Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22586
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峰輝
dc.contributor.authorWen-Chun Linen
dc.contributor.author林玟均zh_TW
dc.date.accessioned2021-06-08T04:21:33Z-
dc.date.copyright2010-07-16
dc.date.issued2010
dc.date.submitted2010-07-12
dc.identifier.citation1. Jemal, A., et al., Cancer Statistics, 2009. Ca-a Cancer Journal for Clinicians, 2009. 59(4): p. 225-249.
2. NOH. 九十七年台灣地區主要死亡原因. 2008.
3. NOH. 九十七年台灣地區主要癌症死亡原因 2008.
4. Cersosimo, R.J., Lung cancer: A review. American Journal of Health-System Pharmacy, 2002. 59(7): p. 611-642.
5. Ginsberg, R.J., Vokes, E.E., & Rosenzweig, K., ed. Non-small cell lung cancer. . Cancer: Principles & practice of oncology, ed. J. V.T. DeVita, S. Hellman, & S.A. Rosenberg. 2001. 925-982.
6. Lindsey, L.P., & Thielvoldt, D. , ed. Non-small cell lung cancer. . Oncology nursing: Assessment and clinical care ed. M.P. Buchsel. 1999. 1331-1352.
7. Houlihan, N.G., ed. Lung cancer. . Oncology Nursing Society. 2004: Pittsburgh.
8. Smith, J., Erlotinib: Small-molecule targeted therapy in the treatment of non-small-cell lung cancer. Clinical Therapeutics, 2005. 27(10): p. 1513-1534.
9. National Cancer Institute. Non-small cell lung cancer (PDQ): Treatment. Available from:
10. Ramalingam, S. and C. Belani, Systemic chemotherapy for advanced non-small cell lung cancer: Recent advances and future directions. Oncologist, 2008. 13: p. 5-13.
11. Le Chevalier, T., et al., Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. New England Journal of Medicine, 2004. 350(4): p. 351-360.
12. Dillman, R.O., et al., A Randomized Trial of Induction Chemotherapy Plus High-Dose Radiation Versus Radiation Alone in Stage-Iii Non-Small-Cell Lung-Cancer. New England Journal of Medicine, 1990. 323(14): p. 940-945.
13. Shepherd, F.A., et al., Erlotinib in previously treated non-small-cell lung cancer. New England Journal of Medicine, 2005. 353(2): p. 123-132.
14. Sandler, A., et al., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 2006. 355(24): p. 2542-50.
15. National Cancer Institute, Radiation Therapy for Cancer: Questions and Answers, 2010.
16. Cullen, M.H., et al., Mitomycin, ifosfamide, and cisplatin in unresectable non-small-cell lung cancer: effects on survival and quality of life. J Clin Oncol, 1999. 17(10): p. 3188-94.
17. Group., N.-S.C.L.C.C., Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ, 1995. 311: p. 899-909.
18. Wang, D. and S.J. Lippard, Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov, 2005. 4(4): p. 307-20.
19. P., O., Advanced Non-Small Cell Lung Cancer: Implementing Treatment Advances in Clinical Practice. A Continuing Education Monograph for Oncology Nurses: Oncology Education Services, 2005.
20. Comis, R.L., The current situation: erlotinib (Tarceva) and gefitinib (Iressa) in non-small cell lung cancer. Oncologist, 2005. 10(7): p. 467-70.
21. Ruoslahti, E., S.N. Bhatia, and M.J. Sailor, Targeting of drugs and nanoparticles to tumors. J Cell Biol, 2010. 188(6): p. 759-68.
22. Scaltriti, M. and J. Baselga, The epidermal growth factor receptor pathway: a model for targeted therapy. Clinical Cancer Research, 2006. 12(18): p. 5268-72.
23. Schlessinger, J. and M.A. Lemmon, Nuclear signaling by receptor tyrosine kinases: the first robin of spring. Cell, 2006. 127(1): p. 45-8.
24. Yarden, Y., The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. European Journal of Cancer, 2001. 37 Suppl 4: p. S3-8.
25. Guy, P.M., et al., Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci U S A, 1994. 91(17): p. 8132-6.
26. Normanno, N., et al., Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer, 2003. 10(1): p. 1-21.
27. Bianco, R., et al., Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol, 2007. 39(7-8): p. 1416-31.
28. Kim, E.S., F.R. Khuri, and R.S. Herbst, Epidermal growth factor receptor biology (IMC-C225). Curr Opin Oncol, 2001. 13(6): p. 506-13.
29. Rowinsky, E.K., The erbB family: targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors. Annu Rev Med, 2004. 55: p. 433-57.
30. Noonberg, S.B. and C.C. Benz, Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily - Role as anticancer agents. Drugs, 2000. 59(4): p. 753-767.
31. Ramalingam, S. and C. Belani, Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist, 2008. 13 Suppl 1: p. 5-13.
32. Fan, Z., et al., Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. Journal of Biological Chemistry, 1994. 269(44): p. 27595-602.
33. Bender, A.R., et al., Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrobial Agents and Chemotherapy, 1996. 40(6): p. 1467-1471.
34. Jahanshahi, M. and Z. Babaei, Protein nanoparticle: A unique system as drug delivery vehicles. African Journal of Biotechnology, 2008. 7(25): p. 4926-4934.
35. Kawashima, Y., et al., Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharmaceutical Development and Technology, 2000. 5(1): p. 77-85.
36. Medina, C., et al., Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol, 2007. 150(5): p. 552-8.
37. Kreuter, J. and P.P. Speiser, In vitro studies of poly(methyl methacrylate) adjuvants. J Pharm Sci, 1976. 65(11): p. 1624-7.
38. Jain, K., Nanotechnology-based drug delivery for cancer TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2005. 4(4): p. 407-416
39. D.B. Shoney, M.M.A., Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Pharm., 2005: p. 261-270.
40. Devalapally, H., A. Chakilam, and M.M. Amiji, Role of nanotechnology in pharmaceutical product development. J Pharm Sci, 2007. 96(10): p. 2547-65.
41. Mohanty, B.A., V. K. Kohlbrecher, J. Bohidar, H. B. , Synthesis of Gelatin Nanoparticles via Simple Coacervation. JOURNAL OF SURFACE SCIENCE AND TECHNOLOGY, 2005. 21: p. 149-160
42. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev, 2004. 56(11): p. 1649-59.
43. Hunter, R.J., Zeta Potential in Colloid Science Principles and Applications 1981.
44. Danhier, F., et al., Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. Journal of Controlled Release, 2009. 133(1): p. 11-7.
45. Esmaeili, F., et al., Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target, 2008. 16(5): p. 415-23.
46. Sheng, Y., et al., In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med, 2009. 20(9): p. 1881-91.
47. Prabu, P., et al., Preparation, characterization, in-vitro drug release and cellular uptake of poly(caprolactone) grafted dextran copolymeric nanoparticles loaded with anticancer drug. J Biomed Mater Res A, 2009. 90(4): p. 1128-36.
48. Arias, J.L., et al., Ftorafur loading and controlled release from poly(ethyl-2-cyanoacrylate) and poly(butylcyanoacrylate) nanospheres. Int J Pharm, 2007. 337(1-2): p. 282-90.
49. Duncan, R., The dawning era of polymer therapeutics. Nat Rev Drug Discov, 2003. 2(5): p. 347-60.
50. Uhrich, K.E., et al., Polymeric systems for controlled drug release. Chem Rev, 1999. 99(11): p. 3181-98.
51. Kaur, A., S. Jain, and A.K. Tiwary, Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm, 2008. 58(1): p. 61-74.
52. Bhattarai, N., et al., Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int J Nanomedicine, 2006. 1(2): p. 181-7.
53. Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces, 2010. 75(1): p. 1-18.
54. Li, J.K., N. Wang, and X.S. Wu, A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery. J Pharm Sci, 1997. 86(8): p. 891-5.
55. Truong-Le, V.L., J.T. August, and K.W. Leong, Controlled gene delivery by DNA-gelatin nanospheres. Hum Gene Ther, 1998. 9(12): p. 1709-17.
56. Kaul, G. and M. Amiji, Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharmaceutical Research, 2002. 19(7): p. 1061-7.
57. Zwiorek K, K.J., Wagner E, Coester C, Gelatin nanoparticles as a new and simple gene delivery system. J. pharm Sci, 2005. 7(4): p. 22-28.
58. Lu, Z., et al., Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clinical Cancer Research, 2004. 10(22): p. 7677-7684.
59. Ching-Li Tseng, S.Y.-H.W., Wen-Hsi Wang, Cheng-Liang Peng, Feng-Huei Lin * , Chien-Cheng Lin, Tai-Horng Young, Ming-Jium Shieh, Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials, 2008: p. 3014-3022.
60. NM, G., Avidin. Biochem J, 1963: p. 585-591.
61. NM, G., Avidin. Adv Protein Chem, 1975: p. 85-133.
62. Lee, H., T.H. Kim, and T.G. Park, A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor. Journal of Controlled Release, 2002. 83(1): p. 109-119.
63. Langer, K., et al., Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 49(3): p. 303-307.
64. Products, P.P.R. Neutravidin Protein and Conjugates, 2010.
65. L, D., Combination chemotherapy and chemotherapy principles. The royal Marsden hospital handbook of cancer chemotherapy., 2005.
66. Anya M. Hillery, A.W.L., James Swarbrick, Oral drug delivery. Drug Delivery and Targeting, 2001: p. 152.
67. A. J. Domb, Y.T., M. N. V. Ravi Kumar, and S. Farber ed. Nanoparticles for Pharmaceutical Applications. Liposomes for Drug Delivery, ed. J.-C.L. Pierre Simard, Christine Allen, and Olivier Meyer 2007.
68. Patton, J.S. and P.R. Byron, Inhaling medicines: delivering drugs to the body through the lungs. Nature Reviews Drug Discovery, 2007. 6(1): p. 67-74.
69. Mansour, H.M., Y.S. Rhee, and X. Wu, Nanomedicine in pulmonary delivery. Int J Nanomedicine, 2009. 4: p. 299-319.
70. Sung, J.C., B.L. Pulliam, and D.A. Edwards, Nanoparticles for drug delivery to the lungs. Trends Biotechnol, 2007. 25(12): p. 563-70.
71. Yang, W., J.I. Peters, and R.O. Williams, 3rd, Inhaled nanoparticles--a current review. Int J Pharm, 2008. 356(1-2): p. 239-47.
72. Dawson, J.P., et al., Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Molecular and Cellular Biology, 2005. 25(17): p. 7734-7742.
73. Al Moustafa, A.E., et al., Up-regulation of E-cadherin by an anti-epidermal growth factor receptor monoclonal antibody in lung cancer cell lines. Clinical Cancer Research, 1999. 5(3): p. 681-686.
74. Zonghai Li, R.Z., Xianghua Wu, Ye Sun, Ming Yao, Jinjun Li, Yuhong Xu, and Jianren Gu, Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. The FASEB Journal, 2005. 19: p. 1978-1985.
75. Liedberg, B., C. Nylander, and I. Lundstrom, Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sensors and Actuators, 1983. 4(2): p. 299-304.
76. Fagerstam, L.G., et al., Biospecific Interaction Analysis Using Surface-Plasmon Resonance Detection Applied to Kinetic, Binding-Site and Concentration Analysis. Journal of Chromatography, 1992. 597(1-2): p. 397-410.
77. BIAtechnology Handbook. BIACORE AB, 1998.
78. Wilson, W.D., Analyzing biomolecular interactions. Science, 2002. 295(5562): p. 2103-+.
79. Cooper, M.A., Optical biosensors in drug discovery. Nature Reviews Drug Discovery, 2002. 1(7): p. 515-528.
80. Binnig, G., C.F. Quate, and C. Gerber, Atomic Force Microscopy. Physical Review Letters, 1986. 56(9): p. 930-933.
81. Allen, S., et al., Detection of antigen-antibody binding events with the atomic force microscopy. Biochemistry, 1997. 36(24): p. 7457-63.
82. Cleveland, J.P., Manne, S., Bocek, D., Hansma, P.K., A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum., 1993. 64: p. 403-405.
83. Shahin, V., et al., Glucocorticoids remodel nuclear envelope structure and permeability. Journal of Cell Science, 2005. 118(13): p. 2881-2889.
84. Evans, E. and K. Ritchie, Dynamic strength of molecular adhesion bonds. Biophys J, 1997. 72(4): p. 1541-55.
85. Evans, E. and K. Ritchie, Strength of a weak bond connecting flexible polymer chains. Biophys J, 1999. 76(5): p. 2439-47.
86. Nezhadi, S.H., et al., Gelatin-based delivery systems for cancer gene therapy. J Drug Target, 2009. 17(10): p. 731-8.
87. Vandervoort, J. and A. Ludwig, Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(2): p. 251-61.
88. Young S, W.M., Tabat Y, Mikos AG, Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release, 2005: p. 256-274.
89. Usta, M., et al., Behavior and properties of neat and filled gelatins. Biomaterials, 2003. 24(1): p. 165-72.
90. Domb AJ, K.J., Wiseman DM, Handbook of biodegradable polymers. 1997.
91. Digenis, G.A., T.B. Gold, and V.P. Shah, Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci, 1994. 83(7): p. 915-21.
92. H, C., Gelatin., in Food Science. 1992.
93. Marty, J.J., R.C. Oppenheim, and P. Speiser, Nanoparticles--a new colloidal drug delivery system. Pharm Acta Helv, 1978. 53(1): p. 17-23.
94. Biswaranjan Mohanty, V.K.A., J.Kohlbrecher and H. B. Bohidar, Synthesis of gelatin nanoparticles via simple coacervation. J. surface Sci. Technol., 2005. 21: p. 149-160.
95. Coester, C.J., et al., Gelatin nanoparticles by two step desolvation--a new preparation method, surface modifications and cell uptake. J Microencapsul, 2000. 17(2): p. 187-93.
96. Pezron, I., M. Djabourov, and J. Leblond, Conformation of Gelatin Chains in Aqueous-Solutions .1. A Light and Small-Angle Neutron-Scattering Study. Polymer, 1991. 32(17): p. 3201-3210.
97. Saxena, A., et al., Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids and Surfaces B-Biointerfaces, 2005. 45(1): p. 42-48.
98. Y. Matsumura, H.M., Cancer Res., 1986. 46: p. 6387.
99. Gref, R., et al., Biodegradable Long-Circulating Polymeric Nanospheres. Science, 1994. 263(5153): p. 1600-1603.
100. Lu, Y. and P.S. Low, Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev, 2002. 54(5): p. 675-93.
101. Zhang, M., et al., Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells. Acta Pharmacol Sin, 2004. 25(1): p. 61-7.
102. Nie, S.M., et al., Nanotechnology applications in cancer. Annual Review of Biomedical Engineering, 2007. 9: p. 257-288.
103. Anya M. Hillery, A.W.L., James Swarbrick, Pulmonary drug delivery. Drug Delivery and Targeting, 2001: p. 207-300.
104. Zanen, P. and J.W.J. Lammers, Reducing adverse effects of inhaled fenoterol through optimization of the aerosol formulation. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung, 1999. 12(4): p. 241-247.
105. Labiris, N.R. and M.B. Dolovich, Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol, 2003. 56(6): p. 588-99.
106. Stone KC, M.R., Gehr P, Stockstill B, Crapo JD, Allometric relationship of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol, 1992. 6: p. 235-243.
107. Folkesson, H.G., et al., Alveolar epithelial clearance of protein. Journal of Applied Physiology, 1996. 80(5): p. 1431-1445.
108. Jason-Moller L, M.M., Bruno J., Overview of Biacore systems and their applications. Curr Protoc Protein Sci., 2006. Unit 19.13.
109. Hutter, J.L. and J. Bechhoefer, Calibration of Atomic-Force Microscopy Tips (Vol 64, Pg 1868, 1993). Review of Scientific Instruments, 1993. 64(11): p. 3342-3342.
110. Tseng, C.L., et al., Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials, 2007. 28(27): p. 3996-4005.
111. GT., H., Antibody modification and conjugation. 1996: San Diego. p. 465.
112. Ishiyama, M.e.a., in In Vitro Toxicology. 1995. p. 187-189.
113. Shirahata, S.e.a., in Biosc. Biotech. Biochem. 1995. p. 345-347.
114. Liu, S.e.a., in Nature Medicine 1995. p. 267-271.
115. Berridge, M.V.e.a., The Biochemical and Cellular Basis of Cell Proliferation Assays That Use Tetrazolium Salts., in Biochemica 1996. p. 15-19.
116. Caili Jia, Z.Z., Renchen Liu, Shude Chen, and Ouohing Xia, EGF receptor clustering is induced by a 0.4 mT power frequency magnetic field and blocked by the EGF receptor tyrosine kinase inhibitor PD153035. Bioelectromagnetics, 2007. 28: p. 197-207.
117. Bell, G.I., Models for Specific Adhesion of Cells to Cells. Science, 1978. 200(4342): p. 618-627.
118. Kommareddy, S. and M. Amiji, Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug Chem, 2005. 16(6): p. 1423-32.
119. Wade, J.D., et al., Use of thiazolidine-mediated ligation for site specific biotinylation of mouse EGF for biosensor immobilisation. Letters in Peptide Science, 2001. 8(3-5): p. 211-220.
120. Li, S.Q., et al., Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell, 2005. 7(4): p. 301-311.
121. D. L. Wilson, K.S.K., S. J. Eppell, and R. E. Marchant, Morphological restoration of atomic-force microscopy images. Langmuir 11, 1995: p. 265.
122. Lee, C.K., et al., Atomic force microscopy: Determination of unbinding force, off rate and energy barrier for protein-ligand interaction. Micron, 2007. 38(5): p. 446-461.
123. Yu, J.P., et al., Single-molecule force spectroscopy study of interaction between transforming growth factor beta 1 and its receptor in living cells. Journal of Physical Chemistry B, 2007. 111(48): p. 13619-13625.
124. R. Merkel, P.N., A. Leung, K. Ritchie, E. Evans, Energy landscape of receptor-ligand bonds explored with dynamic fore spectroscopy. Nature, 1999. 397: p. 50-53.
125. Jain, R.K., Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 2001. 46(1-3): p. 149-168.
126. Jain, R.K., Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Medicine, 2001. 7(9): p. 987-989.
127. Weber, C., J. Kreuter, and K. Langer, Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm, 2000. 196(2): p. 197-200.
128. Planck, S.R., J.S. Finch, and B.E. Magun, Intracellular Processing of Epidermal Growth-Factor .2. Intracellular Cleavage of the Cooh-Terminal Region of Epidermal-I-125 Growth-Factor. Journal of Biological Chemistry, 1984. 259(5): p. 3053-3057.
129. Gupta, A.K., et al., Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. Journal of Controlled Release, 2004. 95(2): p. 197-207.
130. Nielsen, U.B., et al., Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochimica Et Biophysica Acta-Molecular Cell Research, 2002. 1591(1-3): p. 109-118.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22586-
dc.description.abstract近年來肺癌成為大多數已開發國家的主要疾病之一,也位居國人癌症死亡之冠。儘管醫學已有相當進展,但是肺癌的長期存活率低,且傳統化療之副作用多,因此為了進一步改善治療效果,發展低毒性的治療,目前主要的研究方向是標靶治療,而藥物作用的標靶包括了癌細胞具有的特殊抗原、特殊生長因子受體、腫瘤血管新生相關因子、訊息傳遞路徑中的各類分子。其中,表皮生長因子受體 (epidermal growth factor receptor, EGFR)是本實驗的主要研究目標,它在癌症細胞的增殖扮演重要的角色。大部分上皮性腫瘤均會表現或過度表現EGFR;尤其是在非小細胞肺癌上,EGFR的過度表現高達40 %~80 %。
本研究分為兩部分,第一部分是比較可標的癌細胞表面EGFR之導向配位體(ligand)之間的親和性(affinity),比較的方式是利用原子力顯微鏡(atomic force microscopy, AFM)來偵測受體和配位體之間的作用力,以及使用表面電漿共振系統(surface plasmon resonance, SPR)來獲得結合係數或分離係數等動力學參數。而比較的對象是EGFR的天然配位體-表皮生長因子(EGF)和單株抗體(anti-EGFR antibody,mAb LA1)及由噬菌體表現庫篩選出的胜肽GE11。由SPR得到的結果顯示,EGF,mAb LA1以及胜肽GE11的平衡解離常數分別為1.77× 10-7、2.07× 10-9、4.59× 10-4 M-1,表示mAb LA1和EGFR之間的親合性最強,EGF是其次,胜肽GE11的親合性則最弱。在AFM的部分,EGF-EGFR以及mAb LA1-EGFR的作用力(unbinding force)皆為150-210 pN (loading rate range: 450-5000 pN/s),而胜肽GE11的作用力僅有上述的三分之一,50-60 pN (loading rate range: 150-7500 pN/s),顯示胜肽GE11的作用力依然最弱。
從第一部分的結果得知,mAb LA1與EGFR的親和性是最強的,此外,也不會造成嚴重的癌細胞增生問題(cell proliferation),因此在本實驗的第二部分,我們選用mAb LA1結合明膠奈米粒子,來製備具標的EGFR功能的藥物載體。首先,我們以two-step desolvation method製備出顆粒大小約為230 nm、表面電位約為-3 mV的明膠奈米顆粒(GPs),其表面經由改質後與卵白素(Neutravidin)鍵結,再結合以生物素修飾之單株抗體(GP-Av-bmAb),以達到標的效果。經過多層修飾後的明膠奈米顆粒並無顯著差異,其顆粒大小為240 nm、表面電位約為- 4 mV,在細胞實驗中,也證明對於正常人類肺細胞沒有顯著的毒性影響。以EGFR 過度表現之癌細胞做為標的效果測試,在共軛焦顯微鏡的觀察下,可發現人類肺腺癌細胞,A549,以GP-Av-bmAb 顆粒培養有較多的綠色螢光分佈,因此確認於細胞階段可有效標的EGFR過度表現細胞。
zh_TW
dc.description.abstractLung cancer is the most common disease in developed countries, also in the predominant place of cancer-related death worldwide. Although medical technology is more progressive than before, the long-term survival rate of lung cancer patients is still far from satisfactory. In order to improve treatment effectively, the most widely investigated field is targeted therapy. Epidermal growth factor receptor (ErbB1, EGFR) is a trans-membrane protein which is overexpressed in a variety of human lung cancer cells, since it can be considered as a rational target for drug delivery.
This thesis is divided into two parts. The first part is comparison between binding affinities of EGFR and its related ligands which are including EGF, anti-EGFR antibody (mAb LA1) and peptide GE11. Surface plasmon resonance (SPR) was used to get some kinetics information such as rate constants and equilibrium constants. Atomic force microscopy (AFM) was performed to detect unbinding forces between receptor and ligands. The results from SPR experiments revealed each equilibrium dissociation constants of EGF, mAb LA1, and peptide GE11 are 1.77 × 10-7,2.07 × 10-9,4.59 × 10-4 M-1, respectively. Among these three ligands, mAb LA1-EGFR showed the strongest binding affinity, peptide GE11 showed the weakest affinity. In AFM experiments, the unbinding forces of EGF-EGFR and mAb LA1-EGFR are both 150-210 pN under loading rate ranging from 450 to 5000 pN/s. However, unbinding force of peptide GE11 was smaller than them by 3-fold, approximately 50-60 pN (loading rate range: 150-7500 pN/s). It indicated that the unbinding force of peptide GE11 was still the smallest.
Since mAb LA1 showed the strongest binding affinity to EGFR and not caused cell proliferation problems, we can use it as the efficient targeting moiety for our drug delivery system in lung cancer treatment. In the second part, gelatin nanoparticles (GPs) were prepared firstly by two-step desolvation method. And size of particles was about 230 nm, net surface charge was about -3 mV. After modification, surfaces of gelatin nanoparticles were covalently bound with NeutravidinFITC, which can then linked with biotinylated mAb LA1 due to the non-covalent interactions of avidin and biotin. The EGFR-seeking nanoparticles (GP-Av-bmAb) had no significant difference between original gelatin nanoparticles and showed 240 nm in diameter, -4 mV in net surface charge. By the in vitro test, GP-Av-bmAb performed no apparently cytotoxicity effect in human normal lung cells (HFL1). The cell uptake of GP-Av-bmAb to the EGFR-overexpressed lung adenocarcinoma cells, A549 cells, was performed by confocal microscopy. The results indicated that GP-Av-bmAb possessed efficient targeting ability to A549 cells and can be considered as a good drug carrier in lung cancer therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:21:33Z (GMT). No. of bitstreams: 1
ntu-99-R97548015-1.pdf: 4271700 bytes, checksum: 81572aa4fc8a53583040a64eecb996eb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書 I
Chinese abstract II
English abstract IV
Contents VI
List of figures XI
List of tables XV
Chapter 1 Introduction 1
1.1 Lung cancer 1
1.1.1 Clinical classification 3
1.1.2 Lung cancer treatment 5
1.1.2.1 Surgery 5
1.1.2.2 Radiotherapy 6
1.1.2.3 Chemotherapy 7
1.1.2.4 Targeted therapy 8
1.2 EGFR 9
1.2.1 EGFR structure and ligands 9
1.2.2 EGFR inhibitors as anticancer therapy 10
1.3 Nanoparticles application in drug delivery 13
1.3.1 Polymeric nanoparticles for drug delivery 14
1.3.2 Medical application of gelatin nanoparticles 15
1.3.3 Applications of avidin-biotin system for drug delivery 17
1.4 Route of drug administration 18
1.4.1 Oral delivery 19
1.4.2 Intravenous delivery 19
1.4.3 Transdermal delivery 20
1.4.4 Pulmonary delivery 21
1.5 Purpose of this study 22
Chapter 2 Theoretical basis 23
2.1 Ligand-receptor interactions 23
2.1.1 Binding studies: EGF/mAb LA1/peptide GE11 with EGFR 23
2.2 Surface plasmon resonance (SPR) 25
2.2.1 Principle of SPR 25
2.2.2 Kinetics 27
2.2.2.1 Kinetic models 29
2.2.2.1.1 Association phase 29
2.2.2.1.2 Dissociation phase 31
2.2.2.1.3 Equilibrium 32
2.3 Atomic force microscopy (AFM) 33
2.3.1 Operation principles 34
2.3.2 Force curve measurements 35
2.4 Characterization of gelatin 37
2.4.1 Two-step desolvation method for gelatin nanoparticle preparation 40
2.5 Tumor targeting 42
2.5.1 Passive targeting 42
2.5.2 Active targeting 43
2.6 Aerosol delivery 45
2.6.1 Mass median aerodynamic diameter (MMAD) 45
2.6.2 Mucociliary clearance 47
2.6.3 Alveolar macrophage clearance 47
Chapter 3 Materials and methods 49
3.1 Materials 49
3.2 Experiment equipments 52
3.3 Quantitative analysis of binding affinity and gelatin nanoparticle modified with monoclonal antibody experiments 53
3.3.1 Surface plasmon resonance (SPR) experiments for quantitative analysis of binding affinity 54
3.3.1.1 Preparation of EGFR surface on the CM5 sensor chip 54
3.3.1.2 SPR kinetic experiments for the receptor-ligand interactions 55
3.3.1.3 Data analysis 55
3.3.2 Atomic force microscopy (AFM) experiments for quantitative analysis of binding affinity 56
3.3.2.1 AFM substrate and tip preparation 56
3.3.2.2 AFM force measurement 57
3.3.2.3 Data analysis 58
3.3.3 Preparation of gelatin nanoparticles with biotinylated anti-EGFR antibody (mAb LA1) conjugation 58
3.3.3.1 Preparation of the gelatin nanoparticles (GPs) 58
3.3.3.2 Activation of NeutravidinFITC and conjugation to sulfhydryl modified GPs 59
3.3.3.3 Biotinylated anti-EGFR antibody (mAb LA1) binding to NeutravidinFITC -GPs 60
3.3.3.4 Surface plasmon resonance (SPR) analysis for binding ability 61
3.3.4 Characterization of GPs 64
3.3.4.1 Photon correlation spectroscope (PCS) 64
3.3.4.2 Zeta potential 64
3.3.4.3 Transmission electron microscopy (TEM) 65
3.3.4.4 Atomic force microscopy (AFM) 65
3.3.5 In vitro analysis 66
3.3.5.1 Cell culture 66
3.3.5.2 Cell proliferation 66
3.3.5.3 Cytotoxicity analysis (WST-1) 67
3.3.5.4 Cellular distribution examined by confocal microscopy 67
Chapter 4 Results 69
4.1 SPR analysis of protein-protein or peptide-protein interactions 69
4.1.1 Immobilization of EGFR on CM5 sensor chip 69
4.1.2 Kinetic analysis 71
4.1.2.1 Binding studies with EGF 71
4.1.2.2 Binding studies with mAb LA1 74
4.1.2.3 Binding studies with peptide GE11 76
4.2 AFM analysis of protein-protein or peptide-protein unbinding forces 79
4.2.1 AFM substrate and tip preparation 79
4.2.2 AFM force measurement 82
4.2.2.1 Unbinding force studies with EGF 82
4.2.2.2 Unbinding force studies with anti-EGFR antibody 86
4.2.2.3 Unbinding force studies with peptide GE11 89
4.2.3 AFM dynamic force spectrum of EGFR-EGF, EGFR-mAb LA1, and EGFR- peptide GE11 bond 92
4.3 Preparation of gelatin nanoparticles with biotinylated anti-EGFR antibody (mAb LA1) conjugation 95
4.3.1 Characterization of gelatin nanoparticles with biotinylated anti-EGFR antibody (mAb LA1) conjugation 95
4.3.2 Surface plasmon resonance (SPR) analysis for binding ability 101
4.3.3 Cell proliferation 103
4.3.4 Cytotoxicity analysis 103
4.3.5 Cellular distribution examined by confocal microscopy 105
Chapter 5 Discussion 107
5.1 SPR analysis of protein-protein or peptide-protein interactions 107
5.2 AFM analysis of protein-protein or peptide-protein unbinding forces 109
5.3 Preparation and characterization of antibody modified gelatin nanoparticles as drug carrier system for lung cancer targeting 111
Chapter 6 Conclusion 114
References 115
dc.language.isoen
dc.subject明膠zh_TW
dc.subject非小細胞肺癌zh_TW
dc.subjectreceptor-ligand interactionzh_TW
dc.subject奈米顆粒zh_TW
dc.subjectAFMzh_TW
dc.subject表皮生長因子zh_TW
dc.subjectSPRzh_TW
dc.subjectnon-small cell lung canceren
dc.subjectEGFRen
dc.subjectSPRen
dc.subjectreceptor-ligand interactionen
dc.subjectunbinding forceen
dc.subjectgelatin nanoparticlesen
dc.subjectAFMen
dc.title結合單株抗體與奈米明膠之藥物載體於肺癌治療之探討zh_TW
dc.titleMonoclonal Antibody Ligand Mediated Gelatin Nanoparticles Targeting to EGFR for Lung Cancer Therapyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王盈錦,宋信文,陳三元,楊禎明
dc.subject.keyword表皮生長因子,AFM,SPR,receptor-ligand interaction,明膠,非小細胞肺癌,奈米顆粒,zh_TW
dc.subject.keywordEGFR,AFM,SPR,receptor-ligand interaction,unbinding force,gelatin nanoparticles,non-small cell lung cancer,en
dc.relation.page126
dc.rights.note未授權
dc.date.accepted2010-07-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved