請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22653完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮凱 | |
| dc.contributor.author | Chee-Fai Yung | en |
| dc.contributor.author | 容志輝 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:23:33Z | - |
| dc.date.copyright | 2010-07-05 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-28 | |
| dc.identifier.citation | 1. A. Ailon, Controllability of Generalized Linear Time-Invariant Systems, IEEE Transactions on Automatic Control, Vol. AC-32, No. 5, pp. 429-432, 1987.
2. J. Bender and A. J. Laub, The Linear-Quadratic Optimal Regulator for Descriptor System, IEEE Transactions on Automatic Control, Vol.AC-23, No. 1, 672-688, 1987. 3. S. Bittanti, , A. J. Laub, and J. C. Willems, (Eds), The Riccati Equation, Springer Berlin, 1991. 4. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM's Classics in Applied Mathematics series, 1996. 5. S. L. Campbell, Singular Systems of Differential Equations I, Pitman, New York, 1980. 6. S. L. Campbell, Singular Systems of Differential Equations II, Pitman, New York, 1982. 7. D. J. Cobb, Controllability, Observability, and Duality in Singular Systems, IEEE Transactions on Automatic Control, Vol. AC-29, No. 12, pp. 1076-1082, 1984. 8. L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin, Heidelberg 1989. 9. B. Dziurla and R. W. Newcomb, The Drazin Inverse and Semi-State Equations, Proceedings of the International Symposium on Mathematical Theory of Networks and Systems, Delft, pp. 283-289, 1979. 10. C. H. Fang and F. R. Chang, Analysis of Stability Robustness for Generalized State-Space Systems with Structured Perturbations, Systems and Control Letters, Vol. 21, No. 2, pp. 109-114, 1993. 11. F. R. Gantmacher, The Theory of Matrices, Vol. I and II, Chelsea, New York, 1959. 12. S. J. Hammarling, Numerical Solution of the Stable Non-negative Definite Lyapunov Equation, IMA J. Numer. Anal., Vol. 2, pp. 303-323, 1982. 13. G. E. Hayton, P. Fretwell, and A. C. Pugh, Fundamental Equivalence of Generalized State Space Systems, IEEE Transactions on Automatic Control, Vol.AC-31, No. 5, pp. 431-439, 1986. 14. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1990. 15. V. Ionescu, C. Oara, and M. Weiss, Generalized Riccati Theory and Robust Control: A Popov Function Approach}, John Wiley & Sons, Chichester, England, 1999. 16. N. Karcanias, Regular State-Space Realizations of Singular System Control Problems, Proceedings of the 28th Conference on Decision and Control, Los Angeles, CA, pp. 1144-1146, 1987. 17. C. F. Klamm, Jr., B. D. O. Anderson, and R. W. Newcomb, Stability of Passive Time-Variable Circuits, Proceedings of the IEE, Vol. 114, No. 1, pp. 71-75, 1967. 18. V. Kucera, Stationary LQG Control of Singular Systems, IEEE Transactions on Automatic Control, Vol.AC-31, No. 1, pp. 31-39, 1986. 19. M. Kuijper, First-Order Representations of Linear Systems. Birkhauser, Boston, 1994. 20. P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science Publication, 1995. 21. W. W. Leontieff, Static and Dynamic Theory, in Studies in the Structure of the American Economy (ed: W. W. Leontieff), Oxford University Press, New York, 1953. 22. F. L. Lewis, A Survey of Linear Singular Systems, Circuits, Systems, and Signal Process, Vol. 5, No. 1, pp. 3-36, 1986. 23. F. L. Lewis, A Tutorial on the Geometric Analysis of Linear Time-invariant Implicit Systems, Automatica, Vol. 28, No. 1, pp. 119-137, 1992. 24. P. Lotstedt and L. Petzold, Numerical Solution of Nonlinear Differential Equations with Algebraic Constraints, I: Convergence Results for Backward Differentiation Formulas, Mathematics of Computation, Vol. 46, No. 174, pp. 491-516, 1986. 25. D. G. Luenberger, Singular Dynamic Leontieff Systems, Econometrica, Vol. 45, pp. 991-995, 1977. 26. D. G. Luenberger, Dynamic Equations in Descriptor Form, IEEE Transactions on Automatic Control, Vol.AC-22, No. 3, pp. 312-321, 1977. 27. D. G. Luenberger, Non-Linear Descriptor Systems, Journal of Economic Dynamics and Control, Vol. 1, pp. 212-242, 1979. 28. J. W. Manke, B. Dembart, M. A. Epton, A. M. Erisman, P. Lu, R. F. Sincovec, and E. L. Yip, Solvability of Large Scale Descriptor Systems, Report, Boeing Computer Services Company, Seattle, WA, 1979. 29. R. Marz, On Initial Value Problems in Differential-Algebraic Equations and Their Numerical Treatment, Computing, Vol. 35, No. 1, pp. 13-37, 1985. 30. N. H. McClamroch, Singular Systems of Differential Equations as Dynamic Models for Constrained Robot Systems, Proceedings of the IEEE Conference on Robotics and Automations, San Francisco, California, pp. 21-28, 1986. Circuit, Systems and Signal Process, Vol. 8, No. 3, PP. 235-260, 1989. 31. R. W Newcomb and B. Dziurla, Some Circuits and Systems Applications of Semistate Thoery, Circuit, Systems and Signal Process, Vol. 8, No. 3, PP. 235-260, 1989. 32. L. Petzold, Numerical Solution of Differential/Algebraic Systems by Implicit Runge-Kutta Methods, Proceedings of the 27th Midwest Symposium on Circuits and Systems, Morgantown, West Virginia, pp. 678-691, 1984. 33. S. Reich, On an Existence and Uniqueness Theory for Nonlinear Differential-Algebraic Equations, Circuits, Systems and Signal Processing, Vol. 10, No. 3, pp. 343-359, 1991. 34. R. E. Skelton, T. Iwasaki, and K. M. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, Taylor & Francis, 2004. 35. T. Stykel, Stability and inertia theorems for generalized Lyapunov equations, Linear Algebra and its Applications, Vol. 355, pp.297-314, 2002. 36. V. L. Syrmos, P Misra, and R. Aripirala, On the Discrete Generalized Lyapunov Equation, Automatica, Vol. 31, No.2, pp.291-301, 1995. 37. K. Takaba, N. Morihira, and T. Katayama, H-infinity Control for Descriptor Systems - A J-Spectral Factorization Approach, Proceedings of 33rd Conference on Decision and Control, Lake Buena Vista, Florida, pp. 2251-2256, 1994. 38. V. Venkatasubramanian, H. Schattler, and J. Zaborszky, Local Bifurcations and Feasibility Regions in Differential-Algebraic Systems, IEEE Transactions on Automatic Control, Vol.AC-40, No. 12, pp. 1992-2013, 1995. 39. G. Verghese, B. C. Levy, and T. Kailath, A Generalized State-Space for Singular Systems, IEEE Transaction on Automatic Control, Vol. AC-26, No. 4, pp. 811-831, 1981. 40. H. S. Wang, C. F. Yung, and F. R. Chang, H∞ Control for Nonlinear Descriptor Systems, Lecture notes in control and information sciences, Berlin; Springer-Verlag, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22653 | - |
| dc.description.abstract | 本論文探討矩陣束之重要幾何結構, 包括正規性、 特徵結構、 因果性等。 論文中亦探討回授允當化問題, 並研究線性離散時間描述子系統之Lyapunov理論。 文中並推導Lyapunov方程式對稱解及一般解存在之充分且必要條件, 並求出所有對稱解及一般解之表示式, 最後並舉兩個數值例子說明。 | zh_TW |
| dc.description.abstract | 英文摘要 In this thesis we present geometric characterizations of fundamental properties of matrix pencils, such as regularity, eigenstructure and causality. We also deal with the feedback admissibilization problem and develop Lyapunov theory for linear discrete-time descriptor systems. Necessary and sufficient conditions are presented for the existence of a hermitian solution and general non-hermitian solution of Lyapunov equation. Explicit formulae, expressed in terms of the geometry of the underlying pencil, for all hermitian solutions and general non-hermitian solutions of the Lyapunov equation are also given. Finally, numerical examples are given for illustration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:23:33Z (GMT). No. of bitstreams: 1 ntu-99-R95221024-1.pdf: 632447 bytes, checksum: 1b9e823622a68a04c4c5a2b489b99471 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
List of Figures vii Nomenclature ix 1 Introduction 1 1.1 Why Descriptor Systems? 1 1.2 Why Geometric Approach? 9 1.3 Organization of the thesis 10 2 Matrix Pencils 13 2.1 Geometry 13 2.2 Regularity 15 2.3 Eigenstructure 23 2.4 Causality 27 3 Feedback 35 3.1 Regularizability 36 3.2 Non-Causality Controllability and Observability 38 3.3 Stability, Stabilization and Detectability 39 3.4 Admissibility 42 4 Lyapunov Theory 47 4.1 Hermitian Solutions 55 4.2 General Solutions 69 4.3 Numerical Examples 75 5 Conclusions 93 Bibliography 95 | |
| dc.language.iso | en | |
| dc.subject | 回授允當化問題 | zh_TW |
| dc.subject | 矩陣束之幾何結構 | zh_TW |
| dc.subject | 線性離散時間描述子系統 | zh_TW |
| dc.subject | Lyapunov理論 | zh_TW |
| dc.subject | Geometry of matrix pencils | en |
| dc.subject | feedback admissibilization problem | en |
| dc.subject | Lyapunov theory | en |
| dc.subject | linear discrete-time descriptor systems | en |
| dc.title | 矩陣束之幾何結構及其在線性離散時間描述子系統之應用 | zh_TW |
| dc.title | Geometry of Matrix Pencils with Applications to Linear Discrete-Time Descriptor Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉芳柏,林文偉,蔡炎龍 | |
| dc.subject.keyword | 矩陣束之幾何結構,線性離散時間描述子系統,Lyapunov理論,回授允當化問題, | zh_TW |
| dc.subject.keyword | Geometry of matrix pencils,linear discrete-time descriptor systems,Lyapunov theory,feedback admissibilization problem, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-06-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 617.62 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
