請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22664完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李存修(Tsun-Siou Lee) | |
| dc.contributor.author | Hung-Chih Chen | en |
| dc.contributor.author | 陳泓志 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:23:54Z | - |
| dc.date.copyright | 2010-07-05 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-24 | |
| dc.identifier.citation | Altman, E. I., 1968, Financial Ratios, “Discriminate Analysis and the Prediction of Corporate Bankruptcy,” Journal of Finance 23, 589-609.
Altman, E. I., G. G. Haldeman, and P. Narayanan, 1977, “Zeta Analysis: A New Modelto Identify the Bankruptcy Risk of Corporations,” Journal of Banking and Finance 1, 29-54. Beaver, W. H., 1966, “Financial Ratios as Predictors of Failure,” Journal of Accounting Research 4, 71-102. Bharath, S. T. and T. Shumway, 2004, “Forecasting Default with the KMV-Merton Model,” Working paper, University of Michigan. Black, F and J. C. Cox (1976), “Valuing corporate securities: Some Effects of Bond Endenture Provisions,” Journal of Finance 31, 351-367. Blum, M. 1974, “Failure Company Discriminant Analysis,” Journal of Accounting Research 12, 1, 1-25. Claessens, S., S. Djankov, J. Fan, and L. H. P. Lang, 1999, “Resolution of Corporate Distress: Evidence from East Asia’s Financial Crisis,” The First Annual World Bank Group-Brooking Institution Conference, Palisades, New York. Collins, R. A. and R. D. Green, 1982, “Statistical Methods for Bankruptcy Forecasting,” Journal of Economics and Business 34, 4, 349-354. Cox, D.R. and E.J. Snell, 1968, “A General Definition of Residuals with Discussion,” Journal of Royal Statistical Society 30, 248-275. Deakin, E. B. 1972, “A Discriminant Analysis of Predictors of Business Failure,” Journal of Accounting Research 10, 1, 167-179. Geske, R., 1977, “The Valuation of Corporate Liabilities as Compound Options.” Journal of Financial and Quantitative Analysis 12, 541-552. Hillegeist, S. A., E. K. Keating, D. P. Cram, and K. G. Lundstedt., 2004, “Assessing the Probability of Bankruptcy,” Review of Accounting Studies 9, 5-34. Hopwood, W., 1994, “A Reexamination of Auditor versus Model Accuracy within the Context of the Going-concern Opinion Decision,” Contemporary Accounting Research, Vol.10, 409-431. Johnson, S., P. Boone, A. Breach, and E. Friedman, 2000, 'Corporate Governance in the Asian Financial Crisis,' Journal of Financial Economics, Elsevier, vol. 58(1-2), 141-186. Lee, T. S., Y. H. Yeh, and Z. T. Liu, 2003, “Can Corporate Governance Variables Enhance the Prediction Power of Accounting-Based Financial Distress Prediction Models?” Corporate Governance Symposium, Center for Economic Institute, Hitotsubashi University, Japan. CEI Working Paper Series No.2003-14. Merton, R. C. 1974, “On the Pricing of Corporate Debt: the Risk Structure of Interest Rates,” Journal of Finance 29, 449-470. Nagelkerke, J. D., 1991, “Miscellanea: A Note on a General Definition of the Coefficient of Determination”, Biometrika, 78(3), 691-692. Ohlson, J. A., 1980, “Financial Ratios and the Probabilistic Prediction of Bankruptcy”, Journal of Accounting Research 18, 109-131. Platt, H. D. and M. Platt, 1990, “Developing A Stable Class of Predictive Variables:the Case of Bankruptcy Prediction”, Journal of Business Finance and Accounting, Vol.17, No.1, 31-51. Shumway, T., 2001, “Forecasting Bankruptcy More Accurately: A Simple Hazard Model,” Journal of Business 74, 101-124. Sobehart J. R., R. M. Stein, 2000, “Moody’s Public Firm Risk Model: A Hybrid Approach to Modeling Short Term Default Risk”, Moody’s Investors Service. Stephen, K., 2003, “Quantifying Credit Risk I: Default Prediction,” Financial Analysts Journal 59, 1, 30-44. Tudela, M. and G. Young, 2003, “Predicting Default among UK Companies: a Merton Approach,” Financial Stability Review. Whitaker, R. B., 1999, “The Early Stages of Financial Distress,” Journal of Economics and Finance 23, 123-132. Zmijewski, M. E., 1984, “Methodological Issues Related to the Estimation of Financial Distress Prediction Models.” Journal of Accounting Research 22, 59-82. 邱志榮(1991) ,「公司營運危機之預測-財務比率輿現金流量比率之比較」, 國立成功大學工業管理研究所碩士論文。 林佳穎(2002),「財務危機公司特性與公司治理之探討」,國立台灣大學會計學研究所。 陳明賢(1986),「財務危機預測之計量分析研究」,台灣大學商學研究所碩士論文。 陳業寧、王衍智、許鴻英(2004),「台灣企業財務危機之預測:信用評分法與選擇權評價法孰優?」,風險管理學報,第六卷,第二期,155-179頁。 許溪南、歐陽豪、陳慶芳(2007),「公司治理、盈餘管理與財務預警模型之建構」,會計與公司治理,第4卷,第1期,85-121頁。 黃小玉(1988),「銀行放款信用評估模式之研究-最佳模式之選擇」,淡江大學管理科學研究所碩士論文。 黃振豐、呂紹強(2000),「企業財務危機預警模型之研究-以財務及非財務因素建構」,當代會計,第一卷,第一期,19-40頁。 黃博怡、張大成、江欣怡(2006),「考慮總體經濟因素之企業危機預警模型」,金融風險管理季刊,第二卷,第二期,75-89頁。 黎明淵(2006),「公司財務危機再探討-以公司治理、多角化策略與衍生性商品操作論之」,行政院國家科學委員會專題研究計畫。 蔡其勳(2006),「從會計師資訊的角度建構企業財務危機預警模型」,靜宜大學企業管理研究所碩士論文。 蘇敏賢,林修葳(2006),「Merton 模型預測違之使用限制探索」,金融風險管理季刊,第二卷,第三期,65-87頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22664 | - |
| dc.description.abstract | 本文針對台灣企業,以提升危機預測能力為目的,使用引入五類變數的二元Logit模型建立財務危機預警模型。我們整合傳統上由徵信人員同時考量眾多資訊的專家系統的精神,以及國內學者研究發現在台灣市場預測效果較佳的Logit模型,彙集過去研究發現具顯著影響危機預測能力的各種變數,包括:會計變數、Merton的KMV模型中代表市場變數的違約距離(DD)、公司治理變數、會計師變數,以及總體經濟變數,設計出一個同時符合傳統專家系統徵信考慮眾多因素的概念,又符合計量方法及客觀性的整合模型。我們檢驗未來一年企業發生財務危機的預測準確性,並觀察陸續引入各類變數時預測能力的變化,並再次驗證過去研究認為具影響預警能力的變數的顯著性。
實證結果發現,同時包含五種變數的整合模型,在in-sample預測總準確率為90.9%,與會計模型的90.0%相比略為提升;在out-sample的預測總準確率為95.6%,與會計模型93.4%相比小幅提升,尤其在危機公司預測的準確率由65.9%大幅提升至84.4%。結論發現,整合模型的五類變數在危機預測皆有顯著影響,其中會計變數是其中解釋能力最強的變數,市場變數次之,其餘變數的解釋能力則相對較弱。在預測能力方面,僅使用會計變數的預測準確率即可達到90%水準,顯示會計變數仍是最重要的變數,但在加入其他變數後仍可使模型解釋力更強並增加預測力,其中又以加入市場變數與加入總體經濟變數時的影響較大。 | zh_TW |
| dc.description.abstract | This paper aims to build a more predictable financial early warning system for Taiwan companies with Binary Logit model. We integrate traditional Expert system and Logit model, using five categories of variables including accounting variables, market variables, corporate governance variables, accountant variables, and macroeconomics variables, to build an integrating Logit model which conforms to expert system’s spirit that uses lots of information and does not lack in objectivity and theoretical background. We examine the one year later predict accuracy of corporate financial distress, and the changes in predict ability when continually adding each variable. We also examine the prior studies variables’ significance of affecting the predict ability.
We find that after considering the five categories of variables, the expert system integrating model’s in-sample predict accuracy is 90.9%, slightly higher than accounting model’s 90.0%; and out-sample predict accuracy is 95.6%, also higher than accounting model’s 93.4%, especially the predict accuracy in financial distress companies growing from 65.9% to 84.4%. We conclude that all the five categories of variables have significant effect to financial distress prediction, and accounting variables have the best explanatory power, market variables are the second best one, but the other variables’ explanatory power are much weaker. In predict ability, we can get 90% predict accuracy when only using accounting variables, showing that accounting variables are still the most important factor. We also can improve the predict accuracy and explanatory power when adding other variables, and the market variables and macroeconomic variables especially have the higher contribution. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:23:54Z (GMT). No. of bitstreams: 1 ntu-99-R97723078-1.pdf: 402365 bytes, checksum: 102fe6a890640461c03bf3fb674ff8b0 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄
誌謝……………………………………………………………………… i 中文摘要…………………………………………………………………ii 英文摘要…………………………………………………………………iii 圖目錄…………………………………………………………………… v 表目標……………………………………………………………………vi 壹、緒論………………………………………………………………… 1 貳、文獻回顧…………………………………………………………… 4 參、研究方法與實證資料………………………………………………14 一、樣本的選取與設計……………………………………………14 二、研究方法………………………………………………………16 三、研究變數………………………………………………………19 四、檢定法介紹…………………………………………………………21 肆、實證結果……………………………………………………………24 一、兩樣本獨立性t檢定…………………………………………………24 二、二元Logit迴歸分析……………………………………………28 三、實證結果解讀…………………………………………………28 伍、結論與建議…………………………………………………………37 參考文獻…………………………………………………………………39 圖目錄 圖一、KMV模型示意圖…………………………………………………9 表目錄 表3.1 危機公司及正常公司樣本數………………………………… 16 表3.2 模型設計列表…………………………………………………17 表3.3 變數選擇列表………………………………………………… 20 表4.1 兩樣本獨立性t檢定:會計變數………………………………24 表4.2 兩樣本獨立性t檢定:市場變數………………………………25 表4.3 兩樣本獨立性t檢定:公司治理變數…………………………25 表4.4 兩樣本獨立性t檢定:會計師變數……………………………26 表4.5 兩樣本獨立性t檢定:總體經濟變數…………………………26 表4.6 二元Logit模型:五類變數實證結果…………………………29 表4.7 二元Logit模型:五種模型實證結果…………………………31 | |
| dc.language.iso | zh-TW | |
| dc.subject | 公司治理 | zh_TW |
| dc.subject | 財務危機預警 | zh_TW |
| dc.subject | 信用評分系統 | zh_TW |
| dc.subject | Logit模型 | zh_TW |
| dc.subject | KMV模型 | zh_TW |
| dc.subject | Corporate Governance | en |
| dc.subject | Financial Distress | en |
| dc.subject | Credit Scoring System | en |
| dc.subject | Logit Model | en |
| dc.subject | KMV Model | en |
| dc.title | 企業財務危機預警模型:整合式Logit模型 | zh_TW |
| dc.title | Financial Early Warning System: An Integrating Logit Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡星陽(Shing-Yang Hu),柯承恩(Chen-En Ko) | |
| dc.subject.keyword | 財務危機預警,信用評分系統,Logit模型,KMV模型,公司治理, | zh_TW |
| dc.subject.keyword | Financial Distress,Credit Scoring System,Logit Model,KMV Model,Corporate Governance, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-06-25 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 392.93 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
