Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22799
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳世雄(Shih-Hsiung Wu)
dc.contributor.authorMiao-Hsia Linen
dc.contributor.author林妙霞zh_TW
dc.date.accessioned2021-06-08T04:28:39Z-
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-28
dc.identifier.citationAgrawal, R.K., Spahn, C.M., Penczek, P., Grassucci, R.A., Nierhaus, K.H., and Frank, J. (2000). Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 150, 447-460.
Aivaliotis, M., Macek, B., Gnad, F., Reichelt, P., Mann, M., and Oesterhelt, D. (2009). Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum--a representative of the third domain of life. PLoS ONE 4, e4777.
Anderson, M.J., and Janoff, E.N. (1998). Klebsiella endocarditis: report of two cases and review. Clin Infect Dis 26, 468-474.
Athamna, A., Ofek, I., Keisari, Y., Markowitz, S., Dutton, G.G., and Sharon, N. (1991). Lectinophagocytosis of encapsulated Klebsiella pneumoniae mediated by surface lectins of guinea pig alveolar macrophages and human monocyte-derived macrophages. Infect Immun 59, 1673-1682.
Atkinson, M., Allen, C., and Sequeira, L. (1992). Tyrosine phosphorylation of a membrane protein from Pseudomonas solanacearum. J Bacteriol 174, 4356-4360.
Bacher, J.M., de Crecy-Lagard, V., and Schimmel, P.R. (2005). Inhibited cell growth and protein functional changes from an editing-defective tRNA synthetase. Proc Natl Acad Sci U S A 102, 1697-1701.
Backert, S., and Selbach, M. (2005). Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends Microbiol 13, 476-484.
Bagley, S.T., Seidler, R.J., Talbot, H.W., Jr., and Morrow, J.E. (1978). Isolation of Klebsielleae from within living wood. Appl Environ Microbiol 36, 178-185.
Baker, A.M., and Draper, D.E. (1995). Messenger RNA recognition by fragments of ribosomal protein S4. J Biol Chem 270, 22939-22945.
Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J., and Gygi, S.P. (2006). A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-1292.
Berkowitz, O.U.a.L.B. (2009). Klebsiella infections. In eMedcine.
Breazeale, S.D., Ribeiro, A.A., and Raetz, C.R. (2003). Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J Biol Chem 278, 24731-24739.
Brown, C., and Seidler, R.J. (1973). Potential pathogens in the environment: Klebsiella pneumoniae, a taxonomic and ecological enigma. Appl Microbiol 25, 900-904.
Bugert, P., and Geider, K. (1995). Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol 15, 917-933.
Bugert, P., and Geider, K. (1997). Characterization of the amsI gene product as a low molecular weight acid phosphatase controlling exopolysaccharide synthesis of Erwinia amylovora. FEBS Lett 400, 252-256.
Burnett, G., and Kennedy, E.P. (1954). The enzymatic phosphorylation of proteins. J Biol Chem 211, 969-980.
Carter, A.P., Clemons, W.M., Jr., Brodersen, D.E., Morgan-Warren, R.J., Hartsch, T., Wimberly, B.T., and Ramakrishnan, V. (2001). Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498-501.
Casella, F., Manenti, M.G., Conca, C., Repetti, V., Longhi, P., Lazzaroni, S., Mercieri, A., and Furlan, R. (2008). Liver abscess caused by Klebsiella pneumoniae. Dig Liver Dis.
Casewell, M.W., and Phillips, I. (1978). Epidemiological patterns of Klebsiella colonization and infection in an intensive care ward. J Hyg (Lond) 80, 295-300.
Chang, F.Y., and Chou, M.Y. (1995). Comparison of pyogenic liver abscesses caused by Klebsiella pneumoniae and non-K. pneumoniae pathogens. J Formos Med Assoc 94, 232-237.
Chang, Y.C., Lin, S.Y., Liang, S.Y., Pan, K.T., Chou, C.C., Chen, C.H., Liao, C.L., Khoo, K.H., and Meng, T.C. (2008). Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. J Proteome Res 7, 1055-1066.
Chuang, Y.P., Fang, C.T., Lai, S.Y., Chang, S.C., and Wang, J.T. (2006). Genetic determinants of capsular serotype K1 of Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 193, 645-654.
Conesa, A., and Gotz, S. (2008). Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. Int J Plant Genomics 2008, 619832.
Cooke, E.M., Pool, R., Brayson, J.C., Edmondson, A.S., Munro, M.E., and Shinebaum, R. (1979). Further studies on the sources of Klebsiella aerogenes in hospital patients. J Hyg (Lond) 83, 391-395.
Coxon, J.P., Stinear, C.M., and Byblow, W.D. (2008). Stop and Go: The Neural Basis of Selective Movement Prevention. J Cogn Neurosci.
Cozzone, A.J. (1993). ATP-dependent protein kinases in bacteria. J Cell Biochem 51, 7-13.
Cozzone, A.J. (2005). Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J Mol Microbiol Biotechnol 9, 198-213.
Cozzone, A.J., Grangeasse, C., Doublet, P., and Duclos, B. (2004). Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181, 171-181.
Dadssi, M., and Cozzone, A.J. (1990). Evidence of protein-tyrosine kinase activity in the bacterium Acinetobacter calcoaceticus. J Biol Chem 265, 20996-20999.
Dallas, A., and Noller, H.F. (2001). Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell 8, 855-864.
Denu, J.M., and Dixon, J.E. (1995). A catalytic mechanism for the dual-specific phosphatases. Proc Natl Acad Sci U S A 92, 5910-5914.
Deutscher, J., and Saier, M.H., Jr. (1983). ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci U S A 80, 6790-6794.
Domenico, P., Diedrich, D.L., and Straus, D.C. (1985). Extracellular polysaccharide production by Klebsiella pneumoniae and its relationship to virulence. Can J Microbiol 31, 472-478.
Domenico, P., Schwartz, S., and Cunha, B.A. (1989). Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect Immun 57, 3778-3782.
Doublet, P., Grangeasse, C., Obadia, B., Vaganay, E., and Cozzone, A.J. (2002). Structural organization of the protein-tyrosine autokinase Wzc within Escherichia coli cells. J Biol Chem 277, 37339-37348.
Drummelsmith, J., and Whitfield, C. (2000). Translocation of group 1 capsular polysaccharide to the surface of Escherichia coli requires a multimeric complex in the outer membrane. EMBO J 19, 57-66.
Duclos, B., Grangeasse, C., Vaganay, E., Riberty, M., and Cozzone, A.J. (1996). Autophosphorylation of a bacterial protein at tyrosine. J Mol Biol 259, 891-895.
Endler, A., Reiland, S., Gerrits, B., Schmidt, U.G., Baginsky, S., and Martinoia, E. (2009). In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics 9, 310-321.
Fang, C.T., Chuang, Y.P., Shun, C.T., Chang, S.C., and Wang, J.T. (2004). A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199, 697-705.
Favre-Bonte, S., Joly, B., and Forestier, C. (1999). Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect Immun 67, 554-561.
Fung, C.P., Chang, F.Y., Lee, S.C., Hu, B.S., Kuo, B.I., Liu, C.Y., Ho, M., and Siu, L.K. (2002). A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50, 420-424.
Gotz, S., Garcia-Gomez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talon, M., Dopazo, J., and Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36, 3420-3435.
Grangeasse, C., Cozzone, A.J., Deutscher, J., and Mijakovic, I. (2007). Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32, 86-94.
Grangeasse, C., Doublet, P., and Cozzone, A.J. (2002). Tyrosine phosphorylation of protein kinase Wzc from Escherichia coli K12 occurs through a two-step process. J Biol Chem 277, 7127-7135.
Grangeasse, C., Doublet, P., Vaganay, E., Vincent, C., Deleage, G., Duclos, B., and Cozzone, A.J. (1997). Characterization of a bacterial gene encoding an autophosphorylating protein tyrosine kinase. Gene 204, 259-265.
Grangeasse, C., Doublet, P., Vincent, C., Vaganay, E., Riberty, M., Duclos, B., and Cozzone, A.J. (1998). Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. J Mol Biol 278, 339-347.
Grangeasse, C., Obadia, B., Mijakovic, I., Deutscher, J., Cozzone, A.J., and Doublet, P. (2003). Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem 278, 39323-39329.
Higaki, M., Chida, T., Takano, H., and Nakaya, R. (1990). Cytotoxic component(s) of Klebsiella oxytoca on HEp-2 cells. Microbiol Immunol 34, 147-151.
Hoehndorf, R., Kelso, J., and Herre, H. (2009). The ontology of biological sequences. BMC Bioinformatics 10, 377.
Huang, J., Carney, B.F., Denny, T.P., Weissinger, A.K., and Schell, M.A. (1995). A complex network regulates expression of eps and other virulence genes of Pseudomonas solanacearum. J Bacteriol 177, 1259-1267.
Huang, J., and Schell, M. (1995). Molecular characterization of the eps gene cluster of Pseudomonas solanacearum and its transcriptional regulation at a single promoter. Mol Microbiol 16, 977-989.
Jers, C., Soufi, B., Grangeasse, C., Deutscher, J., and Mijakovic, I. (2008). Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Rev Proteomics 5, 619-627.
Keynan, Y., Karlowsky, J.A., Walus, T., and Rubinstein, E. (2007). Pyogenic liver abscess caused by hypermucoviscous Klebsiella pneumoniae. Scand J Infect Dis 39, 828-830.
Klein, G., Dartigalongue, C., and Raina, S. (2003). Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol Microbiol 48, 269-285.
Ko, W.C., Paterson, D.L., Sagnimeni, A.J., Hansen, D.S., Von Gottberg, A., Mohapatra, S., Casellas, J.M., Goossens, H., Mulazimoglu, L., Trenholme, G., et al. (2002). Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 8, 160-166.
Kuhn, I., Ayling-Smith, B., Tullus, K., and Burman, L.G. (1993). The use of colonization rate and epidemic index as tools to illustrate the epidemiology of faecal Enterobacteriaceae strains in Swedish neonatal wards. J Hosp Infect 23, 287-297.
Kumar, A.S., Mody, K., and Jha, B. (2007). Bacterial exopolysaccharides--a perception. J Basic Microbiol 47, 103-117.
Lai, Y.C., Peng, H.L., and Chang, H.Y. (2003). RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185, 788-800.
Lee, D.C., Zheng, J., She, Y.M., and Jia, Z. (2008). Structure of Escherichia coli tyrosine kinase Etk reveals a novel activation mechanism. EMBO J 27, 1758-1766.
Lee, H.C., Chuang, Y.C., Yu, W.L., Lee, N.Y., Chang, C.M., Ko, N.Y., Wang, L.R., and Ko, W.C. (2006). Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: association with invasive syndrome in patients with community-acquired bacteraemia. J Intern Med 259, 606-614.
Leipe, D.D., Koonin, E.V., and Aravind, L. (2003). Evolution and classification of P-loop kinases and related proteins. J Mol Biol 333, 781-815.
Levene, P.A., Alsberg, C. L. (1906). The cleavage products of vitellin. J Biol Chem 2, 6.
Lin, W.S., Cunneen, T., and Lee, C.Y. (1994). Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus. J Bacteriol 176, 7005-7016.
Link, A.J., Phillips, D., and Church, G.M. (1997). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228-6237.
Lipmann, F.A.L., P. A. (1932). Serinephosphoric acid obtained on hydrolysis of vitellinic acid. J Biol Chem 98, 6.
Liu, J.Y., Yang, F.L., Lu, C.P., Yang, Y.L., Wen, C.L., Hua, K.F., and Wu, S.H. (2008). Polysaccharides from Dioscorea batatas induce tumor necrosis factor-alpha secretion via Toll-like receptor 4-mediated protein kinase signaling pathways. J Agric Food Chem 56, 9892-9898.
Loomis, W.F., Shaulsky, G., and Wang, N. (1997). Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci 110 ( Pt 10), 1141-1145.
Macek, B., Gnad, F., Soufi, B., Kumar, C., Olsen, J.V., Mijakovic, I., and Mann, M. (2008). Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics 7, 299-307.
Macek, B., Mijakovic, I., Olsen, J.V., Gnad, F., Kumar, C., Jensen, P.R., and Mann, M. (2007). The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6, 697-707.
Makarova, O., Kamberov, E., and Margolis, B. (2000). Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-972.
Manai, M., and Cozzone, A.J. (1979). Analysis of the protein-kinase activity of Escherichia coli cells. Biochem Biophys Res Commun 91, 819-826.
Manning, G., Plowman, G.D., Hunter, T., and Sudarsanam, S. (2002). Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27, 514-520.
Margaritis, A.a.P., G.W. (1985). Microbial polysaccharides. In: Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine (Editor-in-chief: Murray Moo-Young); The Practice of Biotechnology: Current Commodity Products, 3.Harvey W. Blanch, Stephen Drew and Daniel I.C. Wang (Eds.), Pergamon Press, New York,, 41.
Matsen, J.M., Spindler, J.A., and Blosser, R.O. (1974). Characterization of Klebsiella isolates from natural receiving waters and comparison with human isolates. Appl Microbiol 28, 672-678.
Mijakovic, I., Poncet, S., Boel, G., Maze, A., Gillet, S., Jamet, E., Decottignies, P., Grangeasse, C., Doublet, P., Le Marechal, P., et al. (2003). Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J 22, 4709-4718.
Mizuta, K., Ohta, M., Mori, M., Hasegawa, T., Nakashima, I., and Kato, N. (1983). Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their capsular (K) types. Infect Immun 40, 56-61.
Morona, J.K., Paton, J.C., Miller, D.C., and Morona, R. (2000). Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in streptococcus pneumoniae. Mol Microbiol 35, 1431-1442.
Munton, R.P., Tweedie-Cullen, R., Livingstone-Zatchej, M., Weinandy, F., Waidelich, M., Longo, D., Gehrig, P., Potthast, F., Rutishauser, D., Gerrits, B., et al. (2007). Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol Cell Proteomics 6, 283-293.
Nesper, J., Hill, C.M., Paiment, A., Harauz, G., Beis, K., Naismith, J.H., and Whitfield, C. (2003). Translocation of group 1 capsular polysaccharide in Escherichia coli serotype K30. Structural and functional analysis of the outer membrane lipoprotein Wza. J Biol Chem 278, 49763-49772.
Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930.
Othman, R.M., Deris, S., and Illias, R.M. (2008). A genetic similarity algorithm for searching the Gene Ontology terms and annotating anonymous protein sequences. J Biomed Inform 41, 65-81.
Paiment, A., Hocking, J., and Whitfield, C. (2002). Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli. J Bacteriol 184, 6437-6447.
Parkinson, J.S. (1993). Signal transduction schemes of bacteria. Cell 73, 857-871.
Paulsen, I.T., Beness, A.M., and Saier, M.H., Jr. (1997). Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143 ( Pt 8), 2685-2699.
Podschun, R., Sievers, D., Fischer, A., and Ullmann, U. (1993). Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J Infect Dis 168, 1415-1421.
Potts, M., Sun, H., Mockaitis, K., Kennelly, P.J., Reed, D., and Tonks, N.K. (1993). A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem 268, 7632-7635.
Preneta, R., Jarraud, S., Vincent, C., Doublet, P., Duclos, B., Etienne, J., and Cozzone, A.J. (2002). Isolation and characterization of a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase from Klebsiella pneumoniae. Comp Biochem Physiol B Biochem Mol Biol 131, 103-112.
Puttick, J., Baker, E.N., and Delbaere, L.T. (2008). Histidine phosphorylation in biological systems. Biochim Biophys Acta 1784, 100-105.
Rahimian, J., Wilson, T., Oram, V., and Holzman, R.S. (2004). Pyogenic liver abscess: recent trends in etiology and mortality. Clin Infect Dis 39, 1654-1659.
Rahn, A., Drummelsmith, J., and Whitfield, C. (1999). Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 181, 2307-2313.
Rahn, A., and Whitfield, C. (2003). Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol Microbiol 47, 1045-1060.
Reed, L.J., and H. Muench. (1938). A simple method of estimating the fifty percent endpoints American journal of hygiene 27, 5.
Rodnina, M.V., and Wintermeyer, W. (2001). Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem Sci 26, 124-130.
Ross, A.R. (2007). Identification of histidine phosphorylations in proteins using mass spectrometry and affinity-based techniques. Methods Enzymol 423, 549-572.
Sahly, H., and Podschun, R. (1997). Clinical, bacteriological, and serological aspects of Klebsiella infections and their spondylarthropathic sequelae. Clin Diagn Lab Immunol 4, 393-399.
Seidler, R.J., Knittel, M.D., and Brown, C. (1975). Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl Microbiol 29, 819-825.
Shackelford, G.S., Regni, C.A., and Beamer, L.J. (2004). Evolutionary trace analysis of the alpha-D-phosphohexomutase superfamily. Protein Sci 13, 2130-2138.
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85.
Soufi, B., Gnad, F., Jensen, P.R., Petranovic, D., Mann, M., Mijakovic, I., and Macek, B. (2008a). The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8, 3486-3493.
Soufi, B., Jers, C., Hansen, M.E., Petranovic, D., and Mijakovic, I. (2008b). Insights from site-specific phosphoproteomics in bacteria. Biochim Biophys Acta 1784, 186-192.
Soung, G.Y., Miller, J.L., Koc, H., and Koc, E.C. (2009). Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes. J Proteome Res 8, 3390-3402.
South, S.L., Nichols, R., and Montie, T.C. (1994). Tyrosine kinase activity in Pseudomonas aeruginosa. Mol Microbiol 12, 903-910.
Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M., and Ishihama, Y. (2007). Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6, 1103-1109.
Takyar, S., Hickerson, R.P., and Noller, H.F. (2005). mRNA helicase activity of the ribosome. Cell 120, 49-58.
Taylor, L.A., and Rose, R.E. (1988). A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K. Nucleic Acids Res 16, 358.
Thingholm, T.E., Jorgensen, T.J., Jensen, O.N., and Larsen, M.R. (2006). Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1, 1929-1935.
Tsay, R.W., Siu, L.K., Fung, C.P., and Chang, F.Y. (2002). Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med 162, 1021-1027.
Vincent, C., Doublet, P., Grangeasse, C., Vaganay, E., Cozzone, A.J., and Duclos, B. (1999). Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181, 3472-3477.
Vincent, C., Duclos, B., Grangeasse, C., Vaganay, E., Riberty, M., Cozzone, A.J., and Doublet, P. (2000). Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria. J Mol Biol 304, 311-321.
Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945-951.
Warner, K.M., and Bullerjahn, G.S. (1994). Light-Dependent Tyrosine Phosphorylation in the Cyanobacterium Prochlorothrix hollandica. Plant Physiol 105, 629-633.
Waters, B.V., D. Gold, M. R. Davies, J. (1994). Protein tyrosine phosphorylation in streptomycetes. FEMS Microbiology Letters.
Whitfield, C. (2006). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75, 39-68.
Wu, K.M., Li, L.H., Yan, J.J., Tsao, N., Liao, T.L., Tsai, H.C., Fung, C.P., Chen, H.J., Liu, Y.M., Wang, J.T., et al. (2009). Genome Sequencing and Comparative Analysis of Klebsiella pneumoniae NTUH-K2044, a Strain Causing Liver Abscess and Meningitis. J Bacteriol.
Wugeditsch, T., Paiment, A., Hocking, J., Drummelsmith, J., Forrester, C., and Whitfield, C. (2001). Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem 276, 2361-2371.
Yang, F.L., Lu, C.P., Chen, C.S., Chen, M.Y., Hsiao, H.L., Su, Y., Tsay, S.S., Zou, W., and Wu, S.H. (2004). Structural determination of the polar glycoglycerolipids from thermophilic bacteria Meiothermus taiwanensis. Eur J Biochem 271, 4545-4551.
Zamze, S., Martinez-Pomares, L., Jones, H., Taylor, P.R., Stillion, R.J., Gordon, S., and Wong, S.Y. (2002). Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem 277, 41613-41623.
Zhang, C.C. (1996). Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol 20, 9-15.
Zhang, Z.Y., Wang, Y., and Dixon, J.E. (1994). Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proc Natl Acad Sci U S A 91, 1624-1627.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22799-
dc.description.abstract克雷伯氏肺炎桿菌NTUH-K2044引起之肝膿瘍及其併發轉移性病灶是種台灣近年來新興的感染性疾病,例如腦膜炎、眼內炎。這種人類細菌性病原外層包覆著多醣類物質成為物理性屏障,這種醣鞘結構稱為莢膜多醣體,是一種重要的致病因子,用來躲避人體免疫系統的攻擊。目前已知酪胺酸去磷酸脢與酪胺酸磷酸化激脢參與在莢膜多醣體生合成的調控之中,其他的調控蛋白並不清楚。為了了解酪胺酸磷酸化系統與細菌莢膜多醣體生合成的關聯性抑或是更進一步對於未來藥物的設計開發,我們必須找到更多參與調控的蛋白質。這篇論文主要利用散彈隨機 (shotgun approach) 質譜分析方式分析克雷伯氏肺炎桿菌NTUH-K2044 的磷酸化蛋白質體,在更進一步去探討磷酸化蛋白與莢膜多醣體生成的關係。此研究在菌株細胞內一共找到117條含有磷酸化的胜肽,其中包含了93個精確的磷酸化氨基酸位置,分佈於81個磷酸化蛋白中。
在這81個磷酸化蛋白之中,有三個酪胺酸磷酸化蛋白坐落於莢膜多醣體合成有關的基因組位於cps (capsule polysaccharide synthesis) 基因座上,這三個蛋白可能參與莢膜生成的調控之中,分別為酪胺酸磷酸化激脢 (Wzc)、磷酸甘露糖變位酶 (ManB) 和磷酸十一葵烯醇轉醣基酶 (WcaJ)。由於酪胺酸磷酸化激脢的調控機制較為清楚,因此,我們將目標放在磷酸甘露糖變位酶和磷酸十一葵烯醇轉醣基酶,並建立了點突變株分別為ManBY26F和WcaJY5F。由莢膜醣的定量及老鼠的腹腔注射實驗發現WcaJY5F此突變株不僅生成較少的莢膜多醣體,其致死力也較野生型菌株K2044低兩百倍。然而,ManBY26F此突變株多醣生成量不變,致死力也只差了六倍。我們的研究發現磷酸化十一葵烯醇轉醣基酶的第五個酪胺酸磷酸化參與了莢膜多醣體生合成的調控,且此酪胺酸的磷酸化與否與致病力息息相關。此外,已成功表現出Wzc、Wzb與ManB重組蛋白,未來將可進一步探討磷酸化與蛋白酵素活性的關係;其中在Wzc重組蛋白N端同時加上His以及HA胜肽標記 (His-HAWzc445-717),可應用於免疫蛋白沉澱的實驗,企圖尋找相互作用的蛋白,期望建立整體訊息傳導網絡系統。若能對酪胺酸磷酸化系統對於莢膜生合成的影響有更多的了解,有機會發展出更多適合的治療與防預的方法,本研究提供了一個線索發展未來相關研究。
zh_TW
dc.description.abstractEncapsulated Klebsiella pneumoniae is the predominant causative agent of pyogenic liver abscess, an emerging infectious disease often complicates with metastatic meningitis or endophthalmitis. The capsular polysaccharide on K. pneumoniae surface was determined as the key to virulence. Although the regulation of capsular polysaccharide biosynthesis is largely unclear, it was found protein tyrosine kinases and phosphatases are involved. Therefore, the identification and characterization of such kinases, phosphatases and their substrates would advance our knowledge of the underlying mechanism in capsule formation and could contribute to the development of new therapeutic strategies. Here, we have analyzed the phosphoproteome of K. pneumoniae NTUH-K2044 with a shotgun approach and identified 117 unique phosphopeptides along with 93 in vivo phosphorylated sites corresponding to 81 proteins.
Interestingly, three of the identified tyrosine phosphorylated proteins, namely protein tyrosine kinase (Wzc), phosphomannomutase (ManB) and undecaprenolphosphate glycosyltransferase (WcaJ), were found to distribute in the cps locus and thus were speculated to involve in the converging signal transduction of capsule biosynthesis. Subsequently, we decided to focus on the lesser studied ManB and WcaJ for mutation analysis. And as a result, the capsular polysaccharides on WcaJ mutant (WcaJY5F) was dramatically reduced quantitatively and the LD50 increased by 200 fold in mouse peritonitis model comparing to the wild-type strain. While the capsular polysaccharides of ManB mutant (ManBY26F) showed no difference in quantity and the LD50 increased by merely 6 fold in mice test. Our study provided a clear trend that WcaJ tyrosine phosphorylation can regulate the biosynthesis of capsular polysaccharides and result in the pathogenicity of K. pneumoniae NTUH-K2044. Furthermore, the recombinant protein: Wzc, Wzb and ManB have been successfully generated; these proteins would be used to clarify the relationship between tyrosine phosphorylation and enzyme activity. In immunoprecipitation experiment, the N-terminal His and HA double tagged Wzc recombinant protein (His-HAWzc445-717) is used to find out the undiscovered interaction proteins. As a result, the signaling cascade will be well-established. Based on the further understanding of the precise roles of tyrosine phosphorylation system in bacterial CPS biosynthesis, more precise therapeutical and preventice methods must be developed. Our investigation provides a clue for further research on drug discovery in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:28:39Z (GMT). No. of bitstreams: 1
ntu-99-D94b46010-1.pdf: 9688586 bytes, checksum: 80cb54d9a23f6652da0440a1e3cbf8e7 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsPreface .............................................................................................................................. i
中文摘要 .......................................................................................................................... ii
Abstract .......................................................................................................................... iv
List of Figures .............................................................................................................. viii
List of Tables .................................................................................................................. ix
List of Appendixes ........................................................................................................... x
Abbreviations ................................................................................................................. xi
Introduction ..................................................................................................................... 1
1. Klebsiella pneumoniae .............................................................................................. 1
2. Bacterial exopolysaccharides .................................................................................... 3
3. Phosphorylation in bacteria ...................................................................................... 5
Materials and Methods ................................................................................................. 13
1. Bacterial growth and lysate preparation ................................................................. 13
2. Western blotting ...................................................................................................... 13
3. Protein digestion ..................................................................................................... 14
4. Phosphopeptide enrichment .................................................................................... 14
5. Affinity purification of pTyr proteome subset ........................................................ 15
6. LC-MS/MS analysis ............................................................................................... 16
7. Data analysis ........................................................................................................... 16
8. Bioinformatics analysis ........................................................................................... 17
9. Generation of site-specific mutants ........................................................................ 18
10. Extraction and quantification of CPS ................................................................... 19
11. Hypermucosity String test .................................................................................... 19
12. Precipitation speed test ......................................................................................... 20
13. Sugar composition analysis .................................................................................. 20
14. Resistance to serum killing ................................................................................... 21
15. Mouse lethality assay ............................................................................................ 21
16. Cloning and purification of Wzc cytoplasmic domain ......................................... 21
17. Cloning and purification of Wzb .......................................................................... 23
18. Over-expression and purification of ManB .......................................................... 23
19. Cloning and over-expression of WcaJ .................................................................. 24
20. ManB phosphorylation and dephosphorylation .................................................... 25
Results ............................................................................................................................. 26
1. Phosphoproteome of mid-log phase K. pneumoniae .............................................. 26
2. Phosphotyrosine proteome subset of K. pneumoniae ............................................. 28
3. Generation and characterization of site-directed mutants ....................................... 29
4. Overexpression and purification of Wzb, Wzc cytoplasmic domain, ManB and
WcaJ. ........................................................................................................................... 30
5. ManB phosphorylation and dephosphorylation ...................................................... 31
Discussion ....................................................................................................................... 32
Figure .............................................................................................................................. 39
Table ............................................................................................................................... 48
Reference ........................................................................................................................ 53
Appendix ........................................................................................................................ 62
dc.language.isoen
dc.subject磷酸甘露糖變位&#37238zh_TW
dc.subject酪胺酸磷酸化激脢zh_TW
dc.subject酪胺酸磷酸化zh_TW
dc.subject克雷伯氏肺炎桿菌NTUH-K2044zh_TW
dc.subject肝膿瘍zh_TW
dc.subject莢膜多醣體生合成zh_TW
dc.subject磷酸十一葵烯醇轉醣基&#37238zh_TW
dc.subjectcapsular polysaccharide biosynthesisen
dc.subjectundecaprenolphosphate glycosyltransferaseen
dc.subjectphosphomannomutaseen
dc.subjecttyrosine kinaseen
dc.subjecttyrosine phosphorylationen
dc.subjectKlebsiella pneumoniae NTUH-K2044en
dc.subjectliver abscessen
dc.title以磷酸化蛋白質體學方法探討克雷伯氏肺炎桿菌中蛋白質酪胺酸磷酸化與致病機轉zh_TW
dc.titlePhosphoproteomics of Klebsiella pneumoniae NTUHK-K2044 reveals a tight link between tyrosine phosphorylation and virulenceen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee王錦堂(Jin-Town Wang),陳水田(Shui-Tein Chen),邱繼輝(Kay-Hooi Khoo),蔡明道(Ming-Daw Tsai)
dc.subject.keyword克雷伯氏肺炎桿菌NTUH-K2044,肝膿瘍,莢膜多醣體生合成,酪胺酸磷酸化,酪胺酸磷酸化激脢,磷酸甘露糖變位&#37238,磷酸十一葵烯醇轉醣基&#37238,zh_TW
dc.subject.keywordKlebsiella pneumoniae NTUH-K2044,liver abscess,capsular polysaccharide biosynthesis,tyrosine phosphorylation,tyrosine kinase,phosphomannomutase,undecaprenolphosphate glycosyltransferase,en
dc.relation.page110
dc.rights.note未授權
dc.date.accepted2010-01-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
9.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved