Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22684
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王振男(Jenn-Nan Wang)
dc.contributor.authorYi-Hsuan Linen
dc.contributor.author林奕亘zh_TW
dc.date.accessioned2021-06-08T04:24:34Z-
dc.date.copyright2010-06-28
dc.date.issued2010
dc.date.submitted2010-06-18
dc.identifier.citation[1] A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Commun. in PDEs, 27 (2002), 635-668.
[2] C. E. Kenig, J. Sjstrand, and G. Uhlmann, The Caldern problems with partial data, Ann. of Math. (2), 165 (2007), 567-591.
[3] D. Dos Santos Ferreira, C. E. Kenig, J. Sjstrand, and G. Uhlmann, Determining a magnetic Schrdinger operators from partial Cauchy data. Comm. Math. Physics. 271 (2007), no. 2, 467-488.
[4] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Second edition, Springer, Berlin, 1983.
[5] G. Nakamura and K. Yoshida, Identification of a non-convex obstacle for acoustical scattering. J. Inverse Ill-Posed Probl. 15 (2007), 611-624.
[6] G. Uhlmann and J.-N. Wang, Reconstruction discontinuities using complex geometrical optics solutions, SIAM J. Appl. Math., 68 (2008), 1026-1044.
[7]s K. Yoshida, Reconstruction of a penetrable obstacle by complex spherical waves, J. Math. Anal. Appl (2010), 1-13.
[8] Sei Nagayasu, G.Uhlmann and J.-N Wang, Reconstruction of penetrable obstacles in acoustics (preprint).
[9] T. IDE, H. Isozaki, S. Nakata, S. Siltanen, G. Uhlmann, Probing for Electrical Inclusions with Complex Spherical Waves, Comm Appl. Math. 60 (10) (2007), 1415-1442.
[10] Y.Y.Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22684-
dc.description.abstract我們將用可穿透聲波來重建非凸集合的障礙物,在二維或者三維的非均勻介質下考慮這個問題。我們需要利用complex geometrical optics solution 來幫助我們重建未知的障礙物。zh_TW
dc.description.abstractWe develop reconstruction schemes to determine nonconvex penetrable in a region in 2-dimensional or 3-dimensional in an inhomogeneous medium. This algorithm use complex geometrical optics solutions to the equation with general phase in 2-dimension and logarithm phase in 3-dimension. The 2-dimensional case will be demonstrated in section 2 and 3-dimensional case will be demonstrated in 3-dimension.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:24:34Z (GMT). No. of bitstreams: 1
ntu-99-R97221032-1.pdf: 766474 bytes, checksum: d3f67197cb9bbb54224825b7f3212524 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書………………………………………………………i
誌謝……………………………………………………………………ii
中文摘要………………………………………………………………iii
英文摘要………………………………………………………………iv
第一章Introduction……………………………………………………1
第二章 CGO solution in 2-demensional case…………………………3
第三章 Tools and estimates……………………………………………9
第四章 The main theorem and its proof………………………………23
第五章 CGO solution in 3-dimensional case…………………………31
第六章 Main results in 3-dimension………………………………….33
第七章 Proof of Theorem 6.5…………………………………………35
第八章 Construction of complex spherical waves…………………….42
參考文獻……………………………………………………………….48
dc.language.isozh-TW
dc.subject可穿透zh_TW
dc.subject障礙物zh_TW
dc.subjectreconstructionen
dc.subjectpenetrableen
dc.title在不均勻介質中重建可穿透聲波的障礙物zh_TW
dc.titleReconstruction of penetrable obstacles in acoustic in an inhomogeneous mediumen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊全,林景隆(Ching-Lung Lin)
dc.subject.keyword可穿透,障礙物,zh_TW
dc.subject.keywordreconstruction,penetrable,en
dc.relation.page49
dc.rights.note未授權
dc.date.accepted2010-06-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
748.51 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved