Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22628
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李秋坤
dc.contributor.authorChih-Whi Chenen
dc.contributor.author陳志瑋zh_TW
dc.date.accessioned2021-06-08T04:22:48Z-
dc.date.copyright2010-07-06
dc.date.issued2010
dc.date.submitted2010-06-30
dc.identifier.citation[1] S.A. Amitsur, Rings of quotients and morita contexts, J. Algebra 17(1971), 273-298.
[2] H. Bass, “The Morita-theorems”, Oregon Lectures, 1962.
[3] K.I. Beidar and W.S.Martindale III and A.V. Mikhalev, “Rings with generalized identities”, Marcel Dekker, INC, 1995.
[4] A.W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Sot. 8 (1958), 589-608.
[5] A.W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Sot. 10 (1960), 201-220.
[6] N. Jacobson, “PI-algebras”, An introduction. Lecture Notes inMathematics, 441. Springer-Verlag, Berlin-New York, 1975.
[7] T.Y. Lam, “Lectures on modules and rings”, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.
[8] T.Y. Lam, “A first course in noncommutative rings. Second edition”, Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001.
[9] T.-K. Lee, A characterization of left ideals satisfieing polynomial identities, Chinese J. Math., 24(4) (1996), 359-368.
[10] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[11] K. Morita, Duality for modules and its application to the theory of rings with minimum conditions, Science Reports of the Tokyo Kyoiku Daigoku Sect. A. 6 (1958), 83-142.
[12] C. Procesi and L. Small, Endomorphism Rings of Modules over PI-Algebras, Math. Zeitschr. 106, 178-180 (1968).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22628-
dc.description.abstract在本篇論文中,我們延伸 Amitzur 對於 Morita contexts 的研究 [1]。並不假設 Morita contexts 有一致忠實的非奇異左理想,在本文章中我們給出了Morita contexts 是素環的充分必要,並且計算了中心。更進一步地,我們個別刻劃了滿足多項式恆等式與廣義多項式恆等式的Morita contexts,並且計算了多項式階數。我們在文中也給出了在經典Morita contexts 環上的應用。zh_TW
dc.description.abstractIn this thesis, we continue the study of Morita context in [1]. Without assumption that the Morita contexts has uniformly faithful, non-singular left ideal, here we give the necessary and sufficient condition of the prime Morita contexts, and compute its center.Furthermore, we characterize the Morita contexts to be a polynomial identity ring and generalized polynomial identity ring respectively, and compute its polynomial degree. We also give some applications on classical Morita context.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:22:48Z (GMT). No. of bitstreams: 1
ntu-99-R97221007-1.pdf: 434830 bytes, checksum: d262f0af7cd3dd9b552db9dc471b2755 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………………………… i
誌謝………………………………………………………………………………. ii
中文摘要………………………………………………………………………… i ii
英文摘要…………………………………………………………………………. iv
1. Introduction …..……………………………………………………………… 1
2. Primeness ……..……………………………………………………………… 1
3. PI-degree and GPI-rings ...…………………………………………………… 6
4. Primitivity and Simplicity …………………………………………………... 10
5. The associative division algebra ……………………………………………… 11
Reference ..………………………………………………………………………… 12
dc.language.isoen
dc.subjectMorita contextszh_TW
dc.subject素環zh_TW
dc.subject多項式恆等式zh_TW
dc.subject廣義多項式恆等式zh_TW
dc.subject多項式階數zh_TW
dc.subject經典Morita contextszh_TW
dc.subjectprime ringen
dc.subjectMorita contextsen
dc.subjectpolynomial degreeen
dc.subjectgeneralized polynomial identityen
dc.subjectpolynomial identityen
dc.subjectclassical Morita contextsen
dc.titleMorita contexts 環的性質zh_TW
dc.titleRing properties of Morita contextsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李白飛,蔡援宗
dc.subject.keywordMorita contexts,素環,多項式恆等式,廣義多項式恆等式,多項式階數,經典Morita contexts,zh_TW
dc.subject.keywordMorita contexts,prime ring,polynomial identity,generalized polynomial identity,polynomial degree,classical Morita contexts,en
dc.relation.page13
dc.rights.note未授權
dc.date.accepted2010-06-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
424.64 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved