請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22617
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭錦樺 | |
dc.contributor.author | Shu-Chiao Lin | en |
dc.contributor.author | 林書巧 | zh_TW |
dc.date.accessioned | 2021-06-08T04:22:28Z | - |
dc.date.copyright | 2010-09-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-03 | |
dc.identifier.citation | 第一部分 參考文獻
[1] R. Jabeen, D. Payne, J. Wiktorowicz, A. Mohammad, J. Petersen, Capillary electrophoresis and the clinical laboratory. Electrophoresis, 27, 2413-2438 (2006). [2] B.L. Karger, A.S. Cohen, A. Guttman, High-Performance Capillary Electrophoresis in the Biological Science. J. Chromatogr. B, 492, 585-614 (1989). [3] K.D. Altria, Overview of capillary eelectrophoresis and capillary electrochromatography. J. Chromatogr. A, 856, 443-463 (1999). [4] J.P. Quirino, S. Terabe, Exceeding 5000-Fold Concentration of Dilute Analytes in Micellar Electrokinetic Chromatography. Science, 282, 465-466 (1998). [5] I.L. Tsai, S.W. Sun, H.W. Liao, S.C. Lin, C.H. Kuo, Rapid analysis of melamine in infant formula by sweeping-micellar electrokinetic chromatography. J. Chromatogr. A, 1216, 8296-8303 (2009). [6] A.T. Aranas, A.M. Guidote Jr., J.P. Quirino, Sweeping and new on-line sample preconcentration techniques in capillary electrophoresis. Anal. Bioanal. Chem., 394, 175-185 (2009). [7] M.L. Goodwin, R.H. Drew, Antifungal serum concentration monitoring: an update. J Antimicrob. Chemother., 61, 17-25 (2008). [8] K.A. Marr, R.A. Carter, F. Crippa, A. Wald, L. Corey, Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin. Infect. Dis., 34, 909-917 (2002). [9] K.W. Garey, MilindRege, M.P. Pai, D.E. Mingo, K.J. Suda, R.S. Turpin, D.T. Bearden, Time to Initiation of Fluconazole Therapy Impacts Mortality in Patients with Candidemia: A Multi-Institutional Study. Clin. Infect. Dis., 43, 25-31 (2006). [10] E.H. Ibrahim, G. Sherman, S. Ward, V. J. Fraser, M. H. Kollef, The Influence of Inadequate Antimicrobial Treatment of Bloodstream Infections on Patient Outcomes in the ICU Setting. Chest, 118, 146-155 (2000). [11] M. Morrell, V. J. Fraser, M. H. Kollef, Delaying the Empiric Treatment of Candida Bloodsream Infection until Positive Blood Culture Results Are Obtained: a Potential Risk Factor for Hospital Mortality. Antimicrob. Agents Chemother., 49, 3640-3645 (2005). [12] D. Andes, A. Pascual, Antifungal Therapeutic Drug Monitoring:Established and Emerging Indications. Antimicrob. Agents Chemother., 53, 24-34 (2009). [13] E.S.D. Ashley, R. Lewis, J.S. Lewis, C. Martin, D. Andes, Pharmacology of systemic antifungal agents. Clin. Infecl.Dis., 43, S28-39 (2006). [14] K.K. Summers, T.C. Hardin, S.J. Gore, J.R. Graybill. Therapeutic drug monitoring of systematic antifungal therapy. J. Antimicrob. Chemother., 40, 753-764 (1997). [15] D.J. Touw, C. Neef, A.H. Thomson, A.A. Vinks, Cost-effectiveness of therapeutic drug monitoring:a systematic review. Ther. Drug Monit., 27, 10-17 (2005). [16] O.A. Cornely, J. Maertens, D.J. Winston, J. Perfect, A.J. Ullmann, T.J. Walsh, D. Helfgott, J. Holowiecki, D. Stockelberg, Y.T.Goh, M. Petrini, C. Hardalo, R. Suresh and D. Angulo-Gonzalez, Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N. Engl. J. Med., 356, 348-359 (2007). [17] T.J. Walsh, I. Raad, T.F. Patterson, Treatment of invasive aspergillosis with posaconazole in patients who refractory to or intolerant of conventional therapy: an external controlled trial. Clin. Infect. Dis., 44, 2-12 (2007). [18] S.M. Trifilio, C.L. Bennett, P.R. Yarnold, Breakthrough zygomycosis after voricoonazole administration among patients with hematologic malignancies who receive hematopoietic stem-cell transplants or intensive chemotherapy. Bone Marrow Tranplant., 39, 425-429 (2007). [19] M.A. Pfaller, D.J. Diekema, J.H. Rex, A. Espinel-Ingroff, E.M. Johnson, D. Andes, V. Chaturvedi, M.A. Ghannoum, F.C. Odds, M.G. Rinaldi, D.J. Sheehan, P Troke, T.J. Walsh, D.W. Warnock. Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J. Clin. Microbiol., 44, 819-826 (2006). [20] E. K. Spanakis, G. Aperis, E. Mylonakis, New Agents for the Treatment of Fungal Infections: Clinical Efficacy and Gaps in Coverage. Clin. Infect. Dis., 43, 1060-1068 (2006). [21] U. Theuretzbacher, F. Ihle, H. Derendorf, pharmacodynamic Profile of Voriconazole. Clin. Pharmacokinet., 45, 649-663 (2006). [22] Z. Desta, X. Zhao, J.-G. Shin, D. A. Flockhart, Clinical Significance of the Cytochrome P450 2C19 Genetic Polymorphism. Clin. Pharmacokinet., 41, 913-958 (2002). [23] A. Pascual, T. Calandra, S. Bolay, T. Buclin, J. Bille, O. Marchetti, Voriconazole Therapeutic Drug Monitoing in Patient with Invasive Mycoses Improves Efficacy and Safety Outcomes. Clin. Pharmacokinet., 46, 201-211 (2008). [24] L.B. Johnson, C. A. Kauffman, Voriconazole: A New Triazole Antifungal Agent. Clin. Infect. Dis., 36, 630-637 (2003). [25] G. A. Khoschsorur, F. Fruehwirth, S. Zelzer, Isocratic High Performance Liquid Chromatographic Method with Ultraviolet Detection for Simultaneous Determination of Levels of Voriconazole and Itraconazole and Its Hydroxy Metabolite in Human Serem. Antimicrob. Agents Chemother., 49, 3569-3571 (2005). [26] G. J. Pennick, M. Clark, D. A. Sutton, M.G. Rinaldi, Development and Validation of a High-Performance Liquid Chromatography Assay for Voriconazole. Antimicrob. Agents Chemother., 47, 2348-2350 (2003). [27] S. Chhun, E. Rey, A. Tran, O. Lortholary, G. Pons, V. Jullien, Simultaneous quantification of voriconazole and posaconazole in human plasma by high-performance liquid chromatography with ultra-violet detection. J. Chromatogr. B, 852, 223-228 (2007). [28] J.B. Gordien, A. Pigneux, S. Vigouroux, R. Tabrizi, I. Accoceberry, J.M. Bernadou, A. Rouault, M.C. Saux, D. Breilh, Simultaneous determination of five systemic azoles in plasma by high-performance liquid chromatography with ultraviolet detection. J. Pharm. Biomed. Anal., 50, 932-938 (2009). [29] Z.K. Shihabi, Simple Assay for Voriconazole in Serum by HPLC, J. Liq. Chromatogr. Relat. Technol., 31, 263-268 (2008). [30] S. Perea, G.J. Pennick, A. Modak, A.M. Fothergill, D.A. Sutton, D.J. Sheehan, M.G. Rinaldi, Comparison of High-Performance Liquid Chromatographic and Microbiological Methods for Determination of Voriconazole Level in Plasma. Antimicrob. Agents Chemother., 44, 1209-1213 (2000). [31] L. Zhou, R.D. Glickman, N. Chen, W.E. Sponsel, J.R. GrayBill, K.W. Lam, Determination of voriconazole in aqueous humor by liquid chromatography-electrospray ionization-mass spectrometry. J. Chromatogr. B, 776, 213-220 (2002). [32] B.G. Keevil, S. Newman, S. Lockhart, S.J. Howard, C.B. Moore, D.W. Denning, Validation of an Assay for Voriconazole in Serum Samples Using Liquid Chromatography-Tandem Mass Spectrometry. Ther. Drug. Monit., 26, 650-657 (2004). [33] H. Egle, R. Trittler, A. Konig, K. Kummerer, Fast, fully automated analysis of voriconazole from serum by LC-LC-ESI-MS-MS with parallel column-switching technique. J. Chromatogr. B, 814, 361-367 (2005). [34] J.W.C. Alffenaar, A.M.A. Wessels, K. van Hateren, B. Greijdanus, J.G.W. Kosterink, D.R.A. Uges, Method for therapeutic drug monitoring of azole antifungal drugs in human serum using LC/MS/MS. J. Chromatogr. B, 878, 39-44 (2010). [35] C. Michael, J. Teichert, R. Preiss, Determination of voriconazole in human plasma and saliva using high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B, 865, 74-80 (2008). [36] A.L. Crego, M.L. Marina, J.L. Lavandera, Optimization of the separation of a group of antifungals by capillary zone electrophoresis. J. Chromatogr. A, 917, 337-345 (2001). [37] A.L. Crego, J. Gomez, M.L. Marina, J.L. Lavandera, Application of capillary zone electrophoresis with off-line solid-phase extraction to in vitro metabolism studies of antifungals. Electrophoresis, 22, 2503-2511 (2001). [38] Micromedex® Healthcare Series, Wyeth Pharmaceuticals Inc, Philadelphia, PA, 2008. [39] A.H. Adams, G.. Gosmann, P.H. Schneider, A.M. Bergold, LC Stability Studies of Voriconazole and Structural Elucidation of Its Major Degradation Product. Chromatographia, 69, S115-S122 (2009). [40] J.P. Quirino, J.B. Kim, S. Terabe, Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr. A, 965, 357-373 (2002). [41] P.K. Owens, A.F. Fell, M.W. Coleman, J.C. Berridge, Complexation of Voriconazole Stereoisomers with Neutral and Anionic Derivatised Cycoldetrins. J. Inclusion Phenom. Macrocyclic Chem., 38, 133-151 (2000). [42] C.M. Buchanan, N.L. Buchanan, K.J. Edgar, M.G. Ramsey, Solubility and dissolution studies of antifungal drug:hydroxybutenyl-β-cyclodextrin complexs. Cellulose, 14, 35-47 (2007). [43] I.H. Andrea, N. Lucia, Morimoto, Z. Leonardo, A. M. Bergold, Treatment of Invasive fungal Infections: Stability of Voriconazole Infusion Solutions in PVC Bags. Brazil. J. Infect. Dis., 12, 400-404 (2008). [44] J.P. Quirino, J.B. Kim, S. Terabe, Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr. A, 965, 357-373 (2002). [45] K. Ueda, Y. Nannya, K. Kummano, A. Hangaishi, T. Takahashi, Y. Imai, M. Kurokawa, Monitoring trough concentration of voriconazole is important to ensure successful antifungal theraphy and to avoid hepatic damage in patients with hematological disorders. Int. J. Hematol., 89, 592-599 (2009). [46] J. Berenguer, N.M. Ali, M.C. Allende, J. Lee, K. Garrett, S. Battaglia, S.C. Piscitelli, M.G. Rinaldi, P.A. Pizzo, T.J. Walsh, Itraconazole for experimental pulmonary aspergillosis: comparison with amphotericin B, interaction with cyclosporine A, and correlation between therapeutic response and itraconazole concentrations in plasma. Antimicrob. Agents Chemother., 38, 1303-1308 (1994). [47] D.W. Denning, R.M. Tucker, L. Hanson, Treatment of invasive aspergillosis with itraconazole. Am. J. Med., 86, 791-800 (1989). [48] J.D. Cartledge, J. Midgely, B.G. Gazzard, Itraconazole solution: higher serum drug concentration and better clinical response rates than the capsule formulation in acquired immunodeficiency syndrome patients with candidosisa. J. Clin. Pathol., 50, 477-480 (1997). [49] D.A. Stevens, Itraconazole in cyclodextrin solution. Pharmacotherapy, 19, 603-611 (1999). [50] S. Jaruratansirikul, S. and A. Kleepkaew, Influence of an acidic beverage on the absorption of itraconazole. Eur. J. Clin. Pharmacol. 52, 235-237 (1997). [51] A. Van-Peer, R. Woestenborghs, J. Heykants, The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur. J. Clin. Pharmacol. 36, 423-426 (1989). [52] G. Krishna, M. Martinho, P. Chandrasekar, A.J. Ullmann, H. Patino, Pharmacokinetic of oral posaconazole in allogeneic hematopoietic stem cell transplant recipients with graft-versus-host disease. Pharmacotherapy, 27, 1627-1636 (2007). [53] R. Lewis, H. Hogan, H. Howell, A. Safdar. Progressive fusariosis: unpredictable posaconazole bioavailability, and feasiblility of recombinant interferon-gamma plus granulocyte macrophage-colony stimulating factor for refractory disseminated infection. Eeuk. Lymphoma., 49, 163-165 (2008). [54] G. Krishna, A. Sansone-Parsons, M. Martinho, B. Kantesaria, L. Pedicone, Posaconazole plasma concentrations in juvenile patients with invasive fungal infection. Antimicrob. Agents Chemother, 51, 812-818 (2007). [55] A. J. Ulmann, O.A. Cornely, A. Burchardt, Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob. Agents Chemother., 50, 658-666 (2006). [56] A. J. Ulmann, J.V. Lipton, D.H. Vesole, Posaconazole or fluconazole prophylaxis in severe graft-versus-host disease. N. Engl. J. Med., 35, 335-347, (2007). [57] P.O. Gubbins, B.J. Gurley, J. Bowman, Rapid and sensitive high performance liquid chromatographic method for the determination of itraconazole and its hydroxyl-metabolite in human serum. J. Pharm. Biomed. Anal., 16, 1005-1012 (1998). [58] V. Srivatsan, A.K. Dasgupta, P. Kale, R.R. Datla, D. Soni, M. Patel, R. Patel, C. Mavadhiya, Simultaneous determination of itraconaole and hydroxyitraconazole in human plasma by high-performance liquid chromatography. J. Chromatogr. A, 1031, 307-313 (2004). [59] W. Neubauer, A. Konig, R. Bolek, R. Trittler, M. Engelhardt, M. Jung, K. Kummerer, Determination of the antifungal agent posaconazole in human serum by HPLC with parallel column-switching technique. J. Chromatogr. B, 877, 2493-2498 (2009). [60] M. Yao, L. Chen, N.R. Srinivas, Quantitation of itraconazole in rat heparinized plasma by liquid chromatography-mass spectrometry. J. Chromatogr. B, 752, 9-16 (2001). [61] M. Vogeser, U. Spohrer and X. Schiel, Determination of Itraconazole and Hydroxyitraconazole in Plasma by Use of Liquid Chromatography-Tandem Mass Spectrometry with On-line Solid-Phase Extraction. Clin. Chem. Lab. Med., 41, 915-920 (2003). [62] C. Kousoulos, G. Tsatsou, C. Apostolou, Y. Dotsikas, Y.L. Loukas, Development of a high-throughput method for the determination of itraconazole and its hydroxyl metabolite in human plasma, employing automated liquid-liquid extraction based on 96-well formate plates and LC/MS/MS. Anal. Bioanal. Chem., 384, 199-207 (2006). [63] D.V. Bharathi, K.K. Hotha, P.V.V. Sagar, S.S. Kumar, P.R. Reddy, A. Naidu, R. Mullangi, Development and validation of a highly sensitive and robust LC-MS/MS with electrospray ionization method for simultaneous quantitation of itraconazole and hydroxyitraconazole in human plasma: Application to a bioequivalence study. J. Chromatogr. B, 868, 70-76 (2008). [64] J.X. Shen, G. Krishna, R.N. Hayes, A sensitive liquid chromatography and mass spectrometry method for the determination of posaconazole in human plasma. J. Pharm. Biomed. Anal., 43, 228-236 (2007). [65] J.M. Cunliffe, C.F. Noren, R.N. Hayes, R.P. Clement, J.X. Shen, A high-throughput LC-MS/MS method for the quantitation of posaconazole in human plasma: Implementing fused core silica liquid chromatography. J. Pharm. Biomed. Anal., 50, 46-52 (2009). [66] K.D. Beule, Itraconazole: pharmacology, clinical experience and future development. Int. J. Antimicrob. Ag., 6, 175-181, (1996). [67] J.B. Gordien, A. Pigneux, S. Vigouroux, R. Tabrizi, I. Accoceberry, J.M. Bernadou, A. Rouault, M.C. Saux, D. Breilh, Simultaneous dtermination of five systemic azoles in plasma by high-performance liquid chromatography with ultraviolet detection. J. Pharmaceut. Biomed. 50, 932-938 (2009). [68] J.W.C. Alffenaar, A.M.A. Wessels, K. van Hateren, B. Greijdanus, J.G.W. Kosterink, D.R.A. Uges, Method for therapeutic drug monitoring of azole antifungal drus in human serum using LC/MS/MS. J. Chromatogr. B, 878, 39-44 (2010). [69] N. Chen, S. Terabe, T. Nakagawa, Effect of organic modifier concentrations on electrokinetic migrations in micellar electrokinetic chromatography. Electrophoresis, 16, 1457-1462 (1995). [70] J. Palmer, N.J. Munro, J.P. Landers, A Universal Concept for Stacking Neutral Analytes in Micellar Capillary Electrophoresis. Anal. Chem., 71, 1679-1687 (1999). [71] B.C. Giordano, C.I.D. Newman, P.M. Federowicz, G.E. Collins, D.S. Burgi, Micelle Stacking in Micellar Electrokinetic Chromatography. Anal. Chem., 79, 6287-6294 (2007). [72] U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine, Guidance for Industry-Bioanalytical Method Validation. May (2001). 第二部分 參考文獻 [1] C.K. Lim, G. Lord, Current Development in LC-MS for Pharmaceutical Analysis. Biol. Pharm. Bull., 25, 547-557 (2002). [2] P. Marquet , Progress of Liquid Chromatography-Mass Spectrometry in Clinical and Forensic Toxicology. Ther. Drug Monit., 24, 255-276 (2002). [3] M.S. Lee, E.H. Kerns, LC/MS APPLICATIONS IN DRUG DEVELOPMENT. Mass Spectrometry Reviews, 18, 187-279 (1999). [4] M. Jemal, Y.Q. Xia, LC-MS Development Strategies for Quantitative Bioanalysis. Current Drug Metabolism, 7, 491-502 (2006). [5] 中華中藥典,行政院衛生署編印,中華民國九十三年,第一版,p.126. [6] 中國醫藥文化網(culture pharmaceutical culture society), http://www.cpcs.org.cn/ [7] L. Zhang, Y. Dong, Y. Sun, T. Chen, Q. Xu, Role of four major components in the effect of Si-Ni-San, a traditional Chinese prescription, against contact sensitivity in mice. J. Pharm. Pharmacol., 58, 1257-1264 (2006). [8] M.J. Hsu, J.S. Cheng, H.C. Huang, Effect of saikosaponin, a triterpene saponin, on apoptosis in lymphocytes:association with c-myc, p53, and bcl-2 m-RNA. Brit. J. Pharmacol., 131, 1285-1293 (2000). [9] Y. Sun, T.T. Cai, X.B. Zhou, Q. Xu, Saikosaponin a inhibits the proliferation and activation of T celld through cell cycle arrest and induction of apoptosis. Int. Immunopharmacol., 9, 978-983 (2009). [10] K. Shimizu, S. Amagaya, Y. Ogihara, New Derivatives of Saikosaponins. Chem. Pharm. Bull., 33, 3349-3355 (1985). [11] C.C. Lin, M.H. Yen, J.Y. Chen, C.H. Chuang, T. Namba, Anatomical and histological studies of Bupleuri radix., Am. J. Chin. Med,.19, 265-274 (1991). [12] R.T. Tian, P.S. Xie, H.P. Liu, Evaluation of traditional Chinese herbal medicine: Chaihu(Buppleuri Radix) by both high-performance liquid chromatography and high-performance thin-layer chromatographic fingerprint and chemometric analysis. J. Chromatogr. A,1216, 2150-2155 (2009). [13] Y.Z. Hsieh, H. Y. Huang, Determination of saikosaponins by micellar electrokinetic capillary chromatography. J. Chromatogr. A,759, 193-201 (1997). [14] P.W. Sheng, W. Y. Huang, S.J. Sheu, Separation of Saikosaponins by On-line Sample Stacking CE Method, Journal of Food and Drug Analysis, 11, 209-213 (2003). [15] 劉岱、楊立新、崔淑蓮,高效液相色譜法測定柴胡沖劑中柴胡皂苷A的含量,中國中藥雜誌(China J. Chin.Mater.Med.), 23, 92-93 (1998). [16] K. Shimizu, S. Amagaya, Y. Ogihara, Quantitative analysis of the metabolites of saikosaponin a using high-performance liquid chromatography. J. Chromatogr. B,307, 488-492 (1984). [17] C.Y. Li, C.H. Chiu, H.S. Huang, C.H. Lin, T.S. Wu, High-performance liquid chromatographic method for simultaneous quantification of eight major biologically active ingredients in Da-Chai-Hu-Tang Preparation. Biomed. Chromatogr. 20, 305-308 (2006). [18] H. Kimata, C. Hiyama, S. Yahara, O. Tanaka, O. Ishikawa, M. Aiura, Application of high performance liquid chromatography to the analysis of crude drugs: separatory determination of saponins of Bupleuri Radix. Chem. Pharm. Bull. , 27, 1836-1841 (1979). [19] X.Q. Li, Q.T. Gao, X.H. Chen, K.S. Bi, High Performance Liquid Chromatographic Assay of Saikosaponins from Radix Bupleurum in China, Biol. Pharm. Bull. , 28, 1736-1742 (2005). [20] I.S. Park, E.M. Kang, N. Kim, J. Chromatogr. Sci., 38, 229-233 (2000). [21] H.Q. Huang, X. Zhang, M. Lin, Y.H. Shen, S.K. Yan, W.D Zhang, Characterization and identification of saikosaponins in crude extracts from three Bupleurum species using LC-ESI-MS, J.Sep.Sci., 31, 3190-3201 (2008). [22] B.C. Liau, S.S. Hsiao, M.R. Lee, T.T. Jong, S.T. Chiang, Quality control of Chinese medicinal preparations LC/ESI(+)/MS/MS analyses of saikosaponins-a and –c as markers of Bupleuri radix samples. J. Pharm. Biomed. Anan.,43, 1174-1178 (2007). [23] Y. Bao, L. Chuan, S. Hongwu, F. Nan, Determination of Saikosaponin Derivatives in Radix bupleuri and in Pharmaceuticals of the Chinese Multiherb Remedy Xiaochaihu-tang Using Liquid Chromatographic Tandem Mass Spectrometry. Anal. Chem., 76, 4208-4216 (2004). [24] K. Fujiwara, Y. Ogihara, Pharmacological Effects of Oral Saikosaponin A may Differ Depending on conditions of the Gastrointestinal Tract. Life Science , 39, 297-301 (1986). [25] Y.H. Tang, Y.Y. Zhang, H.y. Zhu, C.G. Huang, A high-performance liquid chromatography method for saikosaponin a quantification in rat plasma. Biomed. Chromatogr. , 21, 458-462 (2007). [26] B.K. Matusszewski, M.L. Constanzer, C.M. Chavez, Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem, 75, 3019-3030 (2003) [27] W.M.A. Niessen, Liquid Chromatography – Mass Spectrometry, Third Edition, Chromatographic Science Series, Vol. 97, (2006), Taylor & Francis Inc., Boca Raton, FL, USA. p. 310 [28] T.L. Constantopoulos, G.S. Jackson, C.G. Enke, Effect of Salt Cconcentration on Analyte Response Using Electrospray Inonization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 10, 625-634 (1999). [29] W.M.A. Niessen, Liquid Chromatography – Mass Spectrometry, Third Edition, Chromatographic Science Series, Vol. 97, (2006), Taylor & Francis Inc., Boca Raton, FL, USA. p. 163 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22617 | - |
dc.description.abstract | 第一部分:開發毛細管電泳方法同時分析人體血漿中Triazole 類抗黴菌藥物濃度
侵入性黴菌感染發生率在過去二十年顯著增加,此種全身性感染易危及生命。Voriconazole為強效之三環類抗黴菌藥物,其為侵入性麴菌感染症(invasive Aspergillosis)治療藥物的首選。本研究首先開發且確效一靈敏且有效之掃集-微胞電動層析(sweeping-MEKC)方法以定量病患血漿中voriconazole 濃度。方析方法包括以下幾個步驟:(1)將血漿樣品利用10 M 尿素進行去蛋白之樣品前處理,(2)利用OASIS HLB cartridge進行固相萃取以淨化血漿樣品,(3)利用掃集-微胞電動層析電泳方法分析樣品,背景電解質的組成為40 mM磷酸、110 mM 十二烷基硫酸鈉和20%乙腈,voriconazole可在10.5分鐘內和血液中的內生性物質達基線分離。峰面積和遷移時間一天之內相對標準差分別低於2.8%和5.5%(n = 6),峰面積和遷移時間天與天之間的相對標準差分別低於4.1%和6.3%(n = 3),準確度介於96.5%到107.4%之間。Voriconazole校正曲線的線性範圍介於0.25 μg mL-1到15 μg mL-1之間,涵蓋voriconazole臨床有效治療濃度範圍,最低偵測濃度低於0.075 μg mL-1。 三環類抗黴菌藥物itraconazole和posaconazole同樣為常用來治療廣泛性黴菌感染的藥物,它們與voriconazole皆於個體間藥動差異大,故有療劑監測之必要性。本研究進一步開發可同時定量人體血漿中之itraconazole、voriconazole和posaconazole濃度之掃集-微胞電動層析(sweeping-MEKC)方法。分析方法中的樣品前處理條件與voriconazole前處理條件相同。最適化sweeping-MEKC條件的分析緩衝液組成為25 mM磷酸、100 mM 十二烷基硫酸鈉、13%乙腈和13%四氫呋喃,本分析方法可在13分鐘內將分析物和血液中的內生性物質達基線分離。遷移時間和峰面積同日內的相對標準差分別小於6.1%和9.6%(n = 5),峰面積和遷移時間異日間的相對標準差低於6.5%和10.9%(n = 3),itraconazole、posaconazole和voriconazole之準確度介於90.5%到111.9%之間。最低偵測濃度分別為0.033 μg mL-1、0.016 μg mL-1和0.041 μg mL-1。本方法可用於定量血漿中itraconazole、voriconazole和posaconazole的濃度以進行療劑監測與臨床研究。 第二部分:開發超高效液相層析結合串聯式質譜儀方法定量柴胡與生物樣品中柴胡皂苷A、柴胡皂苷B2和柴胡皂苷D之濃度 柴胡皂苷為從柴胡根部取得之活性成分,柴胡皂苷之藥理活性包含抗發炎、抗肝炎、抗肝癌、抗腎炎、抗感染和免疫調節。眾多柴胡皂苷中,柴胡皂苷A和柴胡皂苷D為主要產生藥理活性之成分,其中柴胡皂苷B2為柴胡皂苷D於胃酸中的代謝物。本研究採用超高效液相層析結合串聯式質譜儀(UHPLC-MS/MS)建立柴胡皂苷之分析方法,並用以定量柴胡及生物樣品中柴胡皂苷含量。於最適化層析條件之下,柴胡皂苷A、柴胡皂苷B2和柴胡皂苷D可於二十分鐘內達基線分離。研究中針對質譜儀參數做最適化調整,其中包括:毛細管高電壓、樣品錐電壓、撞擊能量、去溶劑氣體流速、離子源溫度、去溶劑氣體溫度等,定量方面使用選擇反應監測模式(selective reaction monitoring,SRM)進行柴胡皂苷A、柴胡皂苷B2和柴胡皂苷D之分析。本分析方法分析物遷移時間同日與異日之相對標準差小於 5.9 %,分析物峰面積同日與異日之相對標準差小於 5.6 %,柴胡皂苷A、柴胡皂苷B2和柴胡皂苷 D標準品之定量極限分別為0.91 ng mL-1、1.58 ng mL-1與0.78 ng mL-1,最低偵測極限分別為0.22 ng mL-1、0.31 ng mL-1與0.33 ng mL-1。本研究已建立快速、有效與靈敏之UHPLC-MS/MS方法可同時分析三種柴胡皂苷,所開發方法的實際樣品應用性以分析植物萃取物、大鼠血清樣品與人體血漿樣品驗證。 | zh_TW |
dc.description.abstract | Part I : Simultaneous determination of three triazole antifungal drugs in human plasma by using sweeping-micellar electrokinetic chromatography
Invasive fungal infection is a life-threatening condition; its occurrence has increased significantly over the past 20 years. Voriconazole is a high potency triazole antifungal drugs, and it’s the drug of choice of invasive Aspergillosis. We have developed a sensitive and efficient sweeping-micellar electrokinetic chromatography (sweeping-MEKC) method to quantify voriconazole, a potent triazole antifungal drug, in patient plasma. Solid phase extraction (SPE) conditions were first optimized to minimize plasma interference while maintaining a high recovery; the sweeping-MEKC conditions were then systematically optimized to obtain a high sweeping efficiency with good selectivity. Under the optimal analytical conditions, voriconazole was baseline-separated from endogenous materials within 10.5 min with a limit of detection of 0.075 μg mL-1. The background electrolyte comprised 40 mM phosphoric acid, 110 mM sodium dodecyl sulfate, and 20% acetonitrile. In terms of method repeatability, the relative standard deviations (RSDs) of the migration time and the peak area (intra-day; n = 3) were both less than 5.5%; in terms of intermediate precision, and the RSDs of the peak area and the migration time (inter-day; n = 3) were both less than 6.3%. We successfully applied this developed method to the quantitative determination of plasma voriconazole levels in 16 patients; the results correlated well with those obtained through analyses using high-performance liquid chromatography. Like voriconazole, itraconazole and posaconazole are triazole antifungal drugs, and used to treat invasive fungal infection. These drugs show great individual difference of pharmacokinetic behaviors, so therapeutic drug monitoring of these drugs is recommended to improve outcome of treatment. Therefore, we further developed a sensitive and efficient sweeping-micellar electrokinetic chromatography (sweeping-MEKC) method to quantify itraconazole, voriconazole and posaconazole in human plasma. The sweeping-MEKC conditions were modified and then systematically optimized. Under the optimal analytical conditions, itraconazole, voriconazole and posaconazole were baseline-separated from endogenous materials within 13 min with a limit of detection of 0.033 μg mL-1、0.016 μg mL-1、0.041 μg mL-1, respectively. The background electrolyte comprised 25 mM phosphoric acid, 100 mM sodium dodecyl sulfate, 13% acetonitrile and 13% THF. In terms of method repeatability, the relative standard deviations (RSDs) of the migration time and the peak area (intra-day; n = 5) were both less than 9.6%; in terms of intermediate precision, and the RSDs of the migration time and the peak area (inter-day; n = 3) were both less than 10.9%. This sweeping-MEKC method is accurate and efficient and appears to be applicable to therapeutic drug monitoring and clinical research. IXAbstract ( II ) Part II:Determination of saikosaponin A, B2 and D in Bupleuri radix and biological samples by ultra-high-pressure liquid chromatography–tandem mass spectrometry Saikosaponins are bioactive oleanane saponins derived from the Chinese medicinal herb Bupleuri radix. Pharmacological activities of saikosaponins include anti-inflammation, antihepatitis, antihepatoma, antinephritis, antibacterial effects and immunomodulation. Among various saikosaponins, saikosaponin A(SSa) and saikosaponin D(SSd) are reported to play the major roles in producing these pharmacological activities whereas saikosaponin B2(SSb2) is the metabolite of saikosaponin D in gastric juice. HPLC-UV was the most frequently used technique for saikosaponins determination, but it’s not sensitive enough to analyze plasma samples. Recently, the LC-MS technique was applied to analyze saikosaponins in Chinese multiherb remedy, but it takes long analytical time and seldom LC-MS methods were applied to analyze saikosaponins in animal biological fluid. In the present study, an ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established to analyze saikosaponin A, B2 and D. Using 0.1% acetic acid and acetonitrile as mobile phase with gradient elution, saikosaponin A, B2 and D can be baseline separated within 20 minutes. The detection was performed with triple quadruple mass spectrometer using electrospray ionization in positive-ion mode and selective ion monitoring. To reach the best sensitivity, several mass spectrometry parameters were systemically optimized. Relative standard deviation(RSD) of the run-to-run repeatability and intermediate precision of the retention time were both within 0.9% RSD. Run-to-run repeatability and intermediate precision of the retention time were both within 5.9% RSD. The detection limit of saikosaponin A, B2 and D are 0.22 ng mL-1、0.31 ng mL-1and 0.33 ng mL-1 respectively. The developed UHPLC-MS/MS method is sensitive and efficient, and it could be applied to quantify saikosaponin A, B2 and D in Bupleuri radix and biological samples. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:22:28Z (GMT). No. of bitstreams: 1 ntu-99-R97423001-1.pdf: 4326178 bytes, checksum: 1f9c278de61dc5c1b7029716acf40d6e (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書 ----------------------------------------------------------------------------------- I
誌謝 ------------------------------------------------------------------------------------------------- II 中文摘要 ------------------------------------------------------------------------------------------ III 英文摘要 ----------------------------------------------------------------------------------------- VII 內文目錄 ------------------------------------------------------------------------------------------ XI 內文目錄一 第一部分:開發毛細管電泳方法同時分析人體血漿中Triazole 類抗黴菌藥物濃度 壹、序論 -------------------------------------------------------------------------------------------- 1 1.1 毛細管電泳於臨床上之應用 -------------------------------------------------------- 1 1.2 毛細管電泳基本原理 ----------------------------------------------------------------- 2 1.3 毛細管電泳之線上濃縮技術 -------------------------------------------------------- 2 貳、研究動機 -------------------------------------------------------------------------------------- 3 第一章:開發毛細管電泳方法分析病人血漿中Voriconazole濃度 壹、引言 -------------------------------------------------------------------------------------------- 5 1.1 Voriconazole療劑監測之必要性 ----------------------------------------------------- 5 1.2 現有分析voriconazole之方法 ------------------------------------------------------ 5 貳、研究目的 -------------------------------------------------------------------------------------- 6 参、實驗部分 -------------------------------------------------------------------------------------- 6 3.1 儀器 --------------------------------------------------------------------------------------- 6 3.2 藥品與試劑------------------------------------------------------------------------------ 7 3.3 貯備液與工作溶液製備 -------------------------------------------------------------- 7 3.4 空白血漿製備 -------------------------------------------------------------------------- 7 3.5 檢品溶液製備 -------------------------------------------------------------------------- 7 3.6 毛細管電泳系統 ----------------------------------------------------------------------- 9 3.7 毛細管之處理 -------------------------------------------------------------------------- 9 3.8 分析方法確效 ------------------------------------------------------------------------ 10 肆、結果與討論 --------------------------------------------------------------------------------- 12 4.1樣品前處理方法之開發 ------------------------------------------------------------- 12 4.2分析方法之開發 ---------------------------------------------------------------------- 12 4.3分析方法確效 ------------------------------------------------------------------------- 15 伍、結論 ------------------------------------------------------------------------------------------ 16 第二章:開發毛細管電泳分析方法同時分析人體血漿中 Triazole類抗黴菌藥物濃度 壹、引言 ------------------------------------------------------------------------------------------ 18 1.1 Triazole類抗黴菌藥物療劑監測之必要性 -------------------------------------- 18 1.2 現有分析Triazole類抗黴菌藥物之方法 ---------------------------------------- 19 貳、研究目的 ------------------------------------------------------------------------------------ 20 叁、實驗部分 ------------------------------------------------------------------------------------ 20 3.1 儀器 ------------------------------------------------------------------------------------- 20 3.2 藥品與試劑---------------------------------------------------------------------------- 20 3.3 標準品溶液製備 --------------------------------------------------------------------- 21 3.4 空白血漿樣品備製 ------------------------------------------------------------------ 21 3.5檢品溶液製備 ------------------------------------------------------------------------- 21 3.6 毛細管電泳系統 --------------------------------------------------------------------- 22 3.7分析方法確效 ------------------------------------------------------------------------- 23 肆、結果與討論 --------------------------------------------------------------------------------- 24 4.1 樣品前處理條件之開發 ------------------------------------------------------------ 24 4.2 分析方法開發 ------------------------------------------------------------------------ 26 4.3 分析方法確效 ------------------------------------------------------------------------ 31 伍、結論 ------------------------------------------------------------------------------------------ 33 第一部分參考文獻 ------------------------------------------------------------------------------ 35 第一部分附圖 ------------------------------------------------------------------------------------ 44 Figure 1. Structure of voriconazole. -------------------------------------------------- 44 Figure 2. Effect of SDS concentration on peak intensity and migration time of voriconazole during sweeping-MEKC system. --------------------- 45 Figure 3. Effect of SDS concentration on the peak intensity and migration time of voriconazole during sweeping-MEKC separation. ---------- 46 Figure 4. Influence of injection time on the separation of human plasma spiked with 2.5 μg mL–1 of voriconazole . ----------------------------- 47 Figure 5. Influence of ACN content on the separation of human plasma spiked with 2.5 μg mL–1 of voriconazole . ----------------------------- 48 Figure 6. Influence of injection time on the separation of human plasma spiked with 2.5 μg mL–1 of voriconazole . ----------------------------- 49 Figure 7. Electropherograms of (A) voriconazole -spiked plasma samples and (B) blank. --------------------------------------------------------------- 50 Figure 8. Electropherogram of human plasma spiked with voriconazole and other co-medications. ------------------------------------------------------ 51 Figure 9. Electropherograms of plasma samples obtained from patients undergoing voriconazole treatment. ------------------------------------- 52 Figure 10. Chemical structures of triazoles analyzed in this study. (a) itraconazole; (b) posaconazole. ----------------------------------------- 53 Figure 11. Influence of ACN percentage on the separation of itraconazole and posaconazole. --------------------------------------------------------- 54 Figure 12. Influence of type of organic modifier on the separation of itraconazole, posaconazole and voriconazole. ------------------------ 55 Figure 13. Influence of organic modifier on the separation of itraconazole, posaconazole and voriconazole. ---------------------------------------- 56 Figure 14. Influence of applied voltage on the separation of human plasma spiked with 1 μg mL–1 of itraconazole, posaconazole, voriconazole. --------------------------------------------------------------- 57 Figure 15. Influence of SDS concentration on the sweeping efficiency of human plasma spiked with 1 μg mL–1 of itraconazole, posaconazole and voriconazole . ---------------------------------------- 58 Figure 16. Proposed mechanism of high-salt stacking. ---------------------------- 59 Figure 17. Influence of conductivity ratio between sample matrix and background electrolyte on the peak shape of itraconazole, posaconazole and voriconazole standard solution. ------------------ 60 Figure 18. Electropherograms of (A) posaconazole, itraconazole and voriconazole -spiked plasma and (B) blank samples, recorded under the optimal sweeping-MEKC conditions. -------------------- 61 第一部分附表 Table 1. Precision and accuracy of voriconazole determination in human plasma. ------------------------------------------------------------------------- 62 Table 2. Comparison of analytical performance of voriconazole bioanalytical methods. ----------------------------------------------------------------------- 63 Table 3. Tentative recommendations for monitoring of blood levels during antifungal therapy. ----------------------------------------------------------- 64 Table 4. Method precision for itraconazole, posaconazole and voriconazole in human plasma. ------------------------------------------------------------- 64 Table 5. Method accuracy (%) for itraconazole, posaconazole and voriconazole in human plasma. -------------------------------------------- 65 第二部分:開發超高效液相層析結合串聯式質譜儀方法定量柴胡與生物樣品中柴胡皂苷A、柴胡皂苷B2和柴胡皂苷D之濃度 壹、序論 ------------------------------------------------------------------------------------------ 67 1.1 LC-MS在藥物分析上之應用 ---------------------------------------------------- 67 1.2 超高效液相層析 --------------------------------------------------------------------- 67 貳、引言 ------------------------------------------------------------------------------------------ 67 2.1植物簡介:柴胡 ---------------------------------------------------------------------- 67 2.2定量柴胡皂苷A、柴胡皂苷B2與柴胡皂苷D之目的 ---------------------- 68 2.3文獻探討 ------------------------------------------------------------------------------- 69 2.4分析柴胡皂苷於血液中濃度之相關文獻 ---------------------------------------- 70 2.5基質效應 ------------------------------------------------------------------------------- 71 叁、實驗目的 ------------------------------------------------------------------------------------ 71 肆、實驗部分 ------------------------------------------------------------------------------------ 71 4.1儀器 ------------------------------------------------------------------------------------- 71 4.2藥品與試劑 ---------------------------------------------------------------------------- 71 4.3標準品貯液之製備 ------------------------------------------------------------------- 72 4.4藥材萃取液製備 ---------------------------------------------------------------------- 72 4.5動物實驗設計 ------------------------------------------------------------------------- 73 4.6大鼠血清樣品前處理 ---------------------------------------------------------------- 73 4.7人體血漿樣品前處理 ---------------------------------------------------------------- 74 4.8 UHPLC-MS/MS條件 ---------------------------------------------------------------- 75 4.9分析方法之確效 ---------------------------------------------------------------------- 76 伍、結果與討論 --------------------------------------------------------------------------------- 78 5.1分析方法之建立 ---------------------------------------------------------------------- 78 5.2 層析條件之最佳化 ------------------------------------------------------------------ 79 5.3質譜條件之最佳化 ------------------------------------------------------------------- 82 5.4分析方法之確效 ---------------------------------------------------------------------- 85 5.5分析方法之應用 ---------------------------------------------------------------------- 86 陸、結論 ------------------------------------------------------------------------------------------ 88 柒、參考文獻 ------------------------------------------------------------------------------------ 89 捌、附圖 ------------------------------------------------------------------------------------------ 93 Figure 1. Structures of saikosaponin A, saikosaponin B2 and saikosaponin D. -- 93 Figure 2-1. Mass spectrum of saikosaponin A. --------------------------------------- 94 Figure 2-2. MS/MS spectrum of saikosaponin A. Daughter ion spectrum of 781(m/z). --------------------------------------------------------------------- 94 Figure 2-3. Mass spectrum of saikosaponin D. --------------------------------------- 95 Figure 2-4. MS/MS spectrum of saikosaponin D. Daughter ion spectrum of 781(m/z). --------------------------------------------------------------------- 95 Figure 2-5. Mass spectrum of saikosaponin B2. -------------------------------------- 96 Figure 2-6. MS/MS spectrum of saikosaponin B2. Daughter ion spectrum of 781(m/z). --------------------------------------------------------------------- 96 Figure 3. Influence of buffer solution on peak area of saikosaponins in UHPLC- MS/MS easurement. --------------------------------------------- 97 Figure 4. Comparison of peak area of saikosaponin A obtained under different organic solvents as mobile phase in UHPLC- MS/MSmeasurement. -- 97 Figure 5. Comparison of signal intensities of saikosaponins obtained under different flow rates of the LC conditions in UHPLC- MS/MS measurement. ----------------------------------------------------------------- 98 Figure 6. Total ion scan (m/z=200~1000) of UHPLC-MS/MS chromatograms of Bupleuri radix crude extract obtained under optimal gradient profile. --------------------------------------------------------------------------- 98 Figure 7. Effect of capillary voltages on peak area of saikosaponin A, B2 and D in UHPLC-MS/MS measurement. ---------------------------------- 99 Figure 8. Effect of cone voltages on peak area of saikosaponin A, B2 and D in UHPLC-MS/MS measurement. ------------------------------------------ 99 Figure 9. Effect of collision energies on peak area of saikosaponin A, B2 and D in UHPLC-MS/MS measurement. ---------------------------------------100 Figure 10. Effect of desolvation gas flows on peak area of saikosaponin A, B2 and D in UHPLC-MS/MS measurement. -------------------------------100 Figure 11. Effect of cone gas flows on peak area of saikosaponin A, B2 and D in UHPLC-MS/MS measurement. ---------------------------------------101 Figure 12. Effect of desolvation temperatures on peak area of saikosaponin A, B2 and D in UHPLC-MS/MS measurement. ----------------------------101 Figure 13. Effect of ion source temperatures on peak area of saikosaponin A, B2 and D in UHPLC-MS/MS measurement. ----------------------------102 Figure 14. SRM chromatogram of Saikosaponin A, Saikosaponin B2 and Saikosaponin D standard solution obtained under optimum UHPLC-MS/MS conditions. -----------------------------------------------102 Figure 15. SRM chromatogram of 5000 fold dilution of Bupleuri radix crude extract obtained under optimum UHPLC-MS/MS conditions. -------103 Figure 16. SRM chromatogram of 10-fold dilution of Bupleuri radix crude extract obtained under optimum UHPLC-MS/MS conditions. -------103 Figure 17. SRM chromatogram of rat serum obtained after oral administration of Bupleuri radix powder. --------------------------------------------------104 Figure 18. SRM chromatogram of human serum obtained after oral administration of Xiaochaihu-tang. ---------------------------------------104 Figure 19. SRM chromatogram of 100-fold dilution of Xiaochaihu-tang crude extract obtained under optimum UHPLC-MS/MS conditions. -------105 玖、附表 -----------------------------------------------------------------------------------------106 Table 1. Method precision for SSa, SSb2 and SSd. ---------------------------------106 Table 2-1. Matrix effects (%) of SSa, SSb2 and SSd in Bupleuri radix. ---------107 Table 2-2. Matrix effects (%) of SSa, SSb2 and SSd in rat serum. ---------------107 Table 2-3. Matrix effects(%) of SSa, SSb2 and SSd in human plasma. ----------107 Table 3-1. Recovery(%) of SSa, SSb2 and SSd in rat serum. ----------------------108 Table 3-2. Recovery(%) of SSa, SSb2 and SSd in human plasma. ---------------108 Table 4-1. Process efficiency (%) of SSa, SSb2 and SSd in rat serum. ----------109 Table 4-2. Process efficiency (%) of SSa, SSb2 and SSd in human plasma. ----109 附錄 附錄一:相關臨床試驗同意書 ------------------------------------------------------------ 110 附錄二:已被接受文獻 --------------------------------------------------------------------- 113 | |
dc.language.iso | zh-TW | |
dc.title | 第一部分:開發毛細管電泳方法同時分析人體血漿中Triazole 類抗黴菌藥物濃度
第二部分:開發超高效液相層析結合串聯式質譜儀方法定量柴胡與生物樣品中柴胡皂苷A、柴胡皂苷B2和柴胡皂苷D之濃度 | zh_TW |
dc.title | Part I:Simultaneous determination of three triazole antifungal drugs in human plasma by using sweeping-micellar electrokinetic chromatography
Part II:Determination of saikosaponin A, B2 and D in Bupleuri radix and biological samples by ultra-high-pressure liquid chromatography–tandem mass spectrometry | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李水盛,張煥宗,陳家揚 | |
dc.subject.keyword | 掃集-微胞電動層析方法,療劑監測,柴胡皂苷,A,柴胡皂苷,B2,柴胡皂苷,D, | zh_TW |
dc.subject.keyword | Itraconazole,Voriconazole,Posaconazole,Saikosaponin,UHPLC-MS/MS,SPE,Sweeping-MEKC,Plasma,Therapeutic drug monitoring,Bupleuri radix,Biological samples, | en |
dc.relation.page | 113 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-07-05 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 4.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。