Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22940
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉(Chuin-Shen Chen)
dc.contributor.authorChien-Cheng Wuen
dc.contributor.author吳建誠zh_TW
dc.date.accessioned2021-06-08T04:34:26Z-
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citationAngel R. J. and Prewitt C.T. (1986), Crystal structure of mullite: A re-examination of the average structure, Amer. Min. 71, 1476–1482.
Allen M.P. and Tildesley D.J. (1989), Computer simulation of liquids, Oxford university press, New York, USA.
Brunauer G., Frey F., Boysen H. and Schneider H. (2001), High temperature thermal expansion of mullite: an in situ neutron diffraction study up to 1600℃, J. Eur. Ceram. Soc. 21, 2563-2567.
Barthelmy D. (2009), Mineralogy database.
Available at http://www.webmineral.com.
Fletcher D.A., McMeeking R.F. and Parkin D. (1996), The United Kingdom chemical database service., J. Chem. Inf. Comp. Sci. 36: 746-749.
Gale JD (1997), GULP–a computer program for the symmetry-adapted imulationof solids., JCS Faraday Trans, 93: 629–637.
Hirst D.M. (1990), A computational approach to chemistry, Blackwell Scientific Publications, Oxford London.
Jackson R.A., Catlow C.R.A. (1988), Computer simulation studies of zeolite structure, Mol. Sim. 1, 207–224.
Matsui M. (1994), A transferable interatomic potential model for crystals and melts in the system CaO-MgO-Al2O3-SiO2, Mineralo. Mag. 58A, 571-572.
Matsui M. (1996), Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2, Phys. Chem. Minerals 23, 345-353.
McQuarrie D.A.(1973), Statistical thermodynamics, Happer & Row , New York, USA.
Perdew J.P., Burke K. and Ernzerhof M. (1996), Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865-3868.
Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R. and Singh D.J. (1992), Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46, 6671-6687.
Rahman S.H., Strothenk S., Paulmann C. and Feustel U. (1996), Interpretation of mullite real structure via inter vacancy correlation vectors, J. Eur. Ceram. Soc. 16, 177-186.
Schneider H., Schreuer J. and Hildmann B. (2007), Structure and properties of mullite—A review, J. Eur. Ceram. Soc. 28, 329–344.
Schneider H. and Komarneni S. (2005), Mullite, Wiley-VCH, Weinheim, Germany.
Smith W. and Forester T.R. (1996), DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. J. Molec. Graphics 14, 136-141.
Smith W., Forester T.R., Todorov I.T. and Leslie, M. (2006), The DL_POLY_2 user manual (version 2.18), Daresbury Laboratory, UK.
Truhlar D.G., Garrett B.C. and Klippenstein S.J. (1996), Current status of transition-state theory, J. Phys. Chem. 100, 12771-12800.
Voter A.F., Montalenti F. and Germann T.C. (2002), Extending the time scale in atomistic simulation of materials, Annu. Rev. Mater. Res. 32, 321-346.
Wondraczek L., Heide G., Kilo M., Nedeljkovic N., Borchardt G. and Jackson R.A.(2002), Computer simulation of defect structure in sillimanite and mullite, PhysChem. Minerals 29, 341-345.
Winkler B., Hytha M., Warren M. C., Milman V., Gale J. D. and Schreuer J. (2001), Calculation of the elastic constants of the Al2SiO5 polymorphs andalusite sillimanite and kyanite, Z. Kristallog Lett. 216, 67–70.
Winkler A., Horbach J., Kob W. and Binder K. (2004), Structure and diffusion in amorphous aluminum silicate: a molecular dynamics computer simulation, J. Chem. Phys. 120, 384-393.
陳仁彰(2007),'以古典及第一原理分子模擬探討莫來石基本材料性質及熱學性質與點空缺的關連',博士論文,國立台灣大學土木研究所,台北。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22940-
dc.description.abstract莫來石(Mullite)在陶瓷材料中一直都是非常熱門的研究主題之一,其擁有優異的熱機械性質與耐久性的特性,主要應用在高溫環境。其結構中具有大量的氧空缺以及鋁原子會取代特定矽原子,與矽線石(Sillimanite)非常的相似,目前實驗也都圍繞著結構中缺陷所造成的影響來探討莫來石的性質,在實驗上,到目前為止還無法完全解釋高溫相變化(phase transformation)的情形,因此本研究利用分子動力模擬(Molecular Dynamics Simulation)來研究從低溫到攝氏1200度的加溫過程中,對莫來石的熱膨脹係數的影響,進而分析莫來石中氧原子跳躍(Hopping)的機制。
論文中使用Matsui勢能(Matsui, 1994 and 1996)(Matsui’s potential),模擬不同配置空缺方法的莫來石模型,計算結果發現晶格常數的趨式與實驗相近,並且發現莫來石在高溫時熱膨脹係數有不規則現象的發現,而不會出現在矽線石上,除此之外還發現莫來石中高溫時氧與氧空缺會發生動態交換情況,進行分析了解其路徑。
zh_TW
dc.description.abstractMullite is the major phase of many conventional silicate-based ceramics (e.g., porcelains and aluminosilicate refractory) and of various advanced ceramics, coatings, fibers and ceramic matrix composites. The high creep resistance and thermal/chemical stability of mullite have made it one of the best candidates for structural and high-temperature applications. Recently, a few anomalies associated with mechanical and thermal properties of mullite have been identified. In this thesis, the anomaly related to thermal expansion was studied using molecular dynamics simulation. The oxygen vacancy hopping mechanisms and their correlation with the anomaly were investigated. The Matsui interatomic potential was adapted herein. We calculated lattice constants of sillimanite and mullite at difference temperatures. The calculated results agreed well with the experiment measurements. Thermal expansion anomaly at high temperature was found in mullite but not in sillimanite. Oxygen vacancy densities were plotted. The dynamic site-exchange processes between O(C) and vacancy sites were found in mullite. These microscopic processes resulted in thermal expansion anomaly.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:34:26Z (GMT). No. of bitstreams: 1
ntu-98-R96521609-1.pdf: 4011408 bytes, checksum: cd2c929d762247842a90104fc4d1bb90 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 vii
第 1 章 緒 論 1
1.1 研究背景及動機 1
1.2 研究目的 9
1.3 研究架構 10
第 2 章 理論與計算方法 11
2.1 分子動力模擬 11
2.2 勢能參數(Potential) 14
2.3 模擬流程與形態定義 16
2.4 莫來石分子動力模擬 18
第 3 章 莫來石模型建立與分析方法 20
3.1 建立莫來石模型 20
3.2 空缺分佈設計 22
3.3 跳躍分析方法 25
第 4 章 莫來石模擬結果 30
4.1 系統狀態 30
4.2 熱膨脹係數 35
4.3 矽線石模擬結果 39
4.4 規則空缺配置模擬結果 43
4.5 局部規律空缺配置模擬結果 47
4.6 討論 52
第 5 章 結論與建議 53
參考文獻 55
作者介紹 58
dc.language.isozh-TW
dc.subject跳躍zh_TW
dc.subject莫來石zh_TW
dc.subject分子動力學zh_TW
dc.subject熱膨脹係數zh_TW
dc.subject晶格常數zh_TW
dc.subject氧空缺zh_TW
dc.subjectcoefficient of thermal expansionen
dc.subjectlattice constantsen
dc.subjectmolecular dynamicsen
dc.subjecthoppingen
dc.subjectvacancyen
dc.subjectMulliteen
dc.title以原子尺度模擬探討莫來石之氧空缺跳躍對熱膨脹係數之影響zh_TW
dc.titleOxygen Hopping Mechanism for Thermal Expansion Coefficient of Mullite Using Atomistic Simulationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee韋文誠(Wen-Cheng Wei),郭錦龍(Chin-Lung kuo)
dc.subject.keyword莫來石,氧空缺,跳躍,分子動力學,晶格常數,熱膨脹係數,zh_TW
dc.subject.keywordMullite,vacancy,hopping,molecular dynamics,lattice constants,coefficient of thermal expansion,en
dc.relation.page58
dc.rights.note未授權
dc.date.accepted2009-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved