Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22588
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李文宗(Wen-Chung Lee)
dc.contributor.authorWan-Yu Linen
dc.contributor.author林菀俞zh_TW
dc.date.accessioned2021-06-08T04:21:37Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-11
dc.identifier.citationAbecasis GR, Yashar BM, Zhao Y, Ghiasvand NM, Zareparsi S, Branham KE, Reddick AC, Trager EH, Yoshida S, Bahling J and others. 2004. Age-related macular degeneration: a high-resolution genome scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 74(3):482-94.
Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 96(12):6745-50.
Aubert J, Bar-Hen A, Daudin JJ, Robin S. 2004. Determination of the differentially expressed genes in microarray experiments using local FDR. BMC Bioinformatics 5:125.
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57:289-300.
Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29:1165-1188.
Dye WW, Gleason RL, Wilson E, Humphrey JD. 2007. Altered biomechanical properties of carotid arteries in two mouse models of muscular dystrophy. J Appl Physiol 103(2):664-72.
Edwards AO, Ritter R, 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. 2005. Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421-4.
Efron B. 2004. Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. Journal of the American Statistical Association 99:96-104.
Efron B. 2008. Microarrays, empirical Bayes and the two-groups model. Statistical Science 23:1-22.
Efron B, Tibshirani R, Storey JD, Tusher V. 2001. Empirical Bayes analysis of a microarray experiment. Journal of the American Statistical Association 96:1151-1160.
Genovese C, Roeder K, Wasserman L. 2006. False discovery control with P-value weighting. Biometrika 93: 509-524.
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA and others. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531-7.
Guedj M, Robin S, Celisse A, Nuel G. 2009. Kerfdr: a semi-parametric kernel-based approach to local false discovery rate estimation. BMC Bioinformatics 10:84.
Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM and others. 2005. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102(20):7227-32.
Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR and others. 2005. Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419-21.
He K. 1992. Parametric empirical Bayes confidence intervals based on James-Stein estimator. Statistics & Decisions 10:121-132.
Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand J Statist 6:65-70.
Hwang JT, Qiu J, Zhao Z. 2009. Empirical Bayes confidence intervals shrinking both means and variances. J. R. Statist. Soc. B. 71:265-285.
Iyengar SK, Song D, Klein BE, Klein R, Schick JH, Humphrey J, Millard C, Liptak R, Russo K, Jun G and others. 2004. Dissection of genomewide-scan data in extended families reveals a major locus and oligogenic susceptibility for age-related macular degeneration. Am J Hum Genet 74(1):20-39.
Jun G, Klein BE, Klein R, Fox K, Millard C, Capriotti J, Russo K, Lee KE, Elston RC, Iyengar SK. 2005. Genome-wide analyses demonstrate novel loci that predispose to drusen formation. Invest Ophthalmol Vis Sci 46(9):3081-8.
Jung SH. 2005. Sample size for FDR-control in microarray data analysis. Bioinformatics 21(14):3097-104.
Klein ML, Schultz DW, Edwards A, Matise TC, Rust K, Berselli CB, Trzupek K, Weleber RG, Ott J, Wirtz MK and others. 1998. Age-related macular degeneration. Clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 116(8):1082-8.
Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST and others. 2005. Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385-9.
Korn EL, Li MC, McShane LM, Simon R. 2007. An investigation of two multivariate permutation methods for controlling the false discovery proportion. Stat Med 26(24):4428-40.
Korn EL, Troendle JF, McShane LM, Simon R. 2004. Controlling the number of false discoveries: application to high-dimensional genomic data. Journal of Statistical Planning and Inference 124:379-398.
Laird NM, Louis TA. 1987. Empirical Bayes confidence intervals based on bootstrap samples (with discussion). J. Am. Statist. Ass. 82:739-757.
Li C, Li M, Lange EM, Watanabe RM. 2008. Prioritized subset analysis: improving power in genome-wide association studies. Hum Hered 65(3):129-41.
Li SS, Bigler J, Lampe JW, Potter JD, Feng Z. 2005. FDR-controlling testing procedures and sample size determination for microarrays. Stat Med 24(15):2267-80.
Majewski J, Schultz DW, Weleber RG, Schain MB, Edwards AO, Matise TC, Acott TS, Ott J, Klein ML. 2003. Age-related macular degeneration--a genome scan in extended families. Am J Hum Genet 73(3):540-50.
McLachlan GJ, Bean RW, Jones LB. 2006. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22(13):1608-15.
Morris C. 1983a. Parametric empirical Bayes confidence intervals. In Scientific Inference, Data Analysis and Robustness. New York: Academic Press.:25-50.
Morris C. 1983b. Parametric empirical Bayes inference: theory and applications. J. Am. Statist. Ass. 78:47-55.
Oura T, Matsui S, Kawakami K. 2009. Sample size calculations for controlling the distribution of false discovery proportion in microarray experiments. Biostatistics 10(4):694-705.
Robin S, Bar-Hen A, Daudin JJ, Pierre L. 2007. A semi-parametric approach for mixture models: Application to local false discovery rate estimation. Comput Statist and Data Analysis 51:5483-5493.
Roeder K, Bacanu SA, Wasserman L, Devlin B. 2006. Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 78(2):243-52.
Sabatti C, Service S, Freimer N. 2003. False discovery rate in linkage and association genome screens for complex disorders. Genetics 164(2):829-33.
Seddon JM, Santangelo SL, Book K, Chong S, Cote J. 2003. A genomewide scan for age-related macular degeneration provides evidence for linkage to several chromosomal regions. Am J Hum Genet 73(4):780-90.
Storey JD. 2002. A direct approach to false discovery rates. J. R. Stat. Soc. B. 64:479-498.
Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440-5.
Strimmer K. 2008. A unified approach to false discovery rate estimation. BMC Bioinformatics 9:303.
Sun L, Craiu RV, Paterson AD, Bull SB. 2006. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies. Genet Epidemiol 30(6):519-30.
Wakefield J. 2008. Reporting and interpretation in genome-wide association studies. Int J Epidemiol 37(3):641-53.
Wakefield J. 2009. Bayes factors for genome-wide association studies: comparison with P-values. Genet Epidemiol 33(1):79-86.
Weeks DE, Conley YP, Tsai HJ, Mah TS, Schmidt S, Postel EA, Agarwal A, Haines JL, Pericak-Vance MA, Rosenfeld PJ and others. 2004. Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 75(2):174-89.
Westfall P, Young S. 1993. Resampling-based multiple testing: Examples and methods for P-value adjustment. New York: Wiley.
WTCCC. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661-78.
Xie Y, Pan W, Khodursky AB. 2005. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics 21(23):4280-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22588-
dc.description.abstract本文根據全基因關聯分析資料與基因表現量資料,探討在研究者可以獲得先驗知識的情形下,依據先驗知識將所有的單一核苷酸多型性或基因表現量概略地區分為兩群,再分別去執行錯誤發現率 (false discovery rate, FDR) 控制法。由於全基因關聯分析資料與基因表現量資料本質上的不同,適合二者的方法亦有不同。此外,我們運用經驗貝氏法對多重檢定作區間估計。隨著檢定個數增加,經驗貝氏法的信賴區間平均涵蓋真實參數的機率 (average coverage probability) 逐漸趨於期望標準,且區間長度短於傳統的信賴區間,表示檢定的精確度得以提升。除了提高相對效率,縮短信賴區間之外,更大的好處是可以同時作多重檢定之校正,這是傳統信賴區間所無法辦到的。我們且進一步應用此法於老年黃斑部病變 (age-related macular degeneration, AMD) 之基因關聯分析資料。此經驗貝氏多重檢定區間估計將可應用在流行病學或遺傳流行病學上,提供研究者一個易於執行、精確且又同時處理了多重檢定校正的方法。zh_TW
dc.description.abstractIn genomic studies, we are often confronted with a large number of genes or markers like single-nucleotide polymorphisms (SNPs). Examples include genome-wide association studies (GWASs) and gene expression data analyses. The substantial amount of data produced by current high-throughput technologies has brought opportunities and difficulties for statisticians. With the number of SNPs going into millions comes the challenge of multiple-testing adjustment. To counteract such a harsh multiple-testing penalty, we incorporate prior knowledge to facilitate discoveries in a GWAS on age-related macular degeneration. We also propose a floating prioritized subset analysis, serving as a powerful method to detect differentially expressed genes.
Furthermore, we develop a simple method to improve the efficiency of an epidemiological study. The effects in a study are assumed to arise from an unspecified prior distribution with an unknown mean and an unknown variance. We use the observed log odds ratios (logORs) and their variances to estimate the prior mean and the prior variance. And the posterior distribution will be asymptotically normally distributed regardless of the prior distribution of these effects. Based on these, we proposed a simple formula to tighten the confidence limits of the many logORs reported in a study. We evaluate the performances of our method by simulation studies. We found that the proposed method can indeed booster efficiency while maintaining the average coverage probability at a desired level. The larger the ratio of the prior variance to the average variances of logORs, the smaller the total number of logORs is needed to guarantee the coverage probability. For example, when the ratio of the prior variance to the average variances of logORs is 2, the efficiency of our method relative to the traditional confidence interval method is 1.5, and roughly 50 logORs can guarantee the coverage probability. We further apply our method to a genetic epidemiological study on age-related macular degeneration to demonstrate the tightening of the confidence limits. Our method is easy to implement and is to be recommended for improving the efficiency of a study.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:21:37Z (GMT). No. of bitstreams: 1
ntu-99-D92842006-1.pdf: 782233 bytes, checksum: 6775413b5f61150d5e0ecc576663cafe (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents第一章 前言 1
第一節 錯誤發現率的控制 1
第二節 局部錯誤發現率之估計 3
第三節 不獨立的多重檢定 4
第四節 論文動機與目的 5
第二章 研究材料與方法 6
第一節 固定PSA法 6
第二節 浮動PSA法 9
第三節 以經驗貝氏法對多重檢定作區間推論 17
第三章 結論與討論 31
參考文獻 32
附件一 35
附件二 50
附件三 85
dc.language.isozh-TW
dc.subject同時推論zh_TW
dc.subject基因表現量zh_TW
dc.subject錯誤發現率zh_TW
dc.subject多重比較zh_TW
dc.subject多重檢定zh_TW
dc.subject微陣列zh_TW
dc.subjectsimultaneous inferenceen
dc.subjectfalse discovery rateen
dc.subjectgene expressionen
dc.subjectmicroarrayen
dc.subjectmultiple comparisonsen
dc.subjectmultiple hypothesis testingen
dc.title多重檢定校正方法於處理基因體資料之剖析zh_TW
dc.titleOn multiple hypotheses testing for genomic studiesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳為堅,蕭朱杏,蔡政安,程毅豪,熊 昭
dc.subject.keyword錯誤發現率,基因表現量,微陣列,多重比較,多重檢定,同時推論,zh_TW
dc.subject.keywordfalse discovery rate,gene expression,microarray,multiple comparisons,multiple hypothesis testing,simultaneous inference,en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2010-07-12
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
763.9 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved