請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22723完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋聖榮 | |
| dc.contributor.author | Sheng-Yuan Chen | en |
| dc.contributor.author | 陳聖元 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:25:52Z | - |
| dc.date.copyright | 2010-03-17 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-26 | |
| dc.identifier.citation | 中文部份:
王淑姿(2003),南投烏溪流域河水之氫氧同位素研究。國立中興大學土壤環境科學研究所碩士論文,第76–102頁。 巫佳靜(2006),臺灣車籠埔斷層鑽井A井岩心之碳酸鹽類礦物碳氧同位素研究。國立臺灣大學海洋研究所碩士論文,第36–64頁。 何春蓀(1994),臺灣地質概論臺灣地質圖說明書。經濟部中央地質調查所,第71–100頁。 林朝棨(1935),台中豐原地方第三紀及第四紀地層之地層研究。台北帝國大學農學部紀要,第十三卷,第三期。 林朝棨(1954),台灣之地質。地質新誌,中華文化出版事業委員會。 彭宗仁(1995),宜蘭地區天水和地水中穩定碳、氫、氧及放射性碳、氚之環境同位素研究。國立臺灣地質學研究所博士論文,第5–53 頁。 彭宗仁(2006),台灣地區地下水觀測網第三期九十五年度水文地質調查研究計畫:地下水穩定氫、氧同位素研究(3/3)。中央地質調查所報告第95-28號,共82頁。 程恕人(1997),放射性元素運用。台灣書店,第9-16頁。 曾國輝(1992),化學(上冊)(下冊),台北市:藝軒圖書出版社。第12-657頁。 張麗旭,何春蓀(1948),台中縣之大安背斜。地質評論,第十三卷,第1-2期。 經濟部水利處(1990),中部地區水源運用規劃報告。第42–44頁。 經濟部水資源局(1998),地下水定年分析研究。第四章。 英文部份: Chan, Y.C., Okamoto, K., Yui, T. F., Iizuka, Y. and Chu, H. T. (2005), Fossil fluid reservoir beneath a duplex fault structure within the Central Range of Taiwan: Implications for fluid leakage and lubrication during earthquake rupturing process, Terra Nova 17, 493-499. Chen C. C. and Chen C. S. (1975). Preliminary result of magnetotelluric sounding in the fault-thrust belt of Taiwan and possible detection of hydration. Tectonophisics 292(1998), 102-117. Chen, K. C., Huang, B. S., Huang, W. G., Wang, J. H., Chang, T. M., Huang, R. D., Chiu, H. C. and Tsai, C. C. (2001), An observation of rupture pulses of the September 20, 1999, Chi-Chi, Taiwan, earthquake from near-field seismograms. Bulletin of the Seismological Society of America 91, 1247-1254. Craig, H. (1961), Isotopic variations in meteoric waters. Science 133,1702-1703. Davis, D., Suppe, J. and Dahlen, F. A. (1983), Mechanics of fold and thrust belts and accretionary wedges. Journal of Geophysical Research 88, 1153– 1172. Doan, M. L., Brodsky, E. E., Kano, Y. and Ma, K. F. (2006). In situ measurement of the hydraulic diffusivity of the active Chelungpu Fault, Taiwan. Geophysical Research Letter. 33, L16317, doi:10.1029/2006GL026889 Fertl, W. H., Chilingarian, G. V. and Rieke, H. H. (1976), Abnormal formation pressures. Elsevier, New York. Gat, J. R. and Gonfiantini, R. (1981), Stable Isotope Hydrology Deuterium and Oxygen-18 in Water Cycle 2, 7-9. Gat, J. R. and Gonfiantini, R. (1981), Stable Isotope Hydrology Deuterium and Oxygen-18 in Water Cycle 3, 21-34. Hickman, S., Sibson, R. and Bruhn, R. (1995), Introduction to special section: mechanical involvement of fluids in faulting, Journal of Geophysical Research 100, 12831-12840. Hirono, T., Tsunogai, U., Maegawa, K., Toki, T., Tanimizu, M., Soh, W., Lin, W., Yeh, E. C., Song, S. R. and Wang, C. (2007), Chemical and isotopic characteristics of interstitial fluids within the Taiwan Chelungpu fault. Geochemical Journal 41, 97-102. Hitchon, B. and Fredman, I. (1969), Geochemistry and origin od formation waters in the western Canada sedimentary basin. Geochimica et Cosmochimica Acta 33, 1321-1349. Hubbert, M. K. and Rubey, W. W. (1959), Role of fluid pressure in mechanics of thrust faulting. Geological Society of America Bulletin 70, 115-166. Hulin, C. D. (1925), Structural control of ore deposition. Economic Geology 24, 15-49. Hung, J.H., Y. H. Wu, E. C. Yeh, J. C. Wu, TCDP scientific party subsurface structure, physical properties, and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-Fault Drilling Project. Terr. Atmos. Ocean. Sci., 18(2), 271-293. Hunt, J. M. (1990), Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin 74(1), 1-12. Ingraham, N. L. (1998), “isotope variation in precipitation” In: Kendall, C. and MacDonell (eds), Isotope Tracers in Catchment Hydrology 3, 87-116. Irwin, W. P. and Barnes, I. (1980), Tectonic relations of carbon dioxide discharges and earthquakes. Journal of Geophysical Research 85, 3115–3121. Kano Y., Mori J., Fujio R., Yanagidani T., Ito H., Nakao S., and Matsubayashi O. (2006). Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophysics. Research. Letters. 33, L14306 Kendall, C. and McDonnell, J. J. (1998), Isotope Tracers in Catchment Hydrology. Elsevier Science B.V., Amsterdam. 51-86. Kerrich, R., La Tour, T. E. and Willmore, L. (1984), Fluid participation in deep fault zones: Evidence from geological, geochemical, and 18O/16O relations. Journal of Geophysical Research 89, 4331-4343. Knopf, A. (1929), The Mother Lode System of California. United States Geological Survey Prof. Paper 157, 41-42. Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y. and Rau, R. J. (2002), Geometry and structure of northern surface rupture of the 1999 Mw=7.6 Chi-Chi, Taiwan Earthquake: Influence from inherited Fold Belt structures. Journal of Structural Geology 24, 173-192. Lin, A., Tanaka, N., Uda, S. and Satish-Kumar, M. (2003), Repeated coseismic infiltration of meteoric and seawater into deep fault zones: a case study of the Nojima fault zone, Japan. Chemical Geology 202, 139 – 153. Liu, J. G. (1981), Recent high CO2 activity and Cenozoic progressive metamorphism in Taiwan. Memoir of the Geological Society of China 4, 551-581. Ma, K. F., Brodsky, E. E., Mori, J., Ji, C., Song, T.-R. A. and Kanamori, H. (2003), Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw7.6). Geophysical Research Letters 30(5), 1244, doi: 10.1029/2002GL015380. Mayoral M. C., Izquierdo M. T., Andres J. M. and Rubio B. (2002). Mechanism of interaction of pyrite with hematite as simulation of slagging and fireside tube wastage in coal combustion. Thermochimica Acta 390(1). 103-111. Mckinstry, H. E. (1948), Mining Geology. Prentice-Hall, Englewood Cliffs, N.J. Muir-Wood. R. and King, G. C. P. (1993), Hydrological signatures associated with earthquake strain. Journal of Geophysical Research 98, 22035-22068. O’Neil, J. R., Clayton, R. N. and Mayeda, T. K. (1969), Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 51, 5547-5558. Oxburgh, E. R. and O'Nions, R. K. (1987), Helium loss, tectonic and the terrestrial heat budget. Science 237, 1583-1588. Powley, D. E. (1990), Pressure and hydrogeology in petroleum basins. Earth Science Reviews 29, 226–311. Rice, J. R. (1992), Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, in Fault Mechanics and Transport Properties of Rocks. edited by B. Evans and T. Wong, Academic, San Diego, Calif. 475-503. Rojstaczer, S. and Hickman, S. (1994), In-situ study of physical mechanisms for permeability changes associated with the 1989 Loma Prieta earthquake. EOS, 75. Rojstaczer, S. and Wolf, S. (1992), Permeability changes associated withlarge earthquakes: An example from Loma Prieta. California Geology 20, 211-214. Seno, T. and Maruyama, S. (1984), Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics 102, 53-84. Sibson, R.H. (1981), Fluid flow accompanying faulting: Field evidence and models, in Earthquake Prediction: An International Review, Maurice Ewing Ser. 4, 593-603. Sibson R. H. and Francois, R. K. (1988), High angle reverse faults fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 16, 551-555. Sibson, R. H. (1990), Rupture nucleation on unfavorably oriented faults: Bulletin of the Seismological Society of America 80, 1580-1604. Sibson R. H. (1992), Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 211, 283–93. Shin, T. C. and Teng, T. L. (2001), An overview of the 921 Chi-Chi earthquake. Bulletin of the Seismological Society of America 91, 895-913. Song, S. R., Kuo, L. W., Yeh, E. C., Wang, C. Y., Hung, J. H. and Ma, K. F. (2007), Characteristics of the Lithology, Fault-Related Rocks and Fault Zone Structures in TCDP Hole-A. Terrestrial Atmospheric and Oceanic Science 18(2), 243-269. Stahl, W. and Tang, C. H. (1971), Carbon isotope measurements of methane, higher hydrocarbons, and carbon dioxide of natural gases from northwestern Taiwan. Petroleum Geology of Taiwan 8, 77-91. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan., Memoir of the Geological Society of China, 4, 67-89. Suppe, J. and Wittke, M. (1977), Abnormal fluid pressure in relation to stratigraphy and structure in the active fold-and-thrust belt of northwestern Taiwan, Petroleum Geology of Taiwan 14, 11-24. Tsai, Y. B., Liaw, Z. S., Lee, T. Q., Lin, M. T. and Yeh, Y. H. (1981), Seismological evidence of an active plate boundary in the Taiwan area. Memoir of the Geological Society of China 4, 143-154. Wakita, H., Sano, Y. and Mizoue, M. (1987), High 3He emanation and seismic swarms observed in a nonvolcanic forarc region, Journal of Geophysical Research 92, 12539-12546. Yang T. F., Yeh, G. H., Fu C. C., Wang, C. C., Lan, T. F., Lee, H. F., Chen, C. H., Walia, V. and Sung, Q. C. (2004), Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology 46(8), 1003-1011. Yeh, E. C., Sone, H., Nakaya, T., Ian, K. H., Song, S. R., Hung, J. H., Lin, W., Hirono, T., Wang, C. Y., Ma, K. F., Soh, W. and Kinoshita, M.(2007), Core description and characteristics of fault zones from Hole-A of the Taiwan Chelungpu-Fault Drilling Project. Terrestrial Atmospheric Oceanic Science 18(2), 327-357. Yu, S. B. and Chen, H. Y. (1994), Global positioning system measurement of crustal deformation in the Taiwan arc-continent collision zone. Terrestrial Atmospheric Oceanic Science 5, 477-498. Yu, S. B., Kuo, L. C., Punongbayan, R. S. and Ramos, E. G. (1999), GPS observations of crystal deformation in the Taiwan-Luzon region. Geophysical Research Letters 26, 923-926. Yue, L.F. (2007), Active structural growth in central Taiwan in relationship to large earthquakes and pore-fluid pressures. Ph.D. thesis of Princeton, Jersey, Princeton University, 173. Yurtsever, Y. and Gat, J. R. (1981), “Atmospheric Waters”, in: Gat, J. R. and Gonfiantini R. (eds), Stable Isotope Hydrology Deuterium and Oxygen-18 in Water Cycle 6, 103-142. Zhao, D. and Negishi, H. (1998), The 1995 Kobe earthquake: Seismic image of the source zone and its implications for the rupture nucleation. Journal of Geophysical Research 103, 9967-9986. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22723 | - |
| dc.description.abstract | 1999 年集集大地震的地表破裂以及滑移速率皆相當高,尤其於地表破裂帶北段的錯動具較為平順、速率快且滑移量大的特徵,隱含了流體參與斷層面滑移而產生潤滑作用的可能性。斷層帶鄰近相關流體的研究對探討流體與車籠埔斷層系統的關係,以及在集集地震扮演的角色來說相當重要。
本研究利用車籠埔斷層鑽探計畫(TCDP)中,相距約40公尺的A井(深2003公尺)與B井(深1282公尺)井內的流體,分析其流體的地球化學特性,如離子濃度以及氫氧同位素等隨深度變化,以探討流體的來源,並配合區域構造狀況與岩心資料,來推估車籠埔斷層系統與流體的關係。結果顯示,B井流體氫氧同位素組成落在天水線上且接近自來水的氫氧同位素組成,表示B井之水體主要來自於光正國小的自來水。A井水體的離子濃度於200至300公尺突然變化,顯示A井中的流體主要來自兩個地球化學特性迥異的流體系統。淺部的流體離子濃度低,氫氧同位素組成落於天水線上且接近鄰近河水的值;深部流體離子濃度相對來得高,尤其是碳酸氫根濃度最高可達3000ppm,氧同位素值較重且偏離天水線,表示深部的流體於溫度較高的環境下與圍岩進行相當程度的同位素交換。由A井岩心方解石脈的氧同位素以及與各岩層的截切關係推測,深部流體應是來自桂竹林層的地熱水體。淺層與深層的流體具有不同的地化特徵,也隱示斷層上磐與下磐的流體系統迥異。 由上磐與下磐流體擁有迥異的地球化學特性,表示斷層帶可能為一個不透水的障礙面,將兩邊的流體阻隔開來。而A井岩心之上磐岩層普遍出現的方解石脈,提供了下磐含高碳酸氫跟濃度的流體上湧的證據,顯示在地震當時形成的岩石破裂與斷層面的錯動,提供下磐受壓流體湧升到上磐的管道。 根據流體的地化特性,區域地質與構造,以及岩心的資料等證據,我們可以初步推測流體在各個不同的時期與斷層系統的作用機制。A井內部地球化學特性不同的淺部與深部流體,分別來自於上磐與下磐的流體系統,顯示斷層帶能阻隔流體的流動, 將上磐與下磐的流體系統隔絕造成各自系統中流體之特性不同;A井岩心中普遍出現的方解石脈與岩石破裂呈現高度相關及其分布趨勢,提供了下磐桂竹林層裡的水湧升入上磐岩層的證據,隱示於同震時期,斷層滑移面可提供流體流通的管道。因此,由以上證據推測,斷層區域流體與斷層系統各個不同階段的關係,於間震時期,不透水的斷層泥將上下磐具有不同地化特徵的流體系統隔開,而地震發生時,斷層面錯動提供流體流通的管道,使下磐含有高濃度的碳酸氫根的地熱水向上湧升;地震過後,來自於下磐的碳酸氫根漸漸析出為方解石,充填於上磐岩石裂隙中,離桂竹林層越近,則方解石脈密度越高。地震過後,隨著斷層逐漸癒合,使得上下磐的流體系統再次被斷層帶所阻絕。 | zh_TW |
| dc.description.abstract | The 1999 Chi-Chi earthquake(Mw 7.6) is characterized by high rupturing and slip velocity in the North and the ground motion is dominated by large low-frequency displacements, suggesting the possibility of fault lubrication during co-seismic period. Thus, the characteristics of fluid involved in Taiwan Chelungpu fault system is important for us to realize the mechanism of the fault-fluid interaction.
We analyzed geochemical characteristics, such as hydrogen and oxygen isotopes, and ionic concentrations, of fluid samples retrieved from various depth along boreholes of the Hole A and Hole B of Taiwan Chelungpu fault Drilling Project(TCDP) to trace the fluid sources. The results show that the source of fluid in the Hole B is mainly the tap water, while there are two probable sources in the Hole A owing to the abrupt shift of ionic concentrations at the depth of 200-300 m. The shallower fluid might be from the leakage above the depth of 300 m and is characteristic of lower ionic concentrations and the isotopic ratios are close to those of adjacent river water. However, the deeper fluid should be the thermal water from Kueichulin formation because of high ionic concentrations, especially HCO3-, and higher oxygen isotope, which suggests higher temperature and more isotope exchange. Two sources of fluid of the Hole A are representative of the fluid systems in the hanging wall and foot wall respectively. The geochemical characteristics of fluids in the Hole A imply that the fault zone serves as a barrier in the inter-seismic period, resulting in distinctly different fluid between the Hanging wall and the foot wall. The frequent occurrence and the distribution of calcite veins provide the evidence of the upwelling of HCO3--rich fluid of Kueichulin formation and indicate that the fault served as fluid conduit during faulting and allowed the fluid flow across the fault zone to precipitate calcite veins in fractures of the hanging wall. Thus, we can deduce the mechanism of local groundwater flow during different stages of fault development by evidences such as calcite veins distribution, regional groundwater geology, and fluids characteristics in boreholes of the Hole-A and Hole B. During inter-seismic period, groundwater flows below and above the fault zone are separated by the impermeable fault gouge layer. In co-seismic time, faulting breaks the gouge layer, providing openings that let the over-pressured thermal water which contained high concentration of bicarbonate ion to surge up. After co-seismic period, the gouge layer is sealed again, residual thermal water which contained high concentration of bicarbonate ion in the hanging wall gradually precipitated calcite in fractures and the closer precipitation took place, the more calcite veins. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:25:52Z (GMT). No. of bitstreams: 1 ntu-99-R95224113-1.pdf: 2214040 bytes, checksum: b384ab1ada97a823ea2f29f42b4c3fd9 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目錄 VI 圖目 VIII 表目 IX 第一章 緒論 1 1.1 前言 1 1.2 車籠埔斷層鑽探計畫 2 1.3 前人研究 2 第二章 地質背景 7 2.1 區域地質 7 2.2相關地層 7 2.3 臺中地區水文地質概況 9 第三章 同位素原理 13 3.1 同位素簡介 13 3.2 同位素的種類 13 3.3 同位素的變化 14 3.4 天水的穩定氫氧同位素 15 3.5 天水的穩定氫氧同位素效應 16 3.6 地下水的穩定氫氧同位素 17 3.7 地下水的放射性碳同位素(14C)與年代 20 第四章 研究材料與方法 22 4.1 井況 22 4.2 採樣方法 25 4.3 樣本處理 28 4.3.1離子濃度測定 28 4.3.2 氫氧同位素 28 4.3.3 地下水之碳十四定年 31 第五章 數據分析 32 5.1 離子濃度 32 5.2 同位素分析 37 5.3 碳十四定年結果 40 第六章 討論 41 第六章 討論 42 6.1 水的來源 42 6.2 A井中流體的流動模式 46 6.3 A井流體硫酸根濃度變化問題 48 6.4 A井深部流體碳酸氫根濃度問題 54 6.5 桂竹林層中流體壓力問題 57 6.6 車籠埔斷層系統與區域流體的關係 59 6.7 車籠埔斷層系統與流體之交互關係 62 第七章 結論 65 參考文獻 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 地下水 | zh_TW |
| dc.subject | 車籠埔斷層 | zh_TW |
| dc.subject | TCDP | zh_TW |
| dc.subject | 流體地球化學 | zh_TW |
| dc.subject | TCDP | en |
| dc.subject | fluid geochemistry | en |
| dc.subject | groundwater | en |
| dc.subject | Chelungpu fault | en |
| dc.title | 臺灣車籠埔斷層流體之地球化學特性 | zh_TW |
| dc.title | Geochemistry Characteristics of Fluids from Chelungpu fault in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 汪中和,葉恩肇,彭宗仁 | |
| dc.subject.keyword | TCDP,車籠埔斷層,地下水,流體地球化學, | zh_TW |
| dc.subject.keyword | TCDP,Chelungpu fault,groundwater,fluid geochemistry, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-02-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
