Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22531
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭震坤
dc.contributor.authorMing-Che Chang Chienen
dc.contributor.author張簡名哲zh_TW
dc.date.accessioned2021-06-08T04:20:04Z-
dc.date.copyright2010-07-22
dc.date.issued2010
dc.date.submitted2010-07-20
dc.identifier.citation參考文獻
一、 中文部分
1. 張志向,2002年,「股市週轉率、市場成熟度、波動性與帄均數復歸」,中山管理評論,第十卷第四期,第555-589頁
2. 林華德、王甡,1995, 「台灣股市成交量對股價波動的影響1986-1994―GARCH修正模型的應用」,企銀季刊,第十九卷第二期,一九九五年,頁40-58
3. 周賓凰、劉怡芬,2000,「台灣股市橫斷面報酬解釋因子:特徵、單因子、或多因子」,證券市場發展季刊,第十五卷第四期(2000年4月),頁1-31
二、 英文部分
1. Barras L., Scalliet and R. Wermers, 2008, “False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas” Working paper, Swiss Finance Institute and University of Maryland
2. Banz R. W., 1981, “The relationship between return and market value of common stocks” Journal of Financial Economics Volume 9, Issue 1, Pages 3-18
3. Basu S., 1983, ” The relationship between earnings' yield, market value and return for NYSE common stocks *1: Further evidence“ Journal of Financial Economics Volume 12, Issue 1, Pages 129-156
4. Beckers S., 1981, “Standard deviations implied in option prices as predictors of future stock price variability” , Journal of Banking & Finance, Vol.5, Issue3 pp363-381
5. Black, F. and M. Scholes, 1973, 'The Pricing of Options and Corporate Liabilities,' Journal of Political Economy Vol.81, pp. 637-54.
6. Black F., M. C. Jensen, and M. Scholes. 1972, “The capital asset pricing model: Some empirical tests, Studies in the theory of capital markets, Praeger publishers Inc.
7. Black, F., 1972, ” Capital market equilibrium with restricted borrowing” The Journal of Business, Vol.45, Issue3, pp444-455
8. Bollerslev T., 1987, 'A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return,' Review of Economics and Statistics No.69, pp. 542-47.
9. Bollerslev T., 1986, 'Generalized Autoregressive Conditional Heteroskedasticity,' Journal of Econometrics 31, pp. 307-28.
10. Box E. P. and G. M. Jenkins , 1976, Time-Series Analysis, Forecasting and Control, Revised edn. Holden-Day, San Francisco
11. Brennan, M., 1970, “Taxes, Market Valuation and Financial Policy.” National Tax Journal, 23, 417–429.
12. Canina, L., S. Figlewski, 1993, The Informational Content of Implied Volatility, The Review of Financial Studies , vol.6, pp.659-681
13. Cai X., K.L. Teo, X. Yang and Zhou X. Y.,2000, “Portfolio Optimization Under a Minimax Rule “Management Science, Vol. 46, No. 7, pp. 957-972
14. Chaudhury M. and Jason Z. W., 1996, “A Comparative Study of GARCH (1,1) and Black-Scholes Option Prices” Working Paper, University of Saskatchewa
15. Christie W., R. Huang, 1994, “Equity return dispersions”. Working Paper, Vanderbilt University.
16. Chelley-Steeley P. L. , Steeley J. M., 2005, ' Volatility, Leverage and Firm Size: The U.K. Evidence ' The Manchester School of Economic & Social Studies. Vol.64, pp.83-103
17. Connolly, R., and C. Stivers, 2006, 'Information content and other characteristics of daily cross-sectional dispersion in stock returns,' Journal of Empirical Finance 13, 79-112.
18. Day T.E. and C.M. Lewis, 1992, “Stock market volatility and the information content of stock index options”, Journal of Econometrics 52, 267-288
19. Engle, R. F., 1982, 'Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,' Econometrica Vol.50, No 4, pp. 987-1007.
20. Engle R. F., and V. K. Ng., 1993, 'Measuring and Testing the Impact of News on Volatility', Journal of Finance, 48, pp.1749–1778.
21. Ennis,R.M., M.D. Sebastian., 2002, “The Small-Cap Alpha Myth.”, Journal of Portfolio Management, 28, no.3, pp11-16
22. Fama, E. F., 1965, 'The behavior of stock market prices', Journal of Business, no. 33, pp.34–105.
23. Fama, E. F., French, K. R., 1992, 'The Cross-Section of Expected Stock Returns'. Journal of Finance 47 (2): 427–465
24. Fama,E. F., French, K. R. 1993. 'Common Risk Factors in the Returns on Stocks and Bonds'. Journal of Financial Economics 33 pp 3–56
25. French, K., 2008, 'The Cost of Active Investing.' Working paper, Amos Tuck School of Business, Dartmouth College .
26. Fornari, F. and Mele A., 1997, “Sign- and Volatility-Switching ARCH Models: Theory and Applications to International Stock Markets,” Journal of applied econometrics, Vol. 12, p49-65
27. Glosten, R.T., Jagannathan, R., and Runkle, D., 1993, 'On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks', Journal of Finance, 48, pp.1779–801.
28. Gorman, L., Sapra, S., and R. Weigand. 2009a. “The Role of Cross-Sectional Dispersion in Active Portfolio Management”, Available at SSRN: http://ssrn.com/abstract=126622
29. Gorman, L., Sapra, S., and R. Weigand. 2009b. “The Cross-Sectional Dispersion of Stock Return, Alpha and the Information Ratio”, Journal of Investing, Forthcoming. Available at SSRN: http://ssrn.com/abstract=1444868
30. Harvey C. R. and R. E. Whaley, 1992, ” Market volatility prediction and the efficiency of the S & P 100 index option market” Journal of Financial Economics Volume 31, Issue 1, 1992, Pages 43-73
31. He J. and L. K. Ng, 1994, “Economic Forces, Fundamental Variables, and Equity Returns” The Journal of Business, Vol. 67, No. 4, pp. 599-609
32. Jorion P., 1995, “Predicting Volatility in the Foreign Exchange Market” The Journal of Finance, Vol. 50, No. 2 (Jun., 1995), pp. 507-528
33. Konno H., H Yamazaki,1991,” Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market”, Management Science, Vol. 37, No. 5, pp. 519-531
34. Konno H, K.I. Suzuki, “ A mean-variance-skewness portfolio optimization model”, Journal of the Operations Research Society of Japan 87.
35. Lamoureux C. G., W. D. Lastrapes, 1993, “Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities”, The Review of Financial Studies, Vol. 6, No. 2. pp. 293-326
36. Laopodis, N. T., 1998, “Asymmetric Volatility Spillovers in Deutsche Mark Exchange Rates,” Journal of Multinational Financial Management, 8(4), pp.413-430.
37. Lee S.M., D.L. Chesser, 1980, ” Goal programming for portfolio management “Journal of Portfolio Management, Vol.6, No.3
38. Levy H. and H. M. Markowitz,1979, Approximating Expected Utility by a Function of Mean and Variance, The American Economic Review, Vol. 69, No. 3, pp. 308-317
39. Lucas R.E., 1978, “Asset prices in an exchange economy”. Econometrica 46 , pp. 1429–1445
40. Lintner, J., 1965, “The Valuation of Risk Assets and Selection of Risky Investments in Stock Portfolios and Capital Budgets”, Review of Economics and Statistics,Vol.47, pp.13-37.
41. Loungani P., Rush, R., Tave, W., 1990, “Stock market dispersion and unemployment”, Journal of Monetary Economics 25, 367– 388.
42. Mandelbrot B., 1963, “The Variation of Certain Speculative Prices,” Journal of Business, 36, pp.294-419.
43. Markowitz H., 1952, ” Portfolio Selection”, The Journal of Finance, Vol. 7, No. 1, pp. 77-91
44. Mehra R. and E. C. Prescott, 1985, 'The Equity Premium: A Puzzle,' Journal of Monetary Economics 15, pp. 145-161.
45. Merton R. C.,1973, “Intertemporal Capital Asset Pricing Model” Econometrica, Vol. 41, No. 5., pp. 867-887.
46. Mossin J., 1966, “Equilibrium in a Capital Market”, Econometrica, Vol.34, pp.768-783.
47. Morgan I.G., 1976, ”Stock Price and Heteroskedasticity,” Journal of Business, 49, pp.496-508.
48. Nelson, D. B., 1991, 'Conditional Heteroskedasticity in Asset Returns: A New Approach,' Econometrica vol.59, no.2, pp. 347-70.
49. O'Hara N., 2009, 'They're Supposed to Be Better Than This.' Institutional Investor Magazine, http://www.iimagazine.com.
50. Pojarliev M. and R.M. Levich, 2008, “Do Professional Currency Managers Beat the Benchmark?” Financial Analysts Journal,
51. Ross S.A., 1976, “The Arbitrage Theory of Capital Asset Pricing”, Journal of economic theory 12 pp.342-360
52. Speranza M. G., 1993, ” Linear programming models for portfolio optimization” Finance, Vol.13
53. Speranza M. G., 1996, “A heuristic algorithm for a portfolio optimization model applied to the Milan stock market” Computers & Operations Research Volume 23, Issue 5, May 1996, Pages 433-441
54. Szakmary A., Ors E., Kim J. K., Davidson W. N., 1993, “The predictive power of implied volatility: evidence from 35 futures markets”, Journal of Banking & Finance , Vol 27 No 11
55. Stivers C., 2003. “Firm-level return dispersion and the future volatility of aggregate stock market returns”. Journal of Financial Markets Vol6. Issue3, 389– 411
56. Sharpe,W.F. 1964, “Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk”, Journal of Finance, Vol.19, pp.425-442.
57. Sharpe,W.F., 1967. ”A linear programming algorithm for mutual fund portfolio selection” Management Science, Vol.13 No.7
58. Tobin J. ,1958, “Liquidity preference as behavior towards risk”, Review of Economic Studies, Vol.25, pp68-85
59. Xia Y., B. Liu, S. Wang, K. K. Lai, 2000, “A model for portfolio selection with order of expected returns“ Computers & Operations Research, Volume 27, Issue 5, Pages 399-494
60. Young M. R., 1998, “A Minimax Portfolio Selection Rule with Linear Programming Solution”, Management Science, Vol. 44, No. 5 , pp. 673-683
61. Zakoian, J. M., 1994, 'Threshold heteroskedastic models', Journal of Economic Dynamics and Control, 18, pp.931–55.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22531-
dc.description.abstract波動性和超額報酬之間的關係,為投資人最關注的議題之一。波動性可以定義為歷史資料統計而得之歷史波動性、利用選擇權市場價格反推而得之隱含波動性、由ARCH及其衍生模型所預測出之波動性以及橫斷面波動性。
本研究應用Gorman, Sapra and Weigand(2009)所提出之新方法,由報酬率橫斷面波動性(離散度)預測市場之超額報酬,以台灣50指數成分股橫斷面離散度及台指VIX依序對未來一個月、兩個月、三個月、半年及一年後之台灣股票市場超額報酬的離散度以確定預測的效果。
實證結果發現,報酬率的離散度及VIX對於台灣的資料,能有效的預測一個月及兩個月後之超額報酬離散度,但對於更長時期之預測,則效果不佳。本預測模式對於對於尋求絕對報酬之投資者或是經理人,提供了何時超額報酬會有大幅變動的一個新方法。
zh_TW
dc.description.abstractThe relationship between volatility and alpha is one of the most important issues for investors. Main types of volatility model include the historical volatility, implied volatility, ARCH family of models, and cross-sectional volatility(dispersion).
This paper applied a new method proposed by Gorman, Sapra and Weigand(2009) that uses cross-sectional standard deviation of stock return to forecast alpha dispersion to Taiwan stock market. We use the component (constituent) stocks of TSEC Taiwan 50 index and VIX to forecasted the alpha dispersion of one month later, two month later, three month later, half an year later and even one year later.
The results showe that the return dispersion and VIX do have the ability to forecast the alpha dispersion in 1 month and 2 month, but losing forecast power in longer periods. This research provides the absolute return investors a new method to measure the timing of significant changes of alpha.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:20:04Z (GMT). No. of bitstreams: 1
ntu-99-R97724059-1.pdf: 2470820 bytes, checksum: 67ec60b8131320f131179a346771bf54 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 ...................................................................................................................................I
中文摘要 ........................................................................................................................... II
Abstract ...........................................................................................................................III
目錄 ...................................................................................................................................IV
圖目錄 ............................................................................................................................... V
表目錄 ............................................................................................................................. VI
第一章、 緒論 ............................................................................................................ 1
第一節、 研究背景與動機 ............................................................................... 1
第二節、 研究目的 ........................................................................................... 3
第三節、 研究架構 ........................................................................................... 5
第二章、 文獻回顧 .................................................................................................... 7
第一節、 波動性文獻探討 ............................................................................... 7
一、 時間序列型波動性預測模型 .......................................................... 8
二、 隱含波動性 ..................................................................................... 16
三、 橫斷面波動性(離散度) ................................................................ 19
第二節、 超額報酬估計方法文獻探討 ........................................................ 21
一、 Markowitz投資組合理論及其擴展 ............................................. 21
二、 資本資產定價模型(CAPM) ............................................................ 27
三、 Fama-French 3 factor model .................................................... 33
第三章、 研究方法 .................................................................................................. 35
第一節、 研究模型 ......................................................................................... 35
第二節、 研究期間與樣本選擇..................................................................... 37
第三節、 實證變數統計分析 ......................................................................... 41
第四章、 實證結果與分析 ..................................................................................... 44
第一節、 實證資料 ......................................................................................... 44
第二節、 對未來一個月的預測..................................................................... 50
第三節、 對未來兩個月的預測..................................................................... 53
第四節、 對長期未來之預測 ......................................................................... 56
第五節、 研究結果分析 ................................................................................. 57
第五章、 結論與分析.............................................................................................. 62
參考文獻 ........................................................................................................................... 67
附錄一、台灣50指數成分股詳細進出時間表 .......................................................... 74
附錄二、台灣50指數編製說明 ................................................................................... 76
附錄三、VIX指數編製公式 .......................................................................................... 81
dc.language.isozh-TW
dc.subjectVIXzh_TW
dc.subject台灣50指數zh_TW
dc.subject超額報酬離散度zh_TW
dc.subject離散度zh_TW
dc.subject橫斷面波動性zh_TW
dc.subjectAlpha dispersionen
dc.subjectVIXen
dc.subjectTaiwan 50 indexen
dc.subjectCross-sectional standard deviationen
dc.subjectDispersionen
dc.title由報酬離散度預測超額報酬離散度-台灣股票市場實證zh_TW
dc.titleUsing Return Dispersion to Forecast Alpha Dispersion-Evidence from Taiwan Stock Marketen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李志偉,雷立芬
dc.subject.keyword台灣50指數,VIX,橫斷面波動性,離散度,超額報酬離散度,zh_TW
dc.subject.keywordTaiwan 50 index,VIX,Cross-sectional standard deviation,Dispersion,Alpha dispersion,en
dc.relation.page83
dc.rights.note未授權
dc.date.accepted2010-07-20
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept國際企業學研究所zh_TW
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved