請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | Chien-Chih Lai | en |
| dc.contributor.author | 賴建智 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:29:19Z | - |
| dc.date.copyright | 2010-02-04 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-01-21 | |
| dc.identifier.citation | [1] I. D. Abella and C. H. Townes, “Mode characteristics and coherence in
optical ruby masers,” Nature 192, 957 (1961). [2] T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196, 332 (1962). [3] M. S. Lipsett and L. Mandel, “Quasi-continuous output from a ruby optical maser,” Nature 196, 547 (1963). [4] P. Hu, “Stimulated emission of 20-cm-1 phonons in ruby,” Physical Review Letters 44, 417 (1980). [5] P. E. Jessop and A. Szabo, “Resonant optical energy transfer in ruby,” Physical Review Letters 45, 1712 (1980). [6] J. C. Walling, O. G. Jenssen, H. P. Jenssen, R. C. Mirris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE Journal Quantum Electronics QE-16, 1702 (1980). [7] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B: Optical Physics 3, 125 (1986). [8] I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Optics Letters 24, 1578 (1999). [9] A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Optics Letters 19, 390 (1994). [10] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters 30, 129 (2005). [11] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters 29, 439 (2004). [12] D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Optics Letters 27, 61 (2002). [13] A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Progress in Quantum Electronics 26, 287 (2002). [14] I. T. Sorokina, S. Naumov, E. Sorokin, and A. G. Okhrimchuk, “The mechanisms of slow bleaching in YAG:Cr4+ under CW pumping,” Proceedings on SPIE 4350, 99 (2001). [15] S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single crystal fiber laser,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MD4. [16] F. W. Dabby, D. A. Pinnow, F. W. Ostermayer, L. G. Van Uitert, and M. A. Saifi, “Borosilicate clad fused silica core fiber optical waveguide with low transmission loss prepared by a high-efficiency process,” Applied Physics Letters 25, 714 (1974). [17] J. B. MacChesney, R. E. Jaeger, D. A. Pinnow, F. W. Ostermayer, T. C. Rich, and L. G. Van Uitert, “Low-loss silica core-borosilicate clad fiber optical waveguide,” Applied Physics Letters 23, 340 (1973). [18] C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Optics Letters 33, 2919 (2008). [19] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 um region,” IEEE Journal of Selected Topics in Quantum Electronics 1, 2 (1995). [20] Y. Jeong, J. Nilsson, J. K. Sahu, D. B. Soh, P. Dupriez, C. A. Codemard, S. Baek, D. N. Payne, R. Horley, J. A. Alvarez-Chavez, and P. W. Turner, “Single-mode plane-polarized ytterbium-doped large-core fiber laser with 633-W continuous-wave output power,” Optics Letters 30, 955 (2005). [21] Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single- frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Optics Letters 30, 459 (2005). [22] Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Optics Express 12, 6088 (2004). [23] L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single mode output power,” Applied Physics Letters 88, 161106-1 (2006). [24] Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+-doped phosphate fiber laser,” Optics Letters 31, 3255 (2005). [25] T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers,” Optics Letters 30, 2748 (2005). [26] L. Li, A. Schülzgen, V. L. Temyanko, T. Qiu, M. M. Morrell, Q. Wang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Short-length microstructured phosphate glass fiber lasers with large mode areas,” Optics Letters 30, 1141 (2005). [27] A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, “Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,” Applied Physics Letters 85, 2721 (2004). [28] T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technology Letters 16, 2592 (2004). [29] P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” Journal of Non-Crystalline Solids 354, 4760 (2008). [30] E. P. Ostby, L. Yang, and K. J. Vahala, 'Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process,' Optics Letters 32, 2650 (2007). [31] R. P. Tumminelli, B. C. Mccollum, and E. Snitzer, “Fabrication of high-concentration rare-earth doped optical fibers using chelates,” IEEE Journal of Lightwave Technology 8, 1680 (1990). [32] C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG-silica fiber laser,” Optics Letters 34, 2357 (2009). [33] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon device scaling to sub-10-nm regime,” Science 306, 2057 (2004). [34] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Applied Physics Letters 9, 366 (1962). [35] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Applied Physics Letters 1, 62 (1962). [36] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Applied Physics Letters 1, 91 (1962). [37] J. A. Xu, H. K. Mao, and P. M. Bell, “High-pressure ruby and diamond Fluorescence: observations at 0.21 to 0.55 terapascal,” Science 232, 1404 (1962). [38] Y. K. Vohra, S. J. Duclos, K. E. Brister, and A. L. Ruoff, “Static pressure of 255 GPa (2.55 Mbar) by X-ray diffraction: comparision with extrapolation of the ruby pressure scale,” Physical Review Letters 61, 574 (1988). [39] H. Liu, K. S. Lim, W. Jia, E. Strauss, W. M. Yen, A. M. Buoncristiani, and C. E. Byvik, “Effect of tensile stress on the R lines of Cr3+ in a sapphire fiber,” Optics Letters 13, 931 (1988). [40] P. R. Wamsley and K. L. Bray, “The effect of pressure on the luminescence of Cr3+:YAG,” Journal of Luminescence 59, 11 (1994). [41] Y. R. Shen, U. Hömmerich, and K. L. Bray, “Observation of the 1E state of Cr4+ in yttrium aluminum garnet,” Physical Review B: Condensed Matter 56, R473 (1997). [42] Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Physical Review B: Condensed Matter 56, 10822 (1997). [43] E. Drescher-krasicka and J. R. Willis, “Mapping stress with ultrasound,” Science 384, 52 (1996). [44] A. T. Macrander, S. Krasnicki, Y. Zhong, J. Maj, and Y. S. Chu, “Strain mapping with part-per-million resolution,” Applied Physics Letters 87, 194113-1 (2005). [45] J. A. Robinson, C. P. Puls, N. E. Staley, J. P. Stitt, M. A. Fanton, K. V. Emtsev, T. Seyller, and Y. Liu, “Raman topography and strain uniformity of large-area epitaxial graphene,” Nano Letters 9, 964 (2009) [46] Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, “Nanostructure formation of double-clad Cr4+:YAG crystal fiber,” Journal of Crystal Growth 289, 515 (2006). [47] J. C. Chen, K. Y. Huang, C. N. Tsai, Y. S. Lin, C. C. Lai, G. Y. Liu, F. J. Kao, S. L. Huang, C. Y. Lo, Y. S. Lin, and P. Shen, “Composition dependence of the microspectroscopy of Cr ions in double-clad Cr:YAG crystal fiber,” Journal of Applied Physics 99, 093113-1 (2006). [48] H. J. Tsai, C. C. Lai, K. Y. Huang, Z. W. Lin, K. Y. Hsu, and S. L. Huang, “Design and optimization of Cr4+:Y3Al5O12 double-clad crystal fiber laser,” Japanese of Journal of Applied Physics 48, 072202-1 (2009). [49] Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Progress in Quantum Electronics 28, 249 (2004). [50] S. Sugano and Y. Tanabe, and H. Kamimura, “Multiplets of transition-metal ions in crystals,” Academic, New York (1970). [51] R. C. Powell, “Physics of solid-state laser materials,” Springer, New York (1997). [52] B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Applied Physics B: Photophysics and laser chemistry 36, 195 (1985). [53] Z. Zhang, K. T. V. Grattan, and W. Palmer, “Temperature dependences of fluorescence lifetime in Cr3+-doped insulating crystals,” Physical Review B 48, 7772 (1993). [54] P. Kisliuk and C. A. Moore, “Radiation from the 4T2 state of Cr3+ in Ruby and Emerald,” Physical Review 160, 307 (1967). [55] W. A. Wall, J. T. Karpick, and B. D. Bartolo, “Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG:Cr3+,” Journal of Physics C: Solid State Physics 4, 3258 (1971). [56] B. E. Douglas, “Symmetry in bonding and spectra,” Academic, Orlando (1985). [57] H. Eilers, U. Hömmerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Physical Review B: Condensed Matter 49, 15505 (1994). [58] B. Henderson, H. G. Gallagher, T. P. J. Han, and M. A. Scott, “Optical spectroscopy and optimal crystal growth of some Cr4+-doped garnets,” Journal of Physics: Condensed Matter 12, 1927 (2000). [59] S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” Journal of Luminescence 68, 1 (1996). [60] S. Kück, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” OSA Proceedings on Advanced Solid-State Lasers 15, 334 (1993). [61] C. Deka, M. Bass, B. H. T. Chai, and Y. Shimony, “Optical spectroscopy of Cr4+:Y2SiO5,” Journal of the Optical Society of America B: Optical Physic 10, 1499 (1993). [62] R. Moncorge, D. J. Simkin, G. Cormier, and J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium-doped forsterite,” OSA Proceedings on Tunable Solid-State Lasers 5, 93 (1989). [63] S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-dopeped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Physical Review B: Condensed Matter 51, 17323 (1995). [64] M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4,” Physical Review B 53, 2367 (1996). [65] M. A. Gülgün, W. Y. Ching, Y. N. Xu, and M Rühle, “Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations,” Philosophical Magazine B 79, 921 (1999). [66] A. G. Okhrimchuk and A. V. Shestakov, “The local vibration absorption band in the YAG:Cr4+ crystal,” in J. J. Jayhoswski (Ed.), OSA Trends in Optics and Photonics (TOPS), Advanced Solid-State Photonics 83, 224 (2003). [67] B. Henderson and G. F. Imbusch, “Optical spectroscopy of inorganic solids,” Clarendon, Oxford (1989). [68] K. Y. Huang, “Growth system improvement and characteristics of chromium-doped YAG crystal fiber,” Ph.D. Dissertation, National Sun-Yat Sen University (2008). [69] H. W. Etzel, H. W. Gandy, and R. J. Ginther, “Stimulated emission of infrared radiation form ytterbium-activated silicate glass,” Applied Optics 1, 534 (1962). [70] C. J. Mackechnie, W. L. Barnes, D. C. Hanna, and J. E. Townsend, “High-power ytterbium (Yb3+)-doped fiber laser operating in the 1.12 um region,” Electronics Letters 29, 52 (1993). [71] J. Y. Allain, M. Monerie, and H. Poignant, Ytterbium-doped fluoride fiber laser,” Electronics Letters 28, 988 (1992). [72] J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “An Yb3+-doped silica fiber laser,” Electronics Letters 25, 298 (1989). [73] D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, “Yb-doped monomode fiber laser: broadly tunable operation from 1.010 um to 1.162 um and three level operation at 974 nm,” Journal of Modern Optics 37, 329 (1987). [74] W. F. Krupke, “Ytterbium solid-state lasers-The first decade,” IEEE Journal of Selected Topics in Quantum Electronics 6, 1287 (2000). [75] http://www.nlight.net/fibers/details/38~LIEKKI-Yb12004125 [76] P. W. France, “Optical fiber lasers and amplifiers,” CRC, Florida (2000). [77] B. J. Ainslie, S. P. Craig, and R. Wyatt, “Optical and structural analysis of neodymium-doped silica-based optical fibre,” Materials Letters 8, 204 (1989). [78] S. Sen, R. Rakhmatullin, R. Gubaidullin, and A. Pöppl, “Direct spectroscopic observation of the atomic-scale mechanisms of clustering and homogenization of rare-earth dopant ions in vitreous silica,” Physical Review B: Condensed Matter 74, 100201 (2006). [79] J. Lægsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: a microscopic model,” Physical Review B: Condensed Matter 65, 174114 (2006). [80] A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” Journal of Non-Crystalline Solids 348, 44 (2004). [81] A. Kazuo, N. Hiroshi, and K. Ken, “Aluminum or phosphorous co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” Journal of Applied Physics 59, 3430 (1986). [82] J. L. Stevenson and R. B. Dyott, “Optical fiber waveguide with a single-crystal core,” Electronics Letters 10, 449 (1974). [83] B. Chalmers, H. E. Labelle, Jr., and A. I. Mlavsky, “Edge-defined, film-fed crystal growth,” Journal of Crystal Growth 13-14, 84 (1972). [84] N. Ohnish and T. Yao, “A novel growth technique for single-crystal fibers: the micro-Czochralski (u-CZ) method,” Japanese Journal of Applied Physics 28, L278 (1989). [85] D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” Journal of Crystal Growth 142, 339 (1994). [86] J. C. Chen, “Spectroscopic study on the fluorescence of Cr ions in double-clad Cr:YAG crystal fiber,” Ph.D. Dissertation, National Sun-Yat Sen University (2006). [87] T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” Journal of Non-Crystalline Solids 220, 139 (1997). [88] C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Applied Physics Letters 82, 4035 (2003). [89] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials 20, 63 (2002). [90] H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 um radiation,” Applied Physics Letter 53, 2593 (1988). [91] W. Jia, H. Liu, S. Jaffe, and W. M. Yen, “Spectroscopy of Cr3+ and Cr4+ ions in forsterite,” Physical Review B: Condensed Matter 43, 5234 (1991). [92] A. P. Alivisatos, “Naturally aligned nanocrystals,” Science 289, 736 (2000). [93] R. L. Penn and J. F. Banfield, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Geochimica et Cosmochimica Acta 63, 1549 (1999). [94] Y. Q. Wang, R. Smirani, and G. G. Ross, “Nanotwinning in silicon nanocrystals produced by ion implantation,” Nano Letters 4, 2041 (2004). [95] Z. R. Dai, S. Sun, and Z. L. Wang, “Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals,” Nano Letters 1, 443 (2001). [96] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, and R. L. Penn, “The role of aggregation in crystal growth and transformations in nanophase FeOOH biomineralization products,” Science 289, 751 (2000). [97] J. Schiøtz and K. W. Jacobsen, “A maximum in the strength of nanocrystalline copper,” Science 301, 1357 (2003). [98] M. Yeadon, M. Ghaly, J. C. Yang, R. S. Averback, and J. M. Gibson, ““Contact epitaxy” observed in supported nanoparticles,” Applied Physics Letters 73, 3208 (1988). [99] X. Zou and H. Toratani, “Evoluation of spectroscopic properties of Yb3+-doped glasses,” Physical Review B: Condensed Matter 52, 15889 (1995). [100] D. Sangla, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigué, “Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique,” Applied Physics B: Lasers and Optics 94, 203 (2009). [101] J. Y. Yi, L. H. Chen, and S. L. Huang, “Efficient and compact Yb:YAG ring laser,” IEEE Journal of Quantum Electronics 42, 791 (2006). [102] J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Applied Physics Letters 89, 091114-1 (2006). [103] A. Sennaroglu, “Determination of the stimulated-emission cross section in an end-pumped solid-state laser from laser-induced pump saturation data,” Optics Letters 26, 500 (2001). [104] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang “Passively Q-switched quasi-three-level laser and its intracavity frequency doubling,” Applied Optics 41, 1075 (2002). [105] E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE Journal of Selected Topics in Quantum Electronics 11, 690 (2005). [106] Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE Journal of Quantum Electronics 34, 292 (1998). [107] Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE Journal of Quantum Electronics 31, 1738 (1995). [108] K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 um in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Optics Letters 18, 814 (1993). [109] H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 um absorption in Cr,Ca:Y3Al5O12 crystals,” Applied Physics Letters 61, 2958 (1992). [110] S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE Journal of Quantum Electronics 24, 2243 (1988). [111] W. Y. Yang, W. Cao, T. S. Chung, and J. Morris, “Applied Numerical Methods Using MATLAB,” Wiley, New York (2005). [112] A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” Journal of the Optical Society of America B: Optical Physics 12, 930 (1995). [113] A. Sennaroglu, “Optimization of power performance in room- temperature continuous-wave Cr4+:YAG lasers,” Optics Communications 192, 83 (2001). [114] H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE Journal of Quantum Electronics 29 (1993) 2508. [115] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” Journal of the Optical Society of America B: Optical Physics 18, 287 (2001). [116] K. Y. Huang, K. Y. Hsu, and S. L. Huang, “Analysis of ultra-broadband amplified spontaneous emission generated by Cr4+:YAG single and glass-clad crystal fibers,” Journal of Lightwave Technology 26, 1632 (2008). [117] K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhou, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Optics Express 16, 12264 (2008). [118] S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Lasers, optical, and thermomechanical properties of Yb-doped Fluorapatite,” IEEE Journal of Quantum Electronics 30, 170 (1994). [119] M. O. Ramírez, D. Jaque, J. A. S. García, L. E. Bausá, and J. E. M. santiuste, “74% slope efficiency from a diode-pumped Yb3+:LiNbO3:MgO laser crystal,” Applied Physics B: Lasers and Optics 77, 621 (2003). [120] http://www.hamamatsu.com [121] S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, “Pressure dependence of the 4T2 and 4T1 absorption bands of ruby to 35 GPa,” Physical Review B: Condensed Matter 41, 5372 (1990). [122] J. H. Eggert, K. A. Goettel, and I. F. Silvera, “Ruby at high pressure. I. Optical line shifts to 156 GPa,” Physical Review B: Condensed Matter 40, 5724 (1989). [123] J. Liu, R. Tang, Y. Wang, W. Jia, Y. Shang, and S. He, “The flourescence spectrum of chrysoberyl BeAl2O4:Cr3+ at high pressure and low temperature,” Journal of Luminescence 40-41, 419 (1988). [124] S. Ohnishi and S. Sugano, “Theoretical studies of high-pressure effects on optical properties of ruby,” Japanese Journal of Applied Physics 21, L309 (1982). [125] U. Hömmerich, Y. Shen, and K. Bray, “High-pressure luminescence studies of Cr4+-doped laser materials,” Journal of Luminescence 72-74, 139 (1997). [126] Y. Chi, H. Yang, S. Liu, M. Li, L. Wang, and G. Zou, “Compression ratio and red shift of the R1 line for YAG:Cr,” High Pressure Research 3, 153 (1990). [127] D. P. Ma, X. T. Zheng, Y. S. Xu, and Z. G. Zhang, “Theoretical calculations of the R1 red shift of ruby under high pressure,” Physical Letters A 115, 245 (1986). [128] K. E. Lipinska-Kalita, D. M. Krol, R. J. Hemley, P. E. Kalita, C. L. Gobin, and Y. Ohki, “Temperature effects on luminescence properties of Cr3+ ions in alkali gallium silicate nanostructured media,” Journal of Applied Physics 98, 054302 (2005). [129] M. Morita, S. Kajiyama, D. Rau, T. Sakurai, and M. Iwamura, “Luminescence of closed shell molecular complex centers in nanoporous sol–gel SiO2 glasses,” Journal of Luminescence 102-103, 608 (2003). [130] S. V. Bulyarskii, A. E. Kozhevin, S. N. Mikov, and V. V. Prikhodko, “Anomalous R-line behavior in nanocrystalline Al2O3:Cr3+,” Physica Status Solidi A: Applications and Materials Science 180, 55 (2000). [131] S. P. Feofilov, A. A. Kaplyanskii, and R. I. Zakharchenya, “Optical generation of nonequilibrium terahertz resonant vibrational excitations in highly porous aluminum oxide,” Journal of Luminescence 66-67, 349 (1996). [132] H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Physical Review B: Condensed Matter 49, 15505 (1994). [133] S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetime, quantum efficiencies, and emission cross sections,” Physical Review B: Condensed Matter 51, 17323 (1995). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22816 | - |
| dc.description.abstract | 由於過渡金屬具有未屏蔽電子組態,故將其摻入晶體作為雷射增益介質可獲得極寬頻之發光特性。在700-1000 nm波段,鈦藍寶石(Ti3+:sapphire)雷射已廣泛應用於寬頻可調雷射及鎖模雷射上。但在1200-1600 nm之光通訊波段,因摻Cr4+濃度低及熱效應問題,使得摻Cr4+雷射在此光通訊波段上進展受限。於本論文中,我們以共同提拉雷射加熱基座生長(codrawing laser-heated pedestal growth)法生長出具雙纖衣(double-clad)結構之摻鉻釔鋁石榴石(Cr4+:YAG)晶體光纖(crystal fiber)。並首次研製出室溫下具世界紀錄最高之斜率效率(6.9%)及最低之激發閥值(96 mW)之摻鉻雷射,其中激發閥值相較文獻上塊材式之摻鉻釔鋁石榴石雷射低超過1個數量級以上。此外搭配銅鋁合金包覆,此晶體光纖雷射可進一步提供纖衣激發(cladding pump)及更佳散熱效率。此具有極高效率及極低激發閥值之雙纖衣晶體光纖雷射在未來將相當有潛力達成通訊用波長可調光纖雷射。
此外,目前現有摻釔光纖雷射其光纖長度長達數米至數十米。對於輸出功率為瓦級之應用,尤其當需要單縱模雷射輸出時,此極長的光纖長度則顯得不實際。於本論文中,我們首次以共同提拉雷射加熱基座生長法生長出長度僅7 mm之摻釔釔鋁石榴石-玻璃(Yb3+:YAG-silica)光纖雷射,其輸出功率可達1 W/cm。此短長度光纖雷射於室溫下具有世界紀錄最高斜率效率(76.3%)及最低激發閥值(25 mW),極適合與矽基平面元件整合。 在奈米尺度光學與微結構分析上,近場掃描式光學顯微術(near-field scanning optical microscopy)和高解析穿透式電子顯微術(high-resolution transmission electron microscopy)此兩種技術扮演極重要角色。本論文首先針對具異質結構(heterostructure)、高硬度及極脆弱之摻鉻釔鋁石榴石雙纖衣晶體光纖,成功製作高解析穿透式電子顯微鏡之試片,並藉此試片首度以具高空間分辨率之近場掃描式光學顯微鏡解析出位於內層纖衣(inner cladding)之奈米結晶顆粒其近場光譜特性,並搭配高解析穿透式電子顯微鏡於微結構上作分析比較。此外,本論文亦藉由量測其雙纖衣晶體光纖纖心(core)之近場光譜特性,首次分析生長後之應力變化(strain)分佈與螢光關係。以期能藉由生長參數調控纖心內應力,進而提升摻鉻釔鋁石榴石雙纖衣晶體光纖所研製之通訊用主動式光子元件效率。 | zh_TW |
| dc.description.abstract | Transition-metal ion doped laser gain media have broadband nature because of the non-screened electronic configurations. In the 700-1000 nm wavelength range, Ti3+:sapphire lasers have been widely used as tunable and mode-locked lasers. However, in the 1200-1600 nm optical communication band, Cr4+ doped lasers have limited progress because of the low concentration of tetrahedrally positioned Cr4+ ions and the thermal problem. In this dissertation, using the codrawing laser-heated pedestal growth technique, we demonstrate the first room-temperature (RT), continuous-wave (CW) Cr4+:Y3Al5O12 (Cr4+:YAG) double-clad crystal fiber (DCF) laser with a 6.9% record-high slope efficiency and a 0.75-mW record-low lasing threshold, more than 500 times lower in threshold than any reported Cr4+:YAG lasers. With a Cu-Al alloy diffusion process, the DCF allows for cladding-pumped configuration with efficient heat removal. The realization of ultralow-threshold lasing with record-high slope efficiency makes broadband tunability of this DCF laser possible for future all-optical communication systems.
In addition, most existing Yb:fiber lasers have long cavities that are in several meters to tens of meters for hundreds to kilos watts of powers. For watt-level applications, such long length is not practical especially when a narrow-linewidth laser is required. In this study, we report the first demonstration of an ultracompact, high-efficiency, and low-threshold Yb3+:YAG-silica fiber laser with nearly 1 W/cm CW output at RT. To the best of our knowledge, this 7-mm-short Yb3+:YAG-silica fiber laser with record-low threshold down to 25 mW and record-high slope efficiency up to 76.3% is the shortest active fiber reported to date for any short-length fiber laser operated at RT, making it suitable for integration with Si-based devices. For nanospectroscopic and nanostructural characterizations, near-field scanning optical microscopy (NSOM) and high-resolution transmission electron microscopy (HRTEM) techniques have played key roles. Here we have successfully prepared the NSOM and HRTEM specimens of Cr:YAG DCFs, which are heterostructure, hard, but fragile. The NSOM results were compared with those obtained by HRTEM. In this dissertation, for the first time, we show the systematical studies on the nanospectroscopy and nanostructure of Cr:YAG DCFs. Further, we also show the first direct evidence of the impact of strain fields on the optical properties of Cr:YAG. This new class of strain-adjustable Cr:YAG DCF opens up new opportunity to improve the performance of crystal fiber based photonic devices in all-optic fiber communications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:29:19Z (GMT). No. of bitstreams: 1 ntu-99-D95941023-1.pdf: 4507017 bytes, checksum: f13f6665862b74aad3f7fa40c19bc53e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Contents iii Glossary of Acronyms v List of Tables viii List of Figures x 1 Introduction 1 2 Characteristics of Cr:YAG crystal and Yb:fiber 8 2.1 Crystal field effect on Cr3+ and Cr4+ energy levels . . . . . . . . 8 2.2 Characteristics of Cr:YAG crystal . . . . . . . . . . . . . 16 2.3 Characteristics of Yb:fiber . . . . . . . . . . . . . . . . 22 3 Codrawing LHPG fabricated Cr and Yb doped fibers 28 3.1 LHPG fabricated Cr:YAG and Yb:YAG single crystal fibers . . . . 28 3.2 Sapphire-tube-assisted codrawing LHPG system . . . . . . . . 37 3.3 Cr:YAG double-clad crystal fiber . . . . . . . . . . . . . 42 3.4 Yb3+:YAG-silica fiber . . . . . . . . . . . . . . . . . 62 4 Cr4+:YAG double-clad crystal fiber laser 80 4.1 Device fabrication and characterizations . . . . . . . . . . . 81 4.2 Dichroic laser coating . . . . . . . . . . . . . . . . . 88 4.3 Device performance . . . . . . . . . . . . . . . . . . 93 4.4 Design and optimization . . . . . . . . . . . . . . . . 99 4.4.1 Lumped model . . . . . . . . . . . . . . . . . 99 4.4.2 Lumped model at steady state . . . . . . . . . . . 101 4.4.3 Optimization by Lagrange multiplier method . . . . . . . 104 5 Yb3+:YAG-silica fiber laser 112 5.1 Device fabrication and characterizations . . . . . . . . . . . 112 5.2 Dichroic laser coating . . . . . . . . . . . . . . . . . 118 5.3 Device performance . . . . . . . . . . . . . . . . . . 123 6 Nanospectroscopy of Cr:YAG double-clad crystal fiber 128 6.1 Weak light detection . . . . . . . . . . . . . . . . . 128 6.2 Strain effect on Cr3+ and Cr4+ fluorescences . . . . . . . . . . 135 6.3 Modified near-field scanning optical microscopy . . . . . . . . 139 6.4 Cr3+ near-field spectroscopy . . . . . . . . . . . . . . . 141 6.4.1 Strained core of Cr:YAG DCF . . . . . . . . . . . . 141 6.4.2 Inner cladding of Cr:YAG DCF . . . . . . . . . . . . 151 6.5 Cr4+ near-field spectroscopy . . . . . . . . . . . . . . . 154 7 Conclusion and future work 163 Bibliography 166 Curriculum Vitae 182 | |
| dc.language.iso | en | |
| dc.subject | 摻釔 | zh_TW |
| dc.subject | 高解析穿透式電子顯微術 | zh_TW |
| dc.subject | 近場掃描式光學顯微術 | zh_TW |
| dc.subject | 光纖雷射 | zh_TW |
| dc.subject | 釔鋁石榴石 | zh_TW |
| dc.subject | 摻鉻 | zh_TW |
| dc.subject | HRTEM | en |
| dc.subject | Yb-doped | en |
| dc.subject | Cr-doped | en |
| dc.subject | fiber laser | en |
| dc.subject | NSOM | en |
| dc.subject | SNOM | en |
| dc.subject | YAG | en |
| dc.title | 主動式晶體光纖之光子元件 | zh_TW |
| dc.title | Active Crystal Fiber Based Photonic Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 孔慶昌(Andy Kung),黃衍介(Yen-Chieh Huang),林恭如(Gong-Ru Lin),林清富(Ching-Fuh Lin),廖顯奎(Shien-Kuei Liaw),林彥勝(Yen-Sheng Lin) | |
| dc.subject.keyword | 摻鉻,摻釔,釔鋁石榴石,光纖雷射,近場掃描式光學顯微術,高解析穿透式電子顯微術, | zh_TW |
| dc.subject.keyword | Cr-doped,Yb-doped,YAG,fiber laser,NSOM,SNOM,HRTEM, | en |
| dc.relation.page | 188 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-01-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
