Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22691
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮麗蓉(Li-Jung Juan)
dc.contributor.authorChung-Fan Leeen
dc.contributor.author李中帆zh_TW
dc.date.accessioned2021-06-08T04:24:47Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-06-17
dc.identifier.citation1. Law, J.A., and Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204-220.
2. Ehrlich, M., Gama-Sosa, M.A., Huang, L.H., Midgett, R.M., Kuo, K.C., McCune, R.A., and Gehrke, C. 1982. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709-2721.
3. Gronbaek, K., Hother, C., and Jones, P.A. 2007. Epigenetic changes in cancer. Apmis 115:1039-1059.
4. Bestor, T.H. 1998. Gene silencing. Methylation meets acetylation. Nature 393:311-312.
5. Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V. 1988. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203:971-983.
6. Robertson, K.D., Uzvolgyi, E., Liang, G., Talmadge, C., Sumegi, J., Gonzales, F.A., and Jones, P.A. 1999. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27:2291-2298.
7. Pradhan, S., Bacolla, A., Wells, R.D., and Roberts, R.J. 1999. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 274:33002-33010.
8. Yoder, J.A., Soman, N.S., Verdine, G.L., and Bestor, T.H. 1997. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol 270:385-395.
9. Vertino, P.M., Yen, R.W., Gao, J., and Baylin, S.B. 1996. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol 16:4555-4565.
10. Fatemi, M., Hermann, A., Gowher, H., and Jeltsch, A. 2002. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem 269:4981-4984.
11. Athanasiadou, R., de Sousa, D., Myant, K., Merusi, C., Stancheva, I., and Bird, A. Targeting of de novo DNA methylation throughout the Oct-4 gene regulatory region in differentiating embryonic stem cells. PLoS One 5:e9937.
12. Gowher, H., Stockdale, C.J., Goyal, R., Ferreira, H., Owen-Hughes, T., and Jeltsch, A. 2005. De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry 44:9899-9904.
13. Hermann, A., Schmitt, S., and Jeltsch, A. 2003. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278:31717-31721.
14. Yoder, J.A., and Bestor, T.H. 1998. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet 7:279-284.
15. Urieli-Shoval, S., Gruenbaum, Y., Sedat, J., and Razin, A. 1982. The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett 146:148-152.
16. Hung, M.S., Karthikeyan, N., Huang, B., Koo, H.C., Kiger, J., and Shen, C.J. 1999. Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases. Proc Natl Acad Sci U S A 96:11940-11945.
17. Gowher, H., Leismann, O., and Jeltsch, A. 2000. DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J 19:6918-6923.
18. Jurkowski, T.P., Meusburger, M., Phalke, S., Helm, M., Nellen, W., Reuter, G., and Jeltsch, A. 2008. Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism. RNA 14:1663-1670.
19. Goll, M.G., Kirpekar, F., Maggert, K.A., Yoder, J.A., Hsieh, C.L., Zhang, X., Golic, K.G., Jacobsen, S.E., and Bestor, T.H. 2006. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395-398.
20. Lin, M.J., Tang, L.Y., Reddy, M.N., and Shen, C.K. 2005. DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J Biol Chem 280:861-864.
21. Phalke, S., Nickel, O., Walluscheck, D., Hortig, F., Onorati, M.C., and Reuter, G. 2009. Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat Genet 41:696-702.
22. Schaefer, M., and Lyko, F. Solving the Dnmt2 enigma. Chromosoma 119:35-40.
23. Aapola, U., Kawasaki, K., Scott, H.S., Ollila, J., Vihinen, M., Heino, M., Shintani, A., Kawasaki, K., Minoshima, S., Krohn, K., et al. 2000. Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65:293-298.
24. Chedin, F., Lieber, M.R., and Hsieh, C.L. 2002. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99:16916-16921.
25. Suetake, I., Shinozaki, F., Miyagawa, J., Takeshima, H., and Tajima, S. 2004. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279:27816-27823.
26. Ooi, S.K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S.P., Allis, C.D., et al. 2007. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714-717.
27. Wu, J., Issa, J.P., Herman, J., Bassett, D.E., Jr., Nelkin, B.D., and Baylin, S.B. 1993. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci U S A 90:8891-8895.
28. McCabe, M.T., Low, J.A., Daignault, S., Imperiale, M.J., Wojno, K.J., and Day, M.L. 2006. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res 66:385-392.
29. Bakin, A.V., and Curran, T. 1999. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283:387-390.
30. Issa, J.P., Vertino, P.M., Wu, J., Sazawal, S., Celano, P., Nelkin, B.D., Hamilton, S.R., and Baylin, S.B. 1993. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 85:1235-1240.
31. Vertino, P.M., Issa, J.P., Pereira-Smith, O.M., and Baylin, S.B. 1994. Stabilization of DNA methyltransferase levels and CpG island hypermethylation precede SV40-induced immortalization of human fibroblasts. Cell Growth Differ 5:1395-1402.
32. Belinsky, S.A., Nikula, K.J., Baylin, S.B., and Issa, J.P. 1995. A microassay for measuring cytosine DNA methyltransferase activity during tumor progression. Toxicol Lett 82-83:335-340.
33. Belinsky, S.A., Nikula, K.J., Baylin, S.B., and Issa, J.P. 1996. Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci U S A 93:4045-4050.
34. De Smet, C., and Loriot, A. DNA hypomethylation in cancer: Epigenetic scars of a neoplastic journey. Epigenetics 5.
35. Gaudet, F., Hodgson, J.G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J.W., Leonhardt, H., and Jaenisch, R. 2003. Induction of tumors in mice by genomic hypomethylation. Science 300:489-492.
36. Esteller, M. 2005. Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629-656.
37. Esteller, M. 2007. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286-298.
38. Cameron, E.E., Baylin, S.B., and Herman, J.G. 1999. p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94:2445-2451.
39. Esteller, M., Corn, P.G., Baylin, S.B., and Herman, J.G. 2001. A gene hypermethylation profile of human cancer. Cancer Res 61:3225-3229.
40. Vaissiere, T., Hung, R.J., Zaridze, D., Moukeria, A., Cuenin, C., Fasolo, V., Ferro, G., Paliwal, A., Hainaut, P., Brennan, P., et al. 2009. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res 69:243-252.
41. Merlo, A., Herman, J.G., Mao, L., Lee, D.J., Gabrielson, E., Burger, P.C., Baylin, S.B., and Sidransky, D. 1995. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686-692.
42. Gazzeri, S., Gouyer, V., Vour'ch, C., Brambilla, C., and Brambilla, E. 1998. Mechanisms of p16INK4A inactivation in non small-cell lung cancers. Oncogene 16:497-504.
43. Stirzaker, C., Millar, D.S., Paul, C.L., Warnecke, P.M., Harrison, J., Vincent, P.C., Frommer, M., and Clark, S.J. 1997. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res 57:2229-2237.
44. Zochbauer-Muller, S., Fong, K.M., Virmani, A.K., Geradts, J., Gazdar, A.F., and Minna, J.D. 2001. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61:249-255.
45. Sato, M., Mori, Y., Sakurada, A., Fujimura, S., and Horii, A. 1998. The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum Genet 103:96-101.
46. Toyooka, K.O., Toyooka, S., Virmani, A.K., Sathyanarayana, U.G., Euhus, D.M., Gilcrease, M., Minna, J.D., and Gazdar, A.F. 2001. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61:4556-4560.
47. Esteller, M. 2008. Epigenetics in cancer. N Engl J Med 358:1148-1159.
48. Lyko, F., and Brown, R. 2005. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97:1498-1506.
49. MacLeod, A.R., Rouleau, J., and Szyf, M. 1995. Regulation of DNA methylation by the Ras signaling pathway. J Biol Chem 270:11327-11337.
50. Rouleau, J., MacLeod, A.R., and Szyf, M. 1995. Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J Biol Chem 270:1595-1601.
51. Bigey, P., Ramchandani, S., Theberge, J., Araujo, F.D., and Szyf, M. 2000. Transcriptional regulation of the human DNA Methyltransferase (dnmt1) gene. Gene 242:407-418.
52. Slack, A., Pinard, M., Araujo, F.D., and Szyf, M. 2001. A novel regulatory element in the dnmt1 gene that responds to co-activation by Rb and c-Jun. Gene 268:87-96.
53. McCabe, M.T., Low, J.A., Imperiale, M.J., and Day, M.L. 2006. Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway. Oncogene 25:2727-2735.
54. Kimura, H., Nakamura, T., Ogawa, T., Tanaka, S., and Shiota, K. 2003. Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res 31:3101-3113.
55. Zhang, Q., Wang, H.Y., Woetmann, A., Raghunath, P.N., Odum, N., and Wasik, M.A. 2006. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 108:1058-1064.
56. Tsai, C.N., Tsai, C.L., Tse, K.P., Chang, H.Y., and Chang, Y.S. 2002. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A 99:10084-10089.
57. Tsai, C.L., Li, H.P., Lu, Y.J., Hsueh, C., Liang, Y., Chen, C.L., Tsao, S.W., Tse, K.P., Yu, J.S., and Chang, Y.S. 2006. Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH(2)-terminal kinase signaling. Cancer Res 66:11668-11676.
58. Slack, A., Cervoni, N., Pinard, M., and Szyf, M. 1999. DNA methyltransferase is a downstream effector of cellular transformation triggered by simian virus 40 large T antigen. J Biol Chem 274:10105-10112.
59. Campbell, P.M., and Szyf, M. 2003. Human DNA methyltransferase gene DNMT1 is regulated by the APC pathway. Carcinogenesis 24:17-24.
60. Peterson, E.J., Bogler, O., and Taylor, S.M. 2003. p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding. Cancer Res 63:6579-6582.
61. Torrisani, J., Unterberger, A., Tendulkar, S.R., Shikimi, K., and Szyf, M. 2007. AUF1 cell cycle variations define genomic DNA methylation by regulation of DNMT1 mRNA stability. Mol Cell Biol 27:395-410.
62. Esteve, P.O., Chin, H.G., Benner, J., Feehery, G.R., Samaranayake, M., Horwitz, G.A., Jacobsen, S.E., and Pradhan, S. 2009. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A 106:5076-5081.
63. Wang, J., Hevi, S., Kurash, J.K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. 2009. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41:125-129.
64. Esteve, P.O., Chin, H.G., Smallwood, A., Feehery, G.R., Gangisetty, O., Karpf, A.R., Carey, M.F., and Pradhan, S. 2006. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20:3089-3103.
65. Smallwood, A., Esteve, P.O., Pradhan, S., and Carey, M. 2007. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21:1169-1178.
66. Burgers, W.A., Blanchon, L., Pradhan, S., de Launoit, Y., Kouzarides, T., and Fuks, F. 2007. Viral oncoproteins target the DNA methyltransferases. Oncogene 26:1650-1655.
67. Gowher, H., Liebert, K., Hermann, A., Xu, G., and Jeltsch, A. 2005. Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280:13341-13348.
68. Kareta, M.S., Botello, Z.M., Ennis, J.J., Chou, C., and Chedin, F. 2006. Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem 281:25893-25902.
69. Reale, A., Matteis, G.D., Galleazzi, G., Zampieri, M., and Caiafa, P. 2005. Modulation of DNMT1 activity by ADP-ribose polymers. Oncogene 24:13-19.
70. Lee, B., and Muller, M.T. 2009. SUMOylation enhances DNA methyltransferase 1 activity. Biochem J 421:449-461.
71. Ling, Y., Sankpal, U.T., Robertson, A.K., McNally, J.G., Karpova, T., and Robertson, K.D. 2004. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res 32:598-610.
72. Fatemi, M., Hermann, A., Pradhan, S., and Jeltsch, A. 2001. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309:1189-1199.
73. Leonhardt, H., Page, A.W., Weier, H.U., and Bestor, T.H. 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865-873.
74. Liu, Y., Oakeley, E.J., Sun, L., and Jost, J.P. 1998. Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res 26:1038-1045.
75. Araujo, F.D., Croteau, S., Slack, A.D., Milutinovic, S., Bigey, P., Price, G.B., Zannis-Hadjopoulos, M., and Szyf, M. 2001. The DNMT1 target recognition domain resides in the N terminus. J Biol Chem 276:6930-6936.
76. Callebaut, I., Courvalin, J.C., and Mornon, J.P. 1999. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 446:189-193.
77. Pradhan, M., Esteve, P.O., Chin, H.G., Samaranayke, M., Kim, G.D., and Pradhan, S. 2008. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry 47:10000-10009.
78. Chuang, L.S., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G., and Li, B.F. 1997. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996-2000.
79. Iida, T., Suetake, I., Tajima, S., Morioka, H., Ohta, S., Obuse, C., and Tsurimoto, T. 2002. PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 7:997-1007.
80. Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. 2007. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760-1764.
81. Achour, M., Jacq, X., Ronde, P., Alhosin, M., Charlot, C., Chataigneau, T., Jeanblanc, M., Macaluso, M., Giordano, A., Hughes, A.D., et al. 2008. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene 27:2187-2197.
82. Sharif, J., Muto, M., Takebayashi, S., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K., et al. 2007. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908-912.
83. Robertson, K.D., Ait-Si-Ali, S., Yokochi, T., Wade, P.A., Jones, P.L., and Wolffe, A.P. 2000. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338-342.
84. Esteve, P.O., Chin, H.G., and Pradhan, S. 2005. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc Natl Acad Sci U S A 102:1000-1005.
85. Kim, G.D., Ni, J., Kelesoglu, N., Roberts, R.J., and Pradhan, S. 2002. Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21:4183-4195.
86. Rountree, M.R., Bachman, K.E., and Baylin, S.B. 2000. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269-277.
87. Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L., and Kouzarides, T. 2000. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24:88-91.
88. Tatematsu, K.I., Yamazaki, T., and Ishikawa, F. 2000. MBD2-MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase. Genes Cells 5:677-688.
89. Kimura, H., and Shiota, K. 2003. Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J Biol Chem 278:4806-4812.
90. Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J.M., et al. 2006. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871-874.
91. Myant, K., and Stancheva, I. 2008. LSH cooperates with DNA methyltransferases to repress transcription. Mol Cell Biol 28:215-226.
92. Fuks, F., Hurd, P.J., Deplus, R., and Kouzarides, T. 2003. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31:2305-2312.
93. Driessen, H.P., de Jong, W.W., Tesser, G.I., and Bloemendal, H. 1985. The mechanism of N-terminal acetylation of proteins. CRC Crit Rev Biochem 18:281-325.
94. Polevoda, B., and Sherman, F. 2000. Nalpha -terminal acetylation of eukaryotic proteins. J Biol Chem 275:36479-36482.
95. Kendall, R.L., Yamada, R., and Bradshaw, R.A. 1990. Cotranslational amino-terminal processing. Methods Enzymol 185:398-407.
96. Dores, R.M., McDonald, L.K., Steveson, T.C., and Sei, C.A. 1990. The molecular evolution of neuropeptides: prospects for the '90s. Brain Behav Evol 36:80-99.
97. Arendt, C.S., and Hochstrasser, M. 1999. Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J 18:3575-3585.
98. Tercero, J.C., and Wickner, R.B. 1992. MAK3 encodes an N-acetyltransferase whose modification of the L-A gag NH2 terminus is necessary for virus particle assembly. J Biol Chem 267:20277-20281.
99. Polevoda, B., Arnesen, T., and Sherman, F. 2009. A synopsis of eukaryotic Nalpha-terminal acetyltransferases: nomenclature, subunits and substrates. BMC Proc 3 Suppl 6:S2.
100. Park, E.C., and Szostak, J.W. 1992. ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. EMBO J 11:2087-2093.
101. Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., and Sherman, F. 1999. Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J 18:6155-6168.
102. Whiteway, M., and Szostak, J.W. 1985. The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways. Cell 43:483-492.
103. Hwang, C.S., Shemorry, A., and Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973-977.
104. Aparicio, O.M., Billington, B.L., and Gottschling, D.E. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279-1287.
105. Whiteway, M., Freedman, R., Van Arsdell, S., Szostak, J.W., and Thorner, J. 1987. The yeast ARD1 gene product is required for repression of cryptic mating-type information at the HML locus. Mol Cell Biol 7:3713-3722.
106. Tribioli, C., Mancini, M., Plassart, E., Bione, S., Rivella, S., Sala, C., Torri, G., and Toniolo, D. 1994. Isolation of new genes in distal Xq28: transcriptional map and identification of a human homologue of the ARD1 N-acetyl transferase of Saccharomyces cerevisiae. Hum Mol Genet 3:1061-1067.
107. Neuwald, A.F., and Landsman, D. 1997. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci 22:154-155.
108. Lim, J.H., Park, J.W., and Chun, Y.S. 2006. Human arrest defective 1 acetylates and activates beta-catenin, promoting lung cancer cell proliferation. Cancer Res 66:10677-10682.
109. Fisher, T.S., Etages, S.D., Hayes, L., Crimin, K., and Li, B. 2005. Analysis of ARD1 function in hypoxia response using retroviral RNA interference. J Biol Chem 280:17749-17757.
110. Arnesen, T., Gromyko, D., Pendino, F., Ryningen, A., Varhaug, J.E., and Lillehaug, J.R. 2006. Induction of apoptosis in human cells by RNAi-mediated knockdown of hARD1 and NATH, components of the protein N-alpha-acetyltransferase complex. Oncogene 25:4350-4360.
111. Gromyko, D., Arnesen, T., Ryningen, A., Varhaug, J.E., and Lillehaug, J.R. Depletion of the human N(alpha)-terminal acetyltransferase A (hNatA) induces p53-dependent apoptosis and p53-independent growth inhibition. Int J Cancer.
112. Sugiura, N., Adams, S.M., and Corriveau, R.A. 2003. An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development. J Biol Chem 278:40113-40120.
113. Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M., Varhaug, J.E., and Lillehaug, J.R. 2005. Identification and characterization of the human ARD1-NATH protein acetyltransferase complex. Biochem J 386:433-443.
114. Arnesen, T., Betts, M.J., Pendino, F., Liberles, D.A., Anderson, D., Caro, J., Kong, X., Varhaug, J.E., and Lillehaug, J.R. 2006. Characterization of hARD2, a processed hARD1 gene duplicate, encoding a human protein N-alpha-acetyltransferase. BMC Biochem 7:13.
115. Ohkawa, N., Sugisaki, S., Tokunaga, E., Fujitani, K., Hayasaka, T., Setou, M., and Inokuchi, K. 2008. N-acetyltransferase ARD1-NAT1 regulates neuronal dendritic development. Genes Cells 13:1171-1183.
116. Arnesen, T., Van Damme, P., Polevoda, B., Helsens, K., Evjenth, R., Colaert, N., Varhaug, J.E., Vandekerckhove, J., Lillehaug, J.R., Sherman, F., et al. 2009. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci U S A 106:8157-8162.
117. Kuo, H.P., Lee, D.F., Chen, C.T., Liu, M., Chou, C.K., Lee, H.J., Du, Y., Xie, X., Wei, Y., Xia, W., et al. ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Sci Signal 3:ra9.
118. Jeong, J.W., Bae, M.K., Ahn, M.Y., Kim, S.H., Sohn, T.K., Bae, M.H., Yoo, M.A., Song, E.J., Lee, K.J., and Kim, K.W. 2002. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111:709-720.
119. Arnesen, T., Kong, X., Evjenth, R., Gromyko, D., Varhaug, J.E., Lin, Z., Sang, N., Caro, J., and Lillehaug, J.R. 2005. Interaction between HIF-1 alpha (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1 alpha. FEBS Lett 579:6428-6432.
120. Bilton, R., Mazure, N., Trottier, E., Hattab, M., Dery, M.A., Richard, D.E., Pouyssegur, J., and Brahimi-Horn, M.C. 2005. Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1alpha and is not induced by hypoxia or HIF. J Biol Chem 280:31132-31140.
121. Kim, S.H., Park, J.A., Kim, J.H., Lee, J.W., Seo, J.H., Jung, B.K., Chun, K.H., Jeong, J.W., Bae, M.K., and Kim, K.W. 2006. Characterization of ARD1 variants in mammalian cells. Biochem Biophys Res Commun 340:422-427.
122. Chang, C.C., Lin, M.T., Lin, B.R., Jeng, Y.M., Chen, S.T., Chu, C.Y., Chen, R.J., Chang, K.J., Yang, P.C., and Kuo, M.L. 2006. Effect of connective tissue growth factor on hypoxia-inducible factor 1alpha degradation and tumor angiogenesis. J Natl Cancer Inst 98:984-995.
123. Shin, D.H., Chun, Y.S., Lee, K.H., Shin, H.W., and Park, J.W. 2009. Arrest defective-1 controls tumor cell behavior by acetylating myosin light chain kinase. PLoS One 4:e7451.
124. Yu, M., Gong, J., Ma, M., Yang, H., Lai, J., Wu, H., Li, L., Li, L., and Tan, D. 2009. Immunohistochemical analysis of human arrest-defective-1 expressed in cancers in vivo. Oncol Rep 21:909-915.
125. Ren, T., Jiang, B., Jin, G., Li, J., Dong, B., Zhang, J., Meng, L., Wu, J., and Shou, C. 2008. Generation of novel monoclonal antibodies and their application for detecting ARD1 expression in colorectal cancer. Cancer Lett 264:83-92.
126. Midorikawa, Y., Tsutsumi, S., Taniguchi, H., Ishii, M., Kobune, Y., Kodama, T., Makuuchi, M., and Aburatani, H. 2002. Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis. Jpn J Cancer Res 93:636-643.
127. Arnesen, T., Thompson, P.R., Varhaug, J.E., and Lillehaug, J.R. 2008. The protein acetyltransferase ARD1: a novel cancer drug target? Curr Cancer Drug Targets 8:545-553.
128. Kuo, H.P., and Hung, M.C. Arrest-defective-1 protein (ARD1): tumor suppressor or oncoprotein? Am J Transl Res 2:56-64.
129. Suzuki, M., Sunaga, N., Shames, D.S., Toyooka, S., Gazdar, A.F., and Minna, J.D. 2004. RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res 64:3137-3143.
130. Jung, J.K., Arora, P., Pagano, J.S., and Jang, K.L. 2007. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res 67:5771-5778.
131. Chen, W.Y., Juan, L.J., and Chung, B.C. 2005. SF-1 (nuclear receptor 5A1) activity is activated by cyclic AMP via p300-mediated recruitment to active foci, acetylation, and increased DNA binding. Mol Cell Biol 25:10442-10453.
132. Hsu, C.H., Chang, M.D., Tai, K.Y., Yang, Y.T., Wang, P.S., Chen, C.J., Wang, Y.H., Lee, S.C., Wu, C.W., and Juan, L.J. 2004. HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. EMBO J 23:2269-2280.
133. Lee, S.B., Ou, D.S., Lee, C.F., and Juan, L.J. 2009. Gene-specific Transcriptional Activation Mediated by the p150 Subunit of the Chromatin Assembly Factor 1. J Biol Chem 284:14040-14049.
134. Juan, L.J., Shia, W.J., Chen, M.H., Yang, W.M., Seto, E., Lin, Y.S., and Wu, C.W. 2000. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem 275:20436-20443.
135. Yokochi, T., and Robertson, K.D. 2002. Preferential methylation of unmethylated DNA by Mammalian de novo DNA methyltransferase Dnmt3a. J Biol Chem 277:11735-11745.
136. McKinney, K., Mattia, M., Gottifredi, V., and Prives, C. 2004. p53 linear diffusion along DNA requires its C terminus. Mol Cell 16:413-424.
137. Makar, K.W., Perez-Melgosa, M., Shnyreva, M., Weaver, W.M., Fitzpatrick, D.R., and Wilson, C.B. 2003. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol 4:1183-1190.
138. Asaumi, M., Iijima, K., Sumioka, A., Iijima-Ando, K., Kirino, Y., Nakaya, T., and Suzuki, T. 2005. Interaction of N-terminal acetyltransferase with the cytoplasmic domain of beta-amyloid precursor protein and its effect on A beta secretion. J Biochem 137:147-155.
139. Jones, P.A., and Baylin, S.B. 2007. The epigenomics of cancer. Cell 128:683-692.
140. Issa, J.P. 2004. CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988-993.
141. Wang, G., Hu, X., Lu, C., Su, C., Luo, S., and Luo, Z.W. 2008. Promoter-hypermethylation associated defective expression of E-cadherin in primary non-small cell lung cancer. Lung Cancer 62:162-172.
142. Grady, W.M., Willis, J., Guilford, P.J., Dunbier, A.K., Toro, T.T., Lynch, H., Wiesner, G., Ferguson, K., Eng, C., Park, J.G., et al. 2000. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet 26:16-17.
143. Ke, H., Pei, J., Ni, Z., Xia, H., Qi, H., Woods, T., Kelekar, A., and Tao, W. 2004. Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L). Exp Cell Res 298:329-338.
144. Cho, W.J., Shin, J.M., Kim, J.S., Lee, M.R., Hong, K.S., Lee, J.H., Koo, K.H., Park, J.W., and Kim, K.S. 2009. miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells 28:521-527.
145. Wang, F., Zhu, Y., Huang, Y., McAvoy, S., Johnson, W.B., Cheung, T.H., Chung, T.K., Lo, K.W., Yim, S.F., Yu, M.M., et al. 2005. Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis. Oncogene 24:3875-3885.
146. Lee, P.J., Washer, L.L., Law, D.J., Boland, C.R., Horon, I.L., and Feinberg, A.P. 1996. Limited up-regulation of DNA methyltransferase in human colon cancer reflecting increased cell proliferation. Proc Natl Acad Sci U S A 93:10366-10370.
147. Aoki, E., Ohashi, H., Uchida, T., Murate, T., Saito, H., and Kinoshita, T. 2003. Expression levels of DNA methyltransferase genes do not correlate with p15INK4B gene methylation in myelodysplastic syndromes. Leukemia 17:1903-1904.
148. Eads, C.A., Danenberg, K.D., Kawakami, K., Saltz, L.B., Danenberg, P.V., and Laird, P.W. 1999. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res 59:2302-2306.
149. Kim, H., Kwon, Y.M., Kim, J.S., Han, J., Shim, Y.M., Park, J., and Kim, D.H. 2006. Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer 107:1042-1049.
150. Belinsky, S.A. 2004. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4:707-717.
151. Gottardi, C.J., Wong, E., and Gumbiner, B.M. 2001. E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 153:1049-1060.
152. Stockinger, A., Eger, A., Wolf, J., Beug, H., and Foisner, R. 2001. E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J Cell Biol 154:1185-1196.
153. Su, L.J., Chang, C.W., Wu, Y.C., Chen, K.C., Lin, C.J., Liang, S.C., Lin, C.H., Whang-Peng, J., Hsu, S.L., Chen, C.H., et al. 2007. Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics 8:140.
154. Landi, M.T., Dracheva, T., Rotunno, M., Figueroa, J.D., Liu, H., Dasgupta, A., Mann, F.E., Fukuoka, J., Hames, M., Bergen, A.W., et al. 2008. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One 3:e1651.
155. Spira, A., Beane, J.E., Shah, V., Steiling, K., Liu, G., Schembri, F., Gilman, S., Dumas, Y.M., Calner, P., Sebastiani, P., et al. 2007. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med 13:361-366.
156. Strazisar, M., Mlakar, V., and Glavac, D. 2009. LATS2 tumour specific mutations and d
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22691-
dc.description.abstract抑癌基因啟動子的高度甲基化抑制抑癌基因轉錄於腫瘤形成過程扮演重要角色,然而主導基因甲基化的甲基轉移酶活性調控及其結合至目標基因等機制未明。我們發現甲基轉移酶DNA methyltransferase 1 (DNMT1)可與負責催化蛋白質alpha-及epsilon-乙醯化反應的人類蛋白hNaa10p/hARD1產生交互作用。多項證據明確指出hNaa10p/hARD1可透過DNMT1使細胞癌化。我們發現hNaa10p的過量表現與肺癌患者的預後不佳具有正相關性。與此現象相符的是,當細胞大量表現外生性hNaa10p時,細胞出現轉型現象(cell transformation)。利用小片段干擾RNA減少肺癌細胞hNaa10p基因表現,可使癌細胞增殖能力受損,並減少其於小鼠體內形成腫瘤能力。hNaa10p的致癌能力主要與DNMT1的結合相關,而非其造成DNMT1乙醯化所致。我們更發現,hNaa10p可促進DNMT1與其受質DNA結合,並藉此增加DNMT1活性。細胞實驗亦證實hNaa10p可吸引DNMT1與抑癌基因(例如: E-cadherin) 啟動子結合,增加E-cadherin啟動子甲基化,並降低其基因表現。這些現象完全依賴hNaa10p與DNMT1結合。我們更進一步指出,E-cadherin並非唯一受影響基因。根據上述觀察,我們不僅確認hNaa10p為致癌基因,並釐清hNaa10p乃藉由調控DNMT1的功能促進腫瘤形成。zh_TW
dc.description.abstractHypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on the hNaa10p/hARD1 (human arrest-defective 1), a human protein capable of catalyzing both N-alpha- and epsilon-acetylation, have generated conflicting results with regard to its role in tumorigenesis. Here we provide multiple lines of evidence supporting its oncogenic function. We show that hNaa10p overexpression correlates with poor survival of human lung cancer patients. Consistently, enforced expression of hNaa10p is sufficient to cause cellular transformation and siRNA-mediated depletion of hNaa10p impairs cancer cell proliferation in colony assays and xenograft studies. The oncogenic potential of hNaa10p seems to depend on its interaction with the DNA methyltransferase DNMT1, but not the hNaa10p-mediated DNMT1 acetylation. Mechanistically, hNaa10p positively regulates the enzymatic activity of DNMT1 by facilitating its binding to DNA in vitro and its recruitment to promoters of tumor suppressor genes, such as E-cadherin, in vivo. Importantly, interaction between hNaa10p and DNMT1 is required for E-cadherin silencing through promoter CpG methylation and E-cadherin repression contributes to the hNaa10p-mediated oncogenic property. Together our studies not only establish hNaa10p as an oncoprotein, but also reveal that hNaa10p contributes to oncogenesis through modulation of DNMT1 function.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:24:47Z (GMT). No. of bitstreams: 1
ntu-99-D93448004-1.pdf: 1907426 bytes, checksum: 3835eb44d78dee8c2188629185573b2d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents I
List of Figures IV
List of Tables VI
中文摘要 1
Abstract 2
Chapter I: Introduction 3
1. DNA methyltransferase (DNMT) family 4
1.1 DNA methylation, the epigenetic modification catalyzed by DNMT family 4
1.2 Aberrant DNA methylation in cancer 5
1.3 Regulation of DNMTs 6
1.4 Functional domains and interacting proteins of DNMT1 8
2. human Naa10p/human arrest-defective 1 11
2.1 N-α-acetylation, the conserved biological functions of Naa10p 11
2.2 Naa10p, a conserved protein acetyltransferase throughout eukaryotic kindom 12
2.3 Biological functions of mammalian Naa10p 12
2.4 Dysregulation of Naa10p in cancer 13
Specific Aims 15
Chapter II: Materials and Methods 16
Lung cancer patients, clinical sample preparation, real-time PCR and IHC assay 17
Cell culture and transfection 18
Plasmids and siRNAs 18
Antibodies 19
In vivo acetylation assay 20
In vitro auto-acetylation assay 20
Generation of stable clones by lentivirus infection, cell proliferation, soft agar and NOD-SCID mice tumorigenicity assays 20
IP, Western, and luciferase assay 21
GST pull-down and EMSA assays 21
DNA methyltransferase assay (DNMT assay) 22
ChIP and cDNA analysis 23
Bisulfite sequencing 23
Statistics 24
Chapter III: Results 25
1. hNaa10p overexpression is correlated to the poor prognosis in human lung cancer tissues 26
2. hNaa10p contributes to clonogenesis in lung cancer cells 26
3. hNaa10p associates with DNMT1 27
4. hNaa10p association with DNMT1 is crucial for its oncogenic potential 28
5. hNaa10p maintains and stimulates the DNMT1 methyltransferase activity 29
6. hNaa10p enhances the DNA-binding ability of DNMT1 both in vitro and in vivo 30
7. hNaa10p regulates the methylation on E-cadherin promoter 31
8. hNaa10p-mediated repression of E-cadherin and LATS2 in
DNMT1-dependent manner contributes to hNaa10p oncogenic ability 32
Chapter IV: Summary and Discussion 35
Figures 40
Tables 59
References 64
dc.language.isoen
dc.subject癌症zh_TW
dc.subjectDNA甲基轉移&#37238zh_TW
dc.subject乙醯基轉移&#37238zh_TW
dc.subjecthNaa10p/hARD1zh_TW
dc.subject表遺傳調控zh_TW
dc.subject高度甲基化抑癌基因zh_TW
dc.subjectcanceren
dc.subjecthNaa10p/hARD1 (human arrest-defective 1)en
dc.subjectDNA methyltransferaseen
dc.subjectepigenetic regulationen
dc.subjecthypermethylated tumor suppressor geneen
dc.title乙醯基轉移酶hNaa10p/hARD1協助DNA甲基轉移酶DNMT1抑制抑癌基因活化之機制探討zh_TW
dc.titlehNaa10p/Human arrest-defective 1 contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencingen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.coadvisor吳成文(Cheng-Wen Wu)
dc.contributor.oralexamcommittee李芳仁(Fang-Jen Lee),王憶卿(Yi-Ching Wang),施修明(Hsiu-Ming Shih)
dc.subject.keywordDNA甲基轉移&#37238,乙醯基轉移&#37238,hNaa10p/hARD1,表遺傳調控,高度甲基化抑癌基因,癌症,zh_TW
dc.subject.keywordDNA methyltransferase,hNaa10p/hARD1 (human arrest-defective 1),epigenetic regulation,hypermethylated tumor suppressor gene,cancer,en
dc.relation.page79
dc.rights.note未授權
dc.date.accepted2010-06-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved