Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorBang-Yan Linen
dc.contributor.author林邦彥zh_TW
dc.date.accessioned2021-06-08T04:33:20Z-
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-20
dc.identifier.citation[1] Abarbenel, S., and D. Gottlieb, On the construction and analysis of absorbing layer in CEM,' Appl. Numer. Math., vol. 27, pp. 331-340, 1998.
[2] Abarbenel, S., D. Gottlieb, and J. Hesthaven, Well-posed perfectly matched Layers for advective acoustics,' J. Comput. Phys., vol. 154, pp. 266-283, 1999.
[3] Balanis, C. A., Advanced Engineering Electromagnetics (Wiley, New York,1989).
[4] Barnes, W. L., A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics,' Nature, vol. 204, pp. 824-830, 2003.
[5] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic wave,' J. Comput. Phys., vol. 114, pp. 185-200, 1994.
[6] Biring, S., H. H. Wang, J. K. Wang, and Y. L. Wang, 'Light scattering from 2D arrays of monodispersed Ag nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling,' Opt. Express, vol. 16, pp. 15312-15324, 2008.
[7] Bohren, C., and D. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York, 1982).
[8] Born, M., and E.Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
[9] Boyd, P. J., Chebyshev and Fourier Spectral Methods (Dover Publications, New York , 1999).
[10] Butenhof, D. R., Programming with POSIX(R) Threads (Addison-Wesley, Boston, Massachusetts, 1997).
[11] Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer Series in Computational Physics, Springer-Verlag, New York, 1986).
[12] Carpenter, M. H., and C. A. Kennedy, Fourth order 2N-storage Runge-Kutta scheme (NASA-TM-109112 NASA Langley Research Center, VA, 1994).
[13] Carpenter, M. H., and D. Gottlieb, Spectral methods on arbitrary grids,' J. Comput. Phys., vol. 129, pp. 74-86, 1996.
[14] Carpenter, M. H., D. Gottlieb, S. Abarbanel, and W. S. Don, The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error,' SIAM J. Sci. Comp., vol. 16, pp. 1241-1252, 1995.
[15] Chang, Y. C., J. Y. Chu, T. J. Wang, M. W. Lin, J. T. Yeh, and J. K. Wang, Fourier analysis of surface plasmon waves launched from single nanohole and nanohole arrays: unraveling tip-induced effects,' Opt. Express, vol. 16, pp.
740-747, 2008.
[16] Chapman, B., G. Jost, R. van der Pas, D. J. Kuck, Using OpenMP: Portable Shared Memory Parallel Programming (The MIT Press, Cambridge, Massachusetts, 2007).
[17] Davis, P. J., and P. Rabinowitz, Methods of Numerical Integration (Academic Press, London, New York, 1984).
[18] Dionne, J. A., L. A. Sweatlock, H. A. Atwater, and A. Polman, Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,' Phys. Rev. B, vol. 72, pp. 075405-11, 2005.
[19] Don, W. S., and D. Gottlieb, The Chebyshev-Legendre method: Implementing Legendre methods on Chebyshev points,' SIAM J. Numer. Anal., vol. 31, pp. 1519-1534, 1994.
[20] Draine, B. T., and P. J. Flatau, Discrete-dipole approximation for scattering calculations,' J. Opt. Soc. Am. A, vol. 11, pp. 1491-1499, 1994.
[21] Elliott, R. S., Antenna theory and design (Prentice-Hall, New Jersey, 1981).
[22] Fan, G. X., Q. H. Liu, and J. S. Hesthaven, Multidomain pseudospectral time-domain simulations of scattering by objects buried in lossy media,' IEEE
Trans. Geosci. Remote Sensing, vol. 40, pp. 1366-1373, 1998.
[23] Fleischmann, M., P. J. Hendra, and A. J. Mcquillan, Raman spectra of pyridine adsorbed at a silver electrode,' Chem. Phys. Lett., vol. 26, pp. 163-166, 1974.
[24] Fort, E., and S. Gresillon, Surface enhanced fluorescence,' J. Phys. D, vol. 41, pp. 013001:1-31, 2008.
[25] Funaro, D., Polynomial Approximation of Differential Equations (Springer-Verlag, New York, 1992).
[26] Funaro, D., FORTRAN Routines for Spectral Methods (Available on http://cdm.unimo.it/home/matematica/funaro.daniele/rout.htm, 1993).
[27] Funaro, D., Spectral Elements for Transport-Dominated Equations (Springer-Verlag, New York, 1997).
[28] Funaro, D., and D. Gottlieb, A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations,' Math. Comp., vol. 51, pp. 599-613, 1998.
[29] Funaro, D., and D. Gottlieb, Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment,' Math. Comp., vol. 57, pp. 585-596, 1991.
[30] Fusco, M., FDTD algorithm in curvilinear coordinates,' IEEE Trans. Antennas and Propagation, vol. 38, pp. 78-89, 1994.
[31] Gedney, S., and F. Lansing, Full wave analysis of printed microstrip devices using a generalized Yee algorithm,' IEEE Antennas and Propagation Symposium Digest, Ann Arbor, MI, 1993.
[32] Geist, A., A. Beguelin, J. Dongarra, and W. Jiang, PVM: Parallel Virtual Machine: A Users' Guide and Tutorial for Networked Parallel Computing (The MIT Press, Cambridge, Massachusetts, 1994).
[33] Georgakopoulos, S. V. C. A. Balanis, and R. Renaut, Pseudospectral Methods verus FDTD,' IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 1506-1509, 2000.
[34] Gottlieb, D., and J. S. Hesthaven, Spectral methods for hyperbolic problems.' J. Comput. Appl. Math., vol. 128, pp. 83-131, 2001.
[35] Gordon, W. J., and C. A. Hall, Trans‾nite element methods: Blending function interpolation over arbitrary curved element domains,' Numer. Math., vol. 21, pp. 109-129, 1973.
[36] Gordon, W. J., and C. A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generations,' Int. J. Numer. Meth. Eng., vol. 7, pp. 461-477, 1973.
[37] Gropp, W., E. Lusk, and A. Skjellum, Using MPI, 2nd Edition, Portable Parallel Programming with the Message Passing Interface (The MIT Press, Cambridge, Massachusetts, 1999).
[38] Hao, E., and G. C. Schatz, Electromagnetic fields around silver nanoparticles and dimmers,' J. Chem. Phys., vol. 120, pp. 357-366, 2004.
[39] Hesthaven, J. S., A stable penalty method for the compressible Navier-Stokes equations. II. One-dimensional domain decomposition schemes,' SIAM J. Sci. Comp., vol. 18, pp. 658-685, 1997.
[40] Hesthaven, J. S., On the analysis and construction of perfectly matched layers for the linearized Euler equations,' J. Comput. Phys., vol. 142, pp. 129-147, 1998.
[41] Hesthaven, J. S., A stable penalty method for the compressible Navier-Stokes equations. III. Multi dimensional domain decomposition schemes,' SIAM J. Sci. Comp., vol. 20, pp. 63-92, 1999.
[42] Hesthaven, J. S., Spectral penalty methods,' Appl. Numer. Math., vol. 33, pp. 23-41, 2000.
[43] Hesthaven, J. S., and C. H. Teng, Stable spectral methods on tetrahedral elements,' SIAM J. Sci. Comput., vol. 21, pp. 2353-2380, 2000.
[44] Hesthaven, J. S., and D. Gottlieb, A stable penalty method for the compressible Navier-Stokes Equations. I. Open boundary conditions,' SIAM J. Sci. Comp., vol. 17, pp. 579-612, 1996.
[45] Hesthaven, J. S., and D. Gottlieb, Stable spectral methods for conservation laws on triangles with unstructured grids,' Comput. Methods Appl. Mech. Engrg., vol. 175, pp. 361-381, 1999.
[46] Hesthaven, J. S., J. J. Rasumssen, L. Bergμe, and J. Wyller, Numerical studies of localized wave‾elds governed by the Raman-extended derivative nonlinear SchrÄodinger equation,' J. Phys. A: Math. Gen., vol. 30, pp. 8207-8224, 1997.
[47] Hesthaven, J. S., and R. M. Kirby, Filtering in Legendre Spectral Methods (Report no. 2003-28, Scienti‾c Computing Group Reports (Division of Applied Mathematics, Brown University, RI). Available on http://www.dam.brown.edu/scicomp/reports/by-year/2003, 2003).
[48] Hesthaven, J. S., S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Problems (Cambridge University Press, Cambridge UK, 2007).
[49] Hesthaven, J. S., P. G. Dinesen, and J. P. Lynov, Spectral collocation time-domain modeling of di®ractive optical elements,' J. Comput. Phys., vol. 155, pp. 287-306, 1999.
[50] Hesthaven, J. S., and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations,' J. Comput. Phys., vol. 181, pp. 186-221, 2002.
[51] Holland, R., Finite-di®erence solution of Maxwell's equations in generalized nonorthogonal coordinates,' IEEE Trans. Nuclear Science, vol. NS{30, pp. 4589-4591, 1983.
[52] Ji, X., W. Cai, and P. Zhang, High-order DGTD methods for dispersive Maxwell's equations and modeling of silver nanowire coupling,' Int. J. Numer. Meth. Engng., vol. 69, pp. 308-325, 2007.
[53] Ji, X., T. Lu, W. Cai, and P. Zhang, Discontinuous Galerkin time domain (DGTD) methods for the study of 2-D waveguide coupled microring resonators,' J. Lightwave Technol., vol. 23, pp. 3864-3874, 2005.
[54] Kawata, S., Near-Field Optics and Surface Plasmon Polritons (Springer, New York, USA, 2006).
[55] Kneipp, K., M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering : Physics and Applications (Springer, New York, USA, 2006).
[56] Kreiss, H. O. and J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations,' Tellus, vol. 24, pp. 199-215, 1972.
[57] Lal, S., S. Link, and N. J. Halas, Nano-optics from sensing to waveguiding,' Nature Photonics, vol. 1, pp. 641-648, (2007).
[58] Liu, Q. H., Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm,' IEEE Trans. Geosci. Remote Sensing, vol. 37, pp. 917-926, 1999.
[59] Liu, T. T., Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, A high speed detection platform based on surface-enhanced Raman scattering
for monitoring antibiotic-induced chemical changes in bacteria cell wall,' PloS One, (in press).
[60] Lynch, D. W., and W. R. Hunter, Silver (Ag)' in Handbook of optical constants of solids, E. D. Palik, ed. pp. 350-357 (Academic Press, Orlando, 1985).
[61] Madsen, N., Divergence preserving discrete surface integral methods for Maxwell's equations using nonorthogonal unstructured grids,' Technical Re-
port UCRL-JC-109787, LLNL, 1992.
[62] Maier, S. A. and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,' J. Appl. Phys., vol. 98,
pp. 011101-011110, 2005.
[63] Mei. K. K., A. Cangellaris, and D. J. Angelakos, Conformal time domain finite-difference method,' Radio Science, vol. 19, pp. 1145-1147, 1984.
[64] Mie, G., Contributions to the optics of turbid media, especially colloidal metal solutions,' Ann. Phys., vol. 25, pp. 377-445, 1908.
[65] Mohammadian, A. H., V. Shankar, and W. F. Hall, Computation of electromagnetic scattering and radiation using a time-Domain finite-volume discretization Procedure,' Comput. Phys. Comm., vol. 57, pp. 585-596, 1991.
[66] Nie, S., and S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,' Science, vol. 275, pp. 1102-1106, 1997.
[67] Ohki, M., H. Sakurai, J. Horikoshi, and S. Kozaki, Modeling of arbitrary cross-sectional cylinder using n circular cylinders for the scattering calculations,' Int. J. Infrared Millim. Waves, vol. 17, pp.871-886, 1996.
[68] Ohtsu, M., and H. Hori, NEAR-FIELD NANO-OPTICS: From Basic Principles to Nano-Fabrication and Nano-photonics (Kluwer Academic/Plenum Publishers, New York, USA, 1999).
[69] Orszag, S. A., and G. S. Patterson, Numerical simulation of three-dimensional homogeneous isotropic turbulence,' Phys. Rev. Lett., vol. 28, pp. 76-79, 1972.
[70] Pelton, M., J. Aizpurua, and G. Bryant, Metal-nanoparticle plasmonics,'
Laser & Photon. Rev. vol. 2, pp. 136{159, 2008.
[71] Raether H., Surface Plasmons: on Smooth and Rough Surfaces and On Grating (Springer-Verlog, Berlin Heidelberg, Germany, 1988)
[72] Rao, K. R., J. Nehrbass, and R. Lee, Discretization Errors in Finite Methods: Issues and Possible Solutions,' Comput. Methods Appl. Mech. Engrg., vol. 169, pp. 219-236, 1999.
[73] Rengarajan, S. R., and Y. Rahmat-Samii, The ‾eld equivalence principle il-
lustration of the establishment of the non-intuitive null ‾elds,' IEEE Antennas Propagat. Mag., vol. 42, pp. 122-128, 2000.
[74] Ritchie, R. H., Plasma losses by fast electrons in thin films,' Phys. Rev., vol. 106, pp. 874-881, 1957.
[75] SÄonnichsen, C., Plasmons in metal nanostructures, Dissertation, Physics department, Ludwig-Maximilians-University of Munich, Germany, June 2001.
[76] StÄockle, R. M., Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,' Chem. Phys. Lett., vol. 318, pp. 131-136, 2000.
[77] Sweatlock, L. A., S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,' Phys. Rev. B, vol. 71, pp. 235408:1-7, 2006.
[78] Taflove, A., and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, London, 2000).
[79] Teng, C. H., B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, A Legendre pseudospectral penalty scheme for solving time-domain Maxwell's equations,' J. Sci. Comput., vol. 36, pp. 351-390, 2008.
[80] Thompson, D. W., Optical characterization of porous alumina from vacuum ultraviolet to midinfrared,' J. Appl. Phys., vol. 97, pp. 113511:1-9, 2005.
[81] Van de Hulst, H. C., Light scattering by small particles (Wiley, New York, 1957)
[82] Wang, H. H., C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,' Adv. Mater., vol. 18, pp. 491-495, 2006.
[83] Wolf, E. and J. T. Foley, Do evanescent waves contribute to the far field?,' Opt. Lett., vol. 23, pp. 16-18, 1998.
[84] Xiao, T., and Q. H. Liu, The three-dimensional unstructured-grid discontinuous Galerkin methods for Maxwell's equations with well-posed perfectly matched layer,' Microwave Opt. Technol. Lett., vol. 46, pp. 459-463, 2005.
[85] Yamaguchi, T., and T. Hinata, Optical near-field analysis of spherical metals: application of the FDTD method combined with the ADE method,' Opt. Express, vol. 15, pp. 11481-11491, 2007.
[86] Yang, B., D. Gottlieb, and J. S. Hesthaven, Spectral simulations of electromagnetic wave scattering,' J. Comput. Phys., vol. 134, pp. 216-230, 1997.
[87] Yang, B., and J. S. Hesthaven, A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,' IEEE Trans. Antennas Propagat., vol. 47, pp. 132-141, 1999.
[88] Yang, B., and J. S. Hesthaven, Multidomain pseudospectral computation of Maxwell's equations in 3-D general curvilinear coordinates,' Appl. Numer. Math., vol. 33, pp. 281-289, 2000.
[89] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, 1966.
[90] Young, J. L., and R. O. Nelson, A summary and systematic analysis of FDTD algorithms for linearly dispersive media,' IEEE Antennas Propag. Mag., vol. 43, pp. 61-77, 2001.
[91] Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of surface plasmon polaritons,' Phys. Rep., vol. 408, pp. 131-314, 2005.
[92] Zhao, G., and Q. H. Liu, The 3D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media,' IEEE Trans. Antennas Propagat., vol. 52, pp. 742-749, 2004.
[93] Zhao, J., A. O. Pinchuk, J. M. McMahon, A. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, Methods for describing the electromagnetic properties of silver and gold Nanoparticles,' Acc. Chem. Res., vol. 41, pp. 1710-1720, 2008.
[94] Zia, R. J. A. Schuller, A. Chandran, and M. L. Brongersma, Plasmonics: the next chip-scale technology,' materialtoday, vol. 9, pp. 20-27, 2006.
[95] Zivanovic, S. S., K. S. Yee, and K. K. Mei, A subgridding method for the time-domain finite-difference method to solve Maxwell's equations,' IEEE Trans. Microwave Theory Tech., vol. 39, pp. 471-479, 1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22914-
dc.description.abstract本研究中我們針對馬克思威爾方程式發展三維時域樂勤得(Legendre)擬譜方法來分析單顆銀奈米球和銀奈米棒陣列的光學性質。藉由三套商用軟體並搭配自行開發的平行化程式,我們建構了一個從網格建立到計算完成後資料處理的完整解決方案。
經由適當的理論分析,我們先找出馬克思威爾方程式的適定性(well-posed)邊界運算子,然後導出對應於原方程式物理邊界條件的特徵邊界條件。運用這些理論結果,我們建構在半離散階段呈現漸近穩定的含有同步近似項之數值架構。接著透過檢查數個含有解析解例子的收斂性,我們得到理論所預測的結果。對於銀的光學特性,由於古典Drude模型不適用於光波段,我們使用一個頻段從可見光到近紅外線更準確的模型來描述其色散特性。同樣經由嚴格Mie理論的驗證,不論近場或遠場都符合數值理論的要求。我們更進一步系統性的比較近場和遠場的特性,發現隨著奈米粒子尺寸增大或使用介電常數大於空氣之背景材料,都會使兩者頻譜峰值的差距拉大並呈現紅移,同時也使頻帶變寬。這些差異性可提供設計時參考。
奠基於本數值架構,我們也建構一等效於實際光學實驗量測過程的模擬程序,來驗證嵌於氧化鋁基板上具近似六角晶格排列的銀奈米棒陣列之近場和遠場光學特性,模擬結果顯示相當吻合量測所得。模擬結果也顯示近場中電場在相鄰銀奈米棒之間有增強的現象。透過等效原理,我們也發現這種銀奈米棒陣列結構的遠場主要由表面磁場貢獻,反而不是一般所關注的電場。此一結果可進一步提供設計更有效表面增強拉曼散射基板。
zh_TW
dc.description.abstractIn this study, a three-dimensional (3-D) Legendre pseudospectral time-domain (PSTD) algorithm for solving the Maxwell equations is developed to analyze optical properties of single silver nanoparticles and two-dimensional (2-D) silver nanorod arrays. An in-house PSTD parallel program along with three commercial softwares provides a thorough solution from the construction of mesh grids to data post-processing.
Our approach starts by conducting an analysis for finding well-posed boundary operators for the Maxwell equations. We then derive equivalent characteristic boundary conditions for common physical boundary constraints. These theoretical results are then employed to construct a pseudospectral penalty scheme which is asymptotically stable at the semidiscrete level. Through verified by a number of cases with exact solutions, the expected convergence patterns of the proposed scheme are observed.
Due to inadequacy of the classical Drude model in the visible spectra, a more precise Drude-Lorentz model with carefully chosen parameters is used to characterize the linear dispersive nature of silver form visible to near infrared regime. Numerical validations are conducted based on solving both the near-field and far-field of Mie scattering problem, and expected convergence is observed. With a systematic comparison of near- and far-field behaviors of single silver nanoparticles, the significant differences in peak wavelengths increase and represent red-shifted, and their bandwidths become broader, as particle size increases and the relative permittivity of the surrounding medium has a larger value than the vacuum does. Taking into account such differences provides useful suggestions in designing plasmonic structures.
Based on this numerical scheme, a program equivalent to the experimental procedure is constructed for investigating both near- and far-field electromagnetic characteristics of 2-D silver-nanorod quasi-hexagonal arrays embedded in a substrate of anodic aluminum oxide, and the simulated far-field scattering spectra agree with the experimental observations. We show that enhanced electric field is created between adjacent nanorods and, most importantly, far-field scattered light wave is mainly contributed from surface magnetic field, instead of the surface enhanced electric field. The identified near-field to far-field connection produces an important implication in the development of more efficient surface-enhanced Raman scattering substrates.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:33:20Z (GMT). No. of bitstreams: 1
ntu-98-D91942001-1.pdf: 17515378 bytes, checksum: 619e92af40b0a21ed112c63cb2f0c058 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents1 Introduction 1
1.1 Metal-Nanopatricle Plasmonics . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Theoretical Background: The Drude Model . . . . . . . . . . 2
1.1.2 Localized Surface Plasmon Resonance: Particle Plasmons . . . 3
1.2 Time Domain Modeling in Computational Electromagnetics . . . . . 5
1.3 Overview and Organization of the Dissertation . . . . . . . . . . . . . 7
1.4 Contributions of the Present Work . . . . . . . . . . . . . . . . . . . 9
2 Multidomain Legendre Pseudospectral Time-Domain Method 13
2.1 Maxwell's Equations and Boundary Conditions . . . . . . . . . . . . 15
2.1.1 Maxwell's Equations . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Boundary Operators for Well-posedness . . . . . . . . . . . . . 16
2.1.3 Equivalent Characteristic Boundary Conditions . . . . . . . . 19
2.2 Pseudospectral Scheme for Maxwell's Equations . . . . . . . . . . . . 23
2.2.1 Legendre Pseudospectral Methods . . . . . . . . . . . . . . . . 23
2.2.2 Maxwell's Equations in Curvilinear Form . . . . . . . . . . . . 27
2.2.3 The Semidiscrete Scheme . . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Time Marching Algorithm . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Convergence on the Divergence Equations . . . . . . . . . . . 36
2.2.6 Source Input and Absorbing Boundary Condition . . . . . . . 36
2.3 Material Model and the Corresponding Dispersive Maxwell's Equa-
tions and its Numerical Scheme . . . . . . . . . . . . . . . . . . . . . 41
2.4 Computational Flow and Parallel Computing . . . . . . . . . . . . . . 46
3 Validation of the Three-Dimensional PSTD Scheme 54
3.1 Accuracy and Order of Convergence . . . . . . . . . . . . . . . . . . . 54
3.2 Penalty Parameter, CFL Number and Convergence . . . . . . . . . . 55
3.3 Curvilinear Elements, Filter and Convergence . . . . . . . . . . . . . 57
3.4 Material Inhomogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Validations of the Source Input and PML . . . . . . . . . . . . . . . . 60
3.5.1 Accuracy Impact by Source Input . . . . . . . . . . . . . . . . 60
3.5.2 PML Performance . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Scattering and Radar Cross Section Computations . . . . . . . . . . . 62
4 Optical Properties of Single Silver Nanoparticles and Silver Nanorod
Arrays 76
4.1 Single Silver Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.1 Rigorous Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.2 Numerical Validation . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Silver Nanorod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Experiment Overview and Simulation Deployment . . . . . . . 83
4.2.2 Numerical Results and Unraveling Near-‾eld Origin . . . . . . 86
5 Conclusions 115
Appendix A The Form of the Matrix 118
Appendix B The Extraction of Parameters for the Drude-Lorentz Model 121
Bibliography 122
dc.language.isoen
dc.title發展應用於電磁與金屬奈米微粒電漿子問題之三維時域擬譜方法zh_TW
dc.titleDevelopment of Three-Dimensional Legendre Pseudospectral Time-Domain Method for Electromagnetics and Metal-Nanoparticle Plasmonicsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳俊雄,鄧君豪,王俊凱,江衍偉,鄭士康,邱奕鵬
dc.subject.keyword時域擬譜方法,zh_TW
dc.subject.keywordpseudospectral time-domain method,en
dc.relation.page131
dc.rights.note未授權
dc.date.accepted2009-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
17.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved