Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑惠(Shu-Hui Chang)
dc.contributor.authorTung-Yang Chouen
dc.contributor.author周東陽zh_TW
dc.date.accessioned2021-06-08T04:30:56Z-
dc.date.copyright2010-03-12
dc.date.issued2009
dc.date.submitted2009-11-27
dc.identifier.citationBeaudoin, D. and Chaieb, L.L. (2008). Archimedean copula model selection under
dependent truncation. Statistics in medicine, 27, 4440-4454.
Betensky, R.A. and Martin, E.C. (2003). Commentary: Failure-rate functions for
doubly-truncated random variables. IEEE Transactions on reliability, 52, 7-8.
Bhattacharya, P.K., Chernoff, H. and Yang, S.S. (1983). Nonparametric estimation of
the slope of a truncated regression. The Annals of Statistics, 11, 505-514.
Bilker, W.B. and Wang, M.C. (1996). A semiparametric extension of the Mann-Whitney test for randomly truncated data. Biometrics, 52, 10-20.
Chang, S.H. and Yeh, S.W. (2003). Semiparametric estimation of survival function for
doubly truncated data. Journal of the Chinese Statistical Association, 41, 443-460.
Chen, Y.Q. and Jewell, N.P. (2001). On a general class of semiparametric hazards
regression models. Biometrika, 88, 687-702.
Chi, Y.C., Tsai W.Y. and Hu, C.L. (2004). Testing the equality of two survival
functions with doubly truncated data. Journal of the Chinese Statistical Association, 42, 223-244.
Efron, B. and Petronsian, V. (1999). Nonparametric methods for doubly truncated data.
Journal of the American Statistical Association, 94, 824-834.
Fygenson, M. and Ritov, Y. (1994). Monotone estimating functions for censored data.
The Annals of Statistics, 22, 732-746.
Gehan, E.A. (1965). A generalized Wilcoxon test for comparing arbitrarily
single-censored samples. Biometrika, 52, 203-223.
Gross, S.T. and Lai, T.L. (1996). Nonparametric estimation and regression analysis
with left-truncated and right-censored data. Journal of the American Statistical Association, 91, 1166-1180.
Kalbfleisch, J.D. and Prentice, R.L. (2002). The Statistical Analysis of Failure Time
Data, 2nd Edition. John Wiley and Sons, Inc., New York.
Khan, S. and Lewbel, A. (2007). Weighted and two-stage least squares estimation of
semiparametric truncated regression models. Economic Theory, 23, 309-347.
Lai, T.L. and Ying, Z. (1991). Rank regression methods for left-truncated and
right-censored data. The annals of Statistics, 19, 531-556.
Lai, T.L. and Ying, Z. (1992). Linear rank statistics in regression analysis with censored
or truncated data. Journal of Multivariate Analysis, 40, 13-45.
Lee, A.J. (1990). U-statistics. New York: Marcel Dekker. Lynden-Bell, D.(1971).A
method of allowing for known observational selection in small samples applied to 3CR quasars. Monograph National Royal Astronomical Society, 155, 95-118.
Martin, E.C. and Betensky, R.A. (2005). Testing quasi-independence of failure and
truncation via conditional Kendall’s tau. Journal of the American Statistical Association, 100, 484-492.
Parzen, M.I., Wei, L.J. and Ying, Z. (1994). A resampling method based on pivotal
estimating functions. Biometrika, 81, 341-350.
Prentice, R.L. (1978). Linear rank tests with right censored data. Biometrika, 65,
167-179.
Prentice, R.L. (1986). A case-cohort design for epidemiologic cohort studies and disease
prevention trials. Biometrika, 73, 1-11.
Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal
of the American Statistical Association, 63, 1379-1389.
Shen, P.S. (2008). Nonparametric analysis of doubly truncated data. Journal of
Statistical Planning and Inference, 138, 4041-4054.
Stovring, H. and Wang, M.C. (2007). A new approach of nonparametric estimation of
incidence and lifetime risk based on birth rates and incident events.BMC medical
research, 7:53.
Tsai, W. Y., Jewell, N. P. and Wang M. C. (1987). A note on the product-limit estimator
under right censoring and left truncation. Biometrika, 74, 883-886.
Tsai, W.Y. (1990). Testing the assumption of independence of truncation time and
failure time. Biometrika, 77, 169-177.
Tsai, W.Y. and Zhang, C.H. (1995). Asymptotic properties of nonparametric maximum
likelihood estimator for interval-truncated data. Board of the Foundation of the Scandinavian Journal of Statistics, 22, 361-370.
Tsiatis, A.A. (1990). Estimation regression parameters using linear rank tests for
censored data. The Annals of Statistics, 18, 354-372.
Turnbull, B.W. (1976). The empirical distribution function with arbitrarily grouped,
censored and truncated data. Journal of the Royal Statistical Society. Series B, 38, 290-295.
Ying, Z. (1993). A large sample study of rank estimation for censored regression data.
The Annals of Statistics, 21, 76-99.
李世光(2007)在截切資料加速時間模式下的穩健排序估計方法。台灣大學流行病學研究所生物醫學統計組碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22857-
dc.description.abstract在許多臨床及公共衛生研究中經常會遇到雙截切資料,此資料只有當其事件發生在一段可觀察區段之間才會被觀察。本文考慮以一種可具體說明共變項與事件時間之間的線性關係之半母數加速事件時間模型來模式化其關係。基於上述的模式設定以及事件時間與可觀察區間的類獨立關係,本文發展出一種以U統計量為基礎的估計式以估計回歸係數。在本文所提出的估計方程式中,使用了可比較配對以調整雙截切所產生的偏誤。最後,進行模擬研究以檢視本文提出的方法在有限樣本下的表現。zh_TW
dc.description.abstractIn many clinical and public health studies, doubly truncated data are frequently encountered, in which the event of interest is observed only if it occurs in an observable interval. We consider a semi-parametrically accelerated failure time model which specifies a linear relationship between the event time and covariates. Based the above model setting and the quasi-independence assumption between event time and the observable interval, we develop a U-statistic-based estimating equation to estimate the regression coefficients. In our proposed estimating equation, comparable pairs are used to adjust the bias of double truncation. Finally, simulation studies are conducted to examine the performance of our proposed method in finite samples.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:30:56Z (GMT). No. of bitstreams: 1
ntu-98-R95842012-1.pdf: 324535 bytes, checksum: a3fd0801a647b35d3f1f93f0f70ff70c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents第一章 導論 1
第一節 研究背景 1
第二節 研究動機 6
第二章 文獻回顧 9
第一節 COHORT-OF-CASES與個案世代研究之比較 9
第二節 截切資料與可比較配對 11
第三節 雙截切資料之回歸參數估計-加權最小平方法 13
第四節 一般化加權對數-排序檢定估計式 15
第五節 以U統計量為基礎的回歸參數估計式 17
第三章 方法 19
第四章 統計模擬 24
第一節 資料生成 24
第二節 模擬結果 26
第五章 結果與討論 27
參考文獻 28
附錄一 31
附錄二 33
附錄三 37
dc.language.isozh-TW
dc.subject類獨立假設zh_TW
dc.subject雙截切資料zh_TW
dc.subjectU統計量zh_TW
dc.subject半母數加速事件時間模式zh_TW
dc.subject可比較配對zh_TW
dc.subjectU-statisticen
dc.subjectSemi-parametric accelerated failure time modelen
dc.subjectQuasi-independence assumptionen
dc.subjectComparable pairen
dc.subjectDoubly-truncated dataen
dc.title探討雙截切資料之半母數加速事件時間模型的回歸參數估計zh_TW
dc.titleA semi-parametrically accelerated failure time model for doubly-truncated dataen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳秀熙(Hsiu-Hsi Chen),戴政(Jen Tai),嚴明芳(Ming-Fang Yen)
dc.subject.keyword雙截切資料,U統計量,半母數加速事件時間模式,可比較配對,類獨立假設,zh_TW
dc.subject.keywordDoubly-truncated data,U-statistic,Semi-parametric accelerated failure time model,Comparable pair,Quasi-independence assumption,en
dc.relation.page39
dc.rights.note未授權
dc.date.accepted2009-11-30
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
316.93 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved