Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22491
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤zh_TW
dc.contributor.author莊宗穎zh_TW
dc.contributor.authorTzung-Ying Chuangen
dc.date.accessioned2021-06-08T04:19:03Z-
dc.date.available2024-09-16-
dc.date.copyright2010-07-30-
dc.date.issued2010-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, “Rings with Generalized Identities”, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
[2] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33(1) (1991), 89–93.
[3] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137(1) (2007), 9–21.
[4] C.-M. Chang and T.-K. Lee, Derivations and central linear generalized polynomials in prime rings, Southeast Asian Bull. Math. 21(3) (1997), 215–225.
[5] C.-L. Chuang, On invariant additive subgroups, Israel J. Math. 57(1) (1987), 116–128.
[6] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103(3) (1988), 723–728.
[7] B. Felzenszwalb, On a result of Levitzki, Canad. Math. Bull. 21(2) (1978), 241– 242.
[8] I.N. Herstein, “Noncommutative rings”, The Carus Mathematical Monographs, No.15 Published by The Mathematical Association of America 1968.
[9] I.N. Herstein, “Topics in ring theory”, The University of Chicago Press, Chicago, Ill.-London 1969.
[10] I.N. Herstein,Center-like elements in prime rings, J. Algebra 12(2) (1979), 567–574.
[11] N. Jacobson, “PI-algebras: an introduction”, Lecture Notes in Mathematics 441. Springer-Verlag, Berlin, 1975.
[12] K.-W. Jun and K.-H. Kim, Derivations on prime rings and banach algebras, Bull. Korean Math. Soc. 38(4) (2001),709–718.
[13] V.K. Kharchenko, Differential identities of prime rings, (Russian) Algebra i Logika 17(2) (1978), 220–238, 242–243.
[14] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20(1) (1992), 27–38.
[15] T.-K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloq. 3(1) (1996), 19–24.
[16] T.-K. Lee and W.-K. Shiue, Derivations cocentralizing polynomials, Taiwanese J. Math. 2(4) (1998), 457–467.
[17] T.-K. Lee, Differential identities of Lie ideals or large right ideals in prime rings, Comm. Algebra 27(2) (1999), 793–819.
[18] T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27(8) (1999), 4057–4073.
[19] T.-K. Lee, Generalized skew derivations characterized by acting on zero products, Pacific J. Math. 216(2) (2004), 293–301.
[20] T.-K. Lee and Yiqiang Zhou, An identity with generalized derivations, J. Algebra Appl. 8(3) (2009), 307–317
[21] W.S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra. 12 (1969), 576–584.
[22] A.B. Thaheemand M.S. Samman, A note on α-derivations on semiprime rings, Demonstratio Math. 34(4) (2001), 783–788.
[23] J. Vukman, Identities with derivations on rings and Banach algebras, Glas. Mat. Ser. III 40(2) (2005), 189–199.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22491-
dc.description.abstract令R是一個質環且dimC RC > 4, 令D,G是R的泛導算, 令m, n是固定的正整數.然後D(xm)xn− xnG(xm) ∈C 若且爲若以下兩個條件成立:(1) 存在w 屬於Q, R的Martindale 對稱除環, 使得D(x) = xw且G(x) = wx 對於所有的x屬於R (2)w屬於C或者是xm和xn是C相依的對於所有的x屬於R. 我們也將討論非交換李理想的例.zh_TW
dc.description.abstractLet R be a prime ring and dimC RC > 4, let D,G be two generalized derivations of R, and let m, n be two fixed positive integers. Then D(xm)xn−xnG(xm) ∈C for all x ∈R iff the following two conditions hold: (1) There exists w 2 Q, the symmetric Martindale quotient ring of R, such that D(x) = xw and G(x) = wx for all x ∈R; (2) either w ∈C, or xm and xn are C-dependent for all x ∈R. We also consider the situation of noncommutative Lie ideals.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:19:03Z (GMT). No. of bitstreams: 1
ntu-99-R96221031-1.pdf: 302336 bytes, checksum: 30450ad98d68b44d9ec335e9221579d4 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書…………………………………………………… i
誌謝………………………………………………………………… ii
摘要………………………………………………………………… iii
Abstract……………………………………………………………… iv
第一章 Introduction and Results ………………………………… 1
第二章 Proof of Theorem 1.1 ………………………………… 2
第三章 Proof of Theorem 1.2 ………………………………… 7
Reference …………………………………………………………… 12
-
dc.language.isozh_TW-
dc.title具泛導算之中心恆等式zh_TW
dc.titleA central identity with generalized derivationsen
dc.typeThesis-
dc.date.schoolyear98-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李白飛;王彩蓮zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword質環,(廣)導算,李理想,PI,GPI,zh_TW
dc.subject.keywordPrime ring,(generalized) derivation,Lie ideal,PI,GPI,en
dc.relation.page13-
dc.identifier.doi10.6342/NTU.2010.10583-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2010-07-23-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-2.pdf295.46 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved