieder, A. North, T. Webster, H. HogenEsch, and A. Rundell,
'Comparison of antibody functionality using different immobilization methods,'
Biotechnology and Bioengineering, vol. 84, pp. 215-223, Oct 2003.
[36]
84
'http://www.biochem.arizona.edu/classes/bioc471/pages/Lecture10/Lecture10.ht
ml.'
[37] P. Holliger and P. J. Hudson, 'Engineered antibody fragments and the rise of single
domains,' Nature Biotechnology, vol. 23, pp. 1126-1136, Sep 2005.
[38] B. Lu, M. R. Smyth, and R. Okennedy, 'Oriented immobilization of antibodies and
its applications in immunoassays and immunosensors,' Analyst, vol. 121, pp.
R29-R32, Mar 1996.
[39] J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, 'Ultrasensitive carbon nanotube-based
biosensors using antibody-binding fragments,' Analytical Biochemistry, vol. 381,
pp. 193-198, Oct 2008.
[40] J. Wang, 'Electrochemical biosensors: Towards point-of-care cancer diagnostics,'
Biosensors & Bioelectronics, vol. 21, pp. 1887-1892, Apr 2006.
[41] A. Kueng, C. Kranz, and B. Mizaikoff, 'Amperometric ATP biosensor based on
polymer entrapped enzymes,' Biosensors & Bioelectronics, vol. 19, pp. 1301-1307,
May 2004.
[42] E. Bakker, 'Electrochemical sensors,' Analytical Chemistry, vol. 76, pp. 3285-3298,
Jun 2004.
[43] D. Buerk, 'Biosensors. Theory and applications,' Technomic Publishing, 1993.
[44] D. C. Cullen, R. S. Sethi, and C. R. Lowe, 'MULTIANALYTE MINIATURE
CONDUCTANCE BIOSENSOR,' Analytica Chimica Acta, vol. 231, pp. 33-40,
Apr 1990.
[45] A. Q. Contractor, T. N. Sureshkumar, R. Narayanan, S. Sukeerthi, R. Lal, and R. S.
Srinivasa, 'CONDUCTING POLYMER-BASED BIOSENSORS,' 1994, pp.
1321-1324.
[46] F. Patolsky, B. P. Timko, G. F. Zheng, and C. M. Lieber, 'Nanowire-based
nanoelectronic devices in the life sciences,' Mrs Bulletin, vol. 32, pp. 142-149, Feb
2007.
[47] B. Stadler, H. H. Solak, S. Frerker, K. Bonroy, F. Frederix, J. Voros, and H. M.
Grandin, 'Nanopatterning of gold colloids for label-free biosensing,'
Nanotechnology, vol. 18, pp. -, Apr 18 2007.
[48] K. Yagiuda, A. Hemmi, S. Ito, Y. Asano, Y. Fushinuki, C. Y. Chen, and I. Karube,
'Development of a conductivity-based immunosensor for sensitive detection of
methamphetamine (stimulant drug) in human urine,' 1996, pp. 703-707.
[49] R. J. Pei, Z. L. Cheng, E. K. Wang, and X. R. Yang, 'Amplification of
antigen-antibody interactions based on biotin labeled protein-streptavidin network
complex using impedance spectroscopy,' Biosensors & Bioelectronics, vol. 16, pp.
355-361, Aug 2001.
[50] F. Patolsky, M. Zayats, E. Katz, and I. Willner, 'Precipitation of an insoluble
85
product on enzyme monolayer electrodes for biosensor applications:
Characterization by faradaic impedance spectroscopy, cyclic voltammetry, and
microgravimetric quartz crystal microbalance analyses,' Analytical Chemistry, vol.
71, pp. 3171-3180, Aug 1999.
[51] J. P. Li, T. Z. Peng, and Y. Q. Peng, 'A cholesterol biosensor based on entrapment
of cholesterol oxidase in a silicic sol-gel matrix at a Prussian blue modified
electrode,' Electroanalysis, vol. 15, pp. 1031-1037, Aug 2003.
[52] 'www.chinstruments.com/chi600.html.'
[53] D. K. Gossser, 'Cyclic Voltammetry, Simulation and Analysis of Reaction
Mechanisms.,' VHC Publishers, 1994.
[54] M. S. Wilson, 'Electrochemical immunosensors for the simultaneous detection of
two tumor markers,' Analytical Chemistry, vol. 77, pp. 1496-1502, Mar 2005.
[55] M. J. Schoning and A. Poghossian, 'Recent advances in biologically sensitive
field-effect transistors (BioFETs),' Analyst, vol. 127, pp. 1137-1151, 2002.
[56] 'http://csrg.ch.pw.edu.pl/tutorials/isfet/.'
[57] A. S. Poghossian, 'Method of fabrication of ISFET-based biosensors on an
Si-SiO2-Si structure,' 1997, pp. 361-364.
[58] M. J. Schoning and A. Poghossian, 'Bio FEDs (Field-Effect devices):
State-of-the-art and new directions,' Electroanalysis, vol. 18, pp. 1893-1900, Oct
2006.
[59] S. M. Koo, M. D. Edelstein, Q. L. Li, C. A. Richter, and E. M. Vogel, 'Silicon
nanowires as enhancement-mode Schottky barrier field-effect transistors,'
Nanotechnology, vol. 16, pp. 1482-1485, Sep 2005.
[60] R. Z. Marco Curreli, Fumiaki N. Ishikawa, Hsiao-Kang Chang, Richard J. Cote,Chongwu
Zhou, and Mark E. Thompson, 'Real-Time, Label-Free Detection of Biological
Entities Using Nanowire-Based FETs,' IEEE TRANSACTIONS ON
NANOTECHNOLOGY, vol. 7, 2008.
[61] 'http://juang.bst.ntu.edu.tw/BCbasics/Cell1.htm#F3.'
[62] G. Gruner, 'Carbon nanotube transistors for biosensing applications,' Analytical
and Bioanalytical Chemistry, vol. 384, pp. 322-335, Jan 2006.
[63] 'http://sundoc.bibliothek.uni-halle.de/diss-online/04/05H022/t4.pdf.'
[64] 'http://www.ifm.liu.se/applphys/ftir/sams.html.'
[65]'http://www.scielo.org.co/scielo.php?pid=S0120-62302007000300003&script=sci_artt
ext.'
[66] 'http://www.steve.gb.com/science/molecules.html.'
[67] A. J. T. George, 'Measurement of the Kinetics of Biomolecular Interactions Using
the IAsys Resonant Mirror Biosensor,' Current Protocols in Immunology, 1999.
[68] 'http://en.wikipedia.org/wiki/Ethanolamine.'
86
[69] G. J. MIZEJEWSKI, 'Alpha-fetoprotein Structure and Function:Relevance to
Isoforms, Epitopes, and Conformational Variants,' Society for Experimental
Biology and Medicine, 2001.
[70]
'http://www.dddmag.com/Article-NMR-Plays-Role-in-Protein-Strcture-Determinat
ion.aspx.'
[71] J. Thomas B. Tomasi, M. D., Ph. D., 'Structure and Function of
Alpha-Fetoprotein,' Annu. Rev. Med., 1977.
[72] '<http://www.tahsda.org.tw/physicalexam/menu03.php> '.
[73] 'http://protein.uark.edu/2132.htm.'
[74] R. S. Klaus Fassbendera, Andreas Schreinera, Mark Fatara, Frank Mühlhausera,
Michael Daffertshofera and Michael Hennericia, 'Leakage of brain-originated
proteins in peripheral blood: temporal profile and diagnostic value in early
ischemic stroke ' Journal of Neurological Sciences, vol. 148, pp. 101 –105, 1997.
[75] M. S. W. Thomas Büttner, MD; Thomas Postert, MD; Reiner Sprengelmeyer, PhD;
Wilfried Kuhn, MD 'S-100 Protein: Serum Marker of Focal Brain Damage After
Ischemic Territorial MCA Infarction ' 1997.
[76]
'http://medicallab.com.tw/know/know.phtml?noun_id=262&noun_inherit=&typ
e=&subject=&i_r0=240&i_p0=13.'
[77] H. D. A. L. C. F. A. W. R. V. E. M. H. R.A.SHERWOOD, 'Serum S-100 protein: a
potentially useful prognostic marker in cutaneous melanoma,' British Association
of dermatologists, 1997.
[78] T. C. Hang and A. Guiseppi-Elie, 'Frequency dependent and surface
characterization of DNA immobilization and hybridization,' Biosensors &
Bioelectronics, vol. 19, pp. 1537-1548, Jun 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22970-
dc.description.abstract近年來由於個人健康醫療之市場需求日益增加,迫使生物感測領域在性能與商業性上不斷精益求精,開發出多種型態之新型生物感測器,而其中電晶體生物感測器(NWFET、CNT FET)之精準度與便利性使其被賦予高度之觀注,然而其高成本之特性卻成為商業化之阻礙,反觀於此,電化學式生物感測器因發展歷史久遠,技術純熟,具有訊號輸出穩定與成本低廉兩大特性,使其在商業市場上屹立不搖,有鑑於此,若能將電晶體生物感測器與電化學生物感測器結合,將兩者之優點結合於一新型之結構,勢必能夠為未來之生物感測器開發上提供新的衝擊,因此,本論文首度提出以生物層搭配高導電性之定錨材料成為電晶體之半導體材料材,建構出新型之生物場效電晶體結構,並利用半導體特性分析儀做為量測之儀器,所使用之生物分子為甲型胎兒蛋白(AFP)與S100,在兩種不同之生物樣本中,皆能觀察到施加閘極電壓可達到電流差異放大之現象,其放大比例最高可達二倍,而在S100 濃度測試中亦成功以施加閘極電壓(-20V)將元件之精準度由無施加閘極電壓的無法偵測情形大幅提升至1μg/mL,更加確認施加閘極電壓的確可以造成電流差異(current difference)的放大,並透過BSA 分子進行專一性測試,確定經由本論文之晶片設計可成功偵測專一性之反應,因此,在本論文中之先期研究可成功確立此結構之可行性。zh_TW
dc.description.abstractIn recent year, the requirements of the personal healthcare are rsing significantly.Beacuse of the urgent requirements on the market, the researches of low-cost disaposable bio-sensors are one of the major topic in the filed. Researchers suggest many new types of bio-snesor to people, and among of the all, the field-effect-transistor(NWFET、CNT FET) gets the lots of attention because of its high sensitivity and ease of use properties. However, higher cost limited the widely commercial use of theses types of sensor. The most popular type of bio-sensor in personal healthcare is electrochemical biosensors because of its stablity and relatively lower cost. If we can combine the advantages of two types of biosensors as a new type biosensor, the new type of sensor will be most competitive and has potential in commercial market. From this viewpoint, we proposed a new type of biosensor mechanism which combines the structures of the two types of biosensors and will be verified in this thesis. We use the bio-material (AFP and S100) and the high conductive linker (CT5) to be the semiconductor layer of our bio-organic field effect transitor. We found the structure constructed by two materials can truly have field effect. When applying gate voltage, Vg, -20V to the chip, we can get the current difference enlarged for two times at most, compared with pure electrochemical effect without the external electric field built-up by the applied gate voltage. In the concentration tests on S100 protein on the bio-organic field effect transitor with -20V Vg,the sensitivity of the sensor could rise from non-detectable to 1μg/mL. In the end, we use the BSA molecule to verify the specific binding effect. The measured current signal became much smaller than in the specific binding situation so as we can claim the strucute of this sensor can truly detect the specific binding and the sensitivity of the chip is achieve 1μg/mL.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:35:46Z (GMT). No. of bitstreams: 1
ntu-98-R96543038-1.pdf: 4419020 bytes, checksum: 021d7e152bf371127e4eff88b23d3db3 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 ................................................................... iii
Abstract ...................................................................................................... iv
目錄............................................................................................................. v
圖目錄 ..................................................................................................... vii
表目錄 ....................................................................................................... xi
第1 章 緒論 ........................................................................................... 1
1-1 研究背景 ...................................................................................... 1
1-2 生物感測器發展與介紹 .............................................................. 3
1-3 研究動機 .................................................................................... 32
1-4 論文架構 .................................................................................... 33
第2 章 生物有機場效電晶體之材料介紹 ......................................... 34
2-1 定錨材料 .................................................................................... 34
2-2 官能基活化材料 ........................................................................ 38
2-3 阻層材料 .................................................................................... 39
2-4 生物樣本材料 ............................................................................ 40
第3 章 生物有機場效電晶體元件製程與量測方法 ............................ 48
3-1 晶片結構設計 ............................................................................ 48
3-2 晶片製作流程 ............................................................................ 50
vi
3-3 生物分子固定化技術 ................................................................ 55
3-4 量測系統與方法 ........................................................................ 58
3-5 實驗相關儀器 ............................................................................ 60
第4 章 實驗結果與討論 ........................................................................ 62
4-1 生物有機場效電晶體元件備製討論 ....................................... 62
4-2 量測參數測試 ............................................................................ 65
4-3 空片測試 .................................................................................... 69
4-4 CT5 測試 .................................................................................. 70
4-5 元件場效應測試結果 ................................................................ 71
4-6 生物樣本濃度測試結果 ............................................................ 75
4-7 生物樣本專一性測試結果 ........................................................ 78
第5 章 結論與未來展望 ........................................................................ 80
5-1 結論 ............................................................................................ 80
5-2 未來展望 .................................................................................... 81
Reference .................................................................................................. 82
dc.language.isozh-TW
dc.subject場效電晶體zh_TW
dc.subject生物檢測zh_TW
dc.subjectBio-sensing:field-effect transistoren
dc.title利用生物有機場效電晶體應用於生物檢測訊號之研究zh_TW
dc.titleUsing Bio-organic field effect transistor for bio-sensingen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor吳文中
dc.contributor.oralexamcommittee李世光,林致廷
dc.subject.keyword生物檢測,場效電晶體,zh_TW
dc.subject.keywordBio-sensing:field-effect transistor,en
dc.relation.page86
dc.rights.note未授權
dc.date.accepted2009-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved