Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22954
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏
dc.contributor.authorHao-Chieng Liaoen
dc.contributor.author廖浩謙zh_TW
dc.date.accessioned2021-06-08T04:35:04Z-
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation[1] Bydder GM, Steiner RE. NMR imaging of the brain. Neuroradiology 1982;23:231–40
[2] Bailes DR, Young IR, Thomas DJ, et al. NMR imaging of the brain using spin-echo sequences. Clin Radiol 1982;33:395–414
[3] Haacke EM, Lai S, Yablonskiy DA, et al. In-vivo validation of the BOLD mechanism: a review of signal changes in gradient-echo functional MRI in the presence of flow. International Journal of Imaging Systems and Technology1995;6:153–63
[4] Reichenbach JR, Venkatesan R, Schillinger DJ, et al. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 1997;204:272–77
[5] Haacke EM, Brown R, Thompson M, et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design. New York: Wiley; 1999:5
[6] Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996;23:815–50
[7] Chu SC, Xu Y, Balschi JA, et al. Bulk magnetic susceptibility shifts in NMR studies of compartmentalized samples: use of paramagnetic reagents. Magn Reson Med 1990;13:239–62
[8] Weisskoff RM, Kiihne S. MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn Reson Med 1992;24:375–83
[9] Wang Y, Yu Y, Li D, et al. Artery and vein separation using susceptibilitydependent phase in contrast-enhanced MRA. J Magn Reson Imaging 2000;12:661–70
[10] Haacke M, Xu Y, Cheng Y, Reichenbach J, “Susceptibility weighted Imaging”, Magnetic Resonance in Medicine 2004 52:612–618
[11] Reichenbach J, Barth M, Klarhofer M, Kaiser W, Moser E, “High Resolution MR Venography at 3.0 Tesla”, Journal of Computed Assisted Tomography 2000 24(6): 949-957
[12] Cho Z, Ro Y, Lim T, “NMR Venography Using the susceptibility effect produced by deoxyhemoglobin,” Magnetic Resonance in Medicine 1992 28(1):25-38
[13] Tong K, Ashwal S, Holshouser B, Shutter L, Herigault G, Haacke M, Kido D.“Hemorrhagic Shearing Lesions in Children and Adolescents with Posttraumatic Diffuse Axonal Injury: Improved Detection and Initial Results”, Radiology 2003 227: 332-339
[14] Robson P, Hall L, “Identifying particles in industrial systems using MRI susceptibility artefacts AIChE Journal 2005 51(6):1633-1640
[15] Bradley W, “MR Appearance of Hemorrhage in the Brain.” Radiology 1993189:15-26
[16] Zaheer A, Ozsunarn Y, Schaefer P, “Magnetic Resonance Imaging of Cerebral Hemorrhagic Stroke”, Topics in Magnetic Resonance Imaging 2000 11(5): 288-299
[17] Rauscher A, Sedlacik J, Markus B, Mentzel J, Reichenbach J, “Magnetic Susceptibility-Weighted MR Phase Imaging of the Human Brain”, American Journal of Neuro Radiology 2005 26:736-742
[18] Reichenbach J, Haacke M, “High-resolution BOLD venographic imaging : a window into brain function”, NMR in Biomedicine NMR Biomed 2001:14:453-467
[19] Seghal V, Delproposto Z, Haacke M, Tong K, Wycliffe N, Kido D,
Xu Y, Neelavalli J, Haddar D, Reichenbach J, “Clinical Applications of Neuroimaging With Susceptibility Weighted Imaging”, Journal of Magnetic Resonance Imaging2005 22:439-450
[20] Essig M, Waschkies M, Wenz F, Debus J, Hentrich H, Knopp M, “Assessment of Brain Metastases with Dynamic Susceptibility-Weighted Contrast-enhanced MR Imaging: Initial Results” Radiology 2003 228:193-199.
[21] VymazalJ, Brooks R, Patronas N, Hajek M, Bulte J, Di Chiro G, “Magnetic Resonance Imaging of Brain Iron in Health and Disease”, Journal of the Neurological Sciences 1995 134:19-26
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22954-
dc.description.abstract磁化率權重造影是近期發展的T2*權重的梯度迴訊(gradient echo)序列,利用不同組織的磁化率差異會導致局部的非均勻性磁場。這項技術是起源於高解析度、血氧濃度依賴的靜脈造影(HRBV),相較於傳統的造影技術而言,可以提升以往看不見的微小靜脈血管的可見度。因為越來越多的發展和應用並不侷限在靜脈血管造影方面,所以現在被重新賦予了名稱『磁化率權重造影』。
磁化率權重造影的主要機制是利用不同組織的磁化率差異作為對比特性,特別是去氧紅血球在大腦靜脈結構中的磁化率特性。雖然現今,磁化率權重造影已經內建於許多核磁共振機台的序列中,但我們仍然要去了解磁化率權重造影的重建方法和參數,唯有如此,我們才能再進一步地對磁化率權重造影最佳化。
演算法的處理步驟1)對原始相位影像的濾波過程,移除背景造成的低頻雜訊部分2)製作負的相位遮罩,對已濾波的相位影像去做負相位的萃取和正規化3)將負相位遮罩去乘上振幅影像,將相位影像對磁化率敏感度的優勢,映射至磁化率權重的影像中4)最小強度投影,讓磁化率權重能進一步地被突顯出來。
最後,本研究會將磁化率權重造影的技術嘗試在臨床的疾病。許多文獻也證明在磁化率權重造影中,出血性的組織部位將會比用傳統照影方式更容易被偵測到;這項特性促成了磁化率權重造影在醫學上的貢獻,因而能有效地評估病理的症狀,越來越多臨床疾病的技術應用也陸續地被發現。
zh_TW
dc.description.abstractSusceptibility-weighted imaging (SWI) is the recently T2*-weighted gradient echo sequence, taking advantage of magnetic susceptibilities of tissues because of local in-homogeneities in mainly magnetic field. It originates from “High –Resolution Blood oxygen level dependent Venography (HRBV)”, helping visualization of the venous structure in the brain. In this way, minute vessels can be seen by HRBV, not by conventional imaging technique. Because more and more applications are not restricted to venography, it is recalled “Susceptibility-weighted imaging” for its contrast mechanism.
The essential theory of SWI is utilizing paramagnetic properties to enhance contrast and detection, especially deoxygenated hemoglobin in venous vasculature. Until now, SWI has become the scanner-derived image, but we should know post-processed reconstruction in order to improve SWI technique one day. The processing methods include filtering phase data, generating phase mask and multiplying magnitude image with phase mask.
The study also promotes the clinical applications of SWI. Literatures prove that hemorrhagic lesions are more detectable and visible in the SWI than in traditional sequences. This can contribute SWI to evaluate pathology effectively and efficient.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:35:04Z (GMT). No. of bitstreams: 1
ntu-100-R97945024-1.pdf: 3426639 bytes, checksum: de57972eedd6695877e98981fbcf9278 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
Chapter 1 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 梯度迴訊序列 2
1.2.2 磁化率 4
1.2.3 物體幾何的場效應 5
1.3 相位濾波技術 7
1.4 論文目標 7
Chapter 2 歷史和原理 8
2.1 歷史和概述 8
2.2 磁化率權重照影的基本原理 9
2.2.1 磁化率權重的對比機制 9
2.2.2 物體在外加磁場下的幾何效應 10
2.2.3 紅血球的磁化率效應 11
2.2.4 影像重建技術 13
2.3 磁化率權重造影的臨床應用 14
2.3.1 擴散性軸突傷害 14
2.3.2 出血 15
2.3.3 腦中風 15
2.3.4 腦腫瘤 16
2.3.5 神經性退化疾病 16
Chapter 3 材料和方法 17
3.1 引言 17
3.2 取得原始資料 18
3.3 原始相位的濾波處理 19
3.4 產生相位遮罩 20
3.5 SWI重建 21
3.6 額外的強化視覺效果 – 最小強度投影 21
Chapter 4 成果和討論 22
4.1 成果 22
4.1.1 取得原始資料 24
4.1.2 原始相位的高通濾波 26
4.1.3 磁化率權重影像 28
4.1.4 磁化率權重影像的最小強度投影 32
4.2 磁化率權重造影的更多應用 34
4.2.1 醫院臨床資料的磁化率權重造影 34
4.2.2 動物實驗的老鼠磁化率權重造影 38
4.3 討論 39
4.3.1 取像序列 39
4.3.2 轉移函數對相位濾波的效應 40
4.3.3 遮罩加乘的效應 41
Chapter 5 結論和未來展望 45
5.1 結論 45
5.2 未來展望 46
磁化率權重造影的程式碼 47
參考文獻 49
dc.language.isozh-TW
dc.subject相位zh_TW
dc.subject磁化率權重照影zh_TW
dc.subject磁化率zh_TW
dc.subject高通濾波zh_TW
dc.subjectSWIen
dc.subjecthigh-pass filteren
dc.subjectphaseen
dc.subjectSusceptibilityen
dc.title高解析度、對比增強的人腦磁化率權重造影zh_TW
dc.titleHigh-Resolution, Contrast-Enhanced Susceptibility Weighted Imaging of Human Brainen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖漢文,陳中明,張恕,林慶波
dc.subject.keyword磁化率權重照影,磁化率,相位,高通濾波,zh_TW
dc.subject.keywordSWI,Susceptibility,phase,high-pass filter,en
dc.relation.page50
dc.rights.note未授權
dc.date.accepted2011-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved