請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22684完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王振男(Jenn-Nan Wang) | |
| dc.contributor.author | Yi-Hsuan Lin | en |
| dc.contributor.author | 林奕亘 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:24:34Z | - |
| dc.date.copyright | 2010-06-28 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-18 | |
| dc.identifier.citation | [1] A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Commun. in PDEs, 27 (2002), 635-668.
[2] C. E. Kenig, J. Sjstrand, and G. Uhlmann, The Caldern problems with partial data, Ann. of Math. (2), 165 (2007), 567-591. [3] D. Dos Santos Ferreira, C. E. Kenig, J. Sjstrand, and G. Uhlmann, Determining a magnetic Schrdinger operators from partial Cauchy data. Comm. Math. Physics. 271 (2007), no. 2, 467-488. [4] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Second edition, Springer, Berlin, 1983. [5] G. Nakamura and K. Yoshida, Identification of a non-convex obstacle for acoustical scattering. J. Inverse Ill-Posed Probl. 15 (2007), 611-624. [6] G. Uhlmann and J.-N. Wang, Reconstruction discontinuities using complex geometrical optics solutions, SIAM J. Appl. Math., 68 (2008), 1026-1044. [7]s K. Yoshida, Reconstruction of a penetrable obstacle by complex spherical waves, J. Math. Anal. Appl (2010), 1-13. [8] Sei Nagayasu, G.Uhlmann and J.-N Wang, Reconstruction of penetrable obstacles in acoustics (preprint). [9] T. IDE, H. Isozaki, S. Nakata, S. Siltanen, G. Uhlmann, Probing for Electrical Inclusions with Complex Spherical Waves, Comm Appl. Math. 60 (10) (2007), 1415-1442. [10] Y.Y.Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22684 | - |
| dc.description.abstract | 我們將用可穿透聲波來重建非凸集合的障礙物,在二維或者三維的非均勻介質下考慮這個問題。我們需要利用complex geometrical optics solution 來幫助我們重建未知的障礙物。 | zh_TW |
| dc.description.abstract | We develop reconstruction schemes to determine nonconvex penetrable in a region in 2-dimensional or 3-dimensional in an inhomogeneous medium. This algorithm use complex geometrical optics solutions to the equation with general phase in 2-dimension and logarithm phase in 3-dimension. The 2-dimensional case will be demonstrated in section 2 and 3-dimensional case will be demonstrated in 3-dimension. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:24:34Z (GMT). No. of bitstreams: 1 ntu-99-R97221032-1.pdf: 766474 bytes, checksum: d3f67197cb9bbb54224825b7f3212524 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………i
誌謝……………………………………………………………………ii 中文摘要………………………………………………………………iii 英文摘要………………………………………………………………iv 第一章Introduction……………………………………………………1 第二章 CGO solution in 2-demensional case…………………………3 第三章 Tools and estimates……………………………………………9 第四章 The main theorem and its proof………………………………23 第五章 CGO solution in 3-dimensional case…………………………31 第六章 Main results in 3-dimension………………………………….33 第七章 Proof of Theorem 6.5…………………………………………35 第八章 Construction of complex spherical waves…………………….42 參考文獻……………………………………………………………….48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可穿透 | zh_TW |
| dc.subject | 障礙物 | zh_TW |
| dc.subject | reconstruction | en |
| dc.subject | penetrable | en |
| dc.title | 在不均勻介質中重建可穿透聲波的障礙物 | zh_TW |
| dc.title | Reconstruction of penetrable obstacles in acoustic in an inhomogeneous medium | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊全,林景隆(Ching-Lung Lin) | |
| dc.subject.keyword | 可穿透,障礙物, | zh_TW |
| dc.subject.keyword | reconstruction,penetrable, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-06-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 748.51 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
