Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22483
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 孔繁璐 | |
dc.contributor.author | Wei-Lun Lin | en |
dc.contributor.author | 林煒倫 | zh_TW |
dc.date.accessioned | 2021-06-08T04:18:51Z | - |
dc.date.copyright | 2010-09-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-26 | |
dc.identifier.citation | 1 Fu X, McGrath S, Pasillas M, Nakazawa S, Kamps MP. Eb-1, a tyrosine kinase signal transduction gene, is transcriptionally activated in the t(1;19) subset of pre-b all, which express oncoprotein e2a-pbx1. Oncogene 1999;18:4920-4929.
2 Zatsepina O, Baly C, Chebrout M, Debey P. The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the cajal (coiled) body. Dev Biol 2003;253:66-83. 3 Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA. Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 2004;3:857-871. 4 Jordan BA, Fernholz BD, Khatri L, Ziff EB. Activity-dependent aida-1 nuclear signaling regulates nucleolar numbers and protein synthesis in neurons. Nat Neurosci 2007;10:427-435. 5 Ghersi E, Vito P, Lopez P, Abdallah M, D'Adamio L. The intracellular localization of amyloid beta protein precursor (abetapp) intracellular domain associated protein-1 (aida-1) is regulated by abetapp and alternative splicing. J Alzheimers Dis 2004;6:67-78. 6 Ghersi E, Noviello C, D'Adamio L. Amyloid-beta protein precursor (abetapp) intracellular domain-associated protein-1 proteins bind to abetapp and modulate its processing in an isoform-specific manner. J Biol Chem 2004;279:49105-49112. 7 Landis DM, Reese TS. Differences in membrane structure between excitatory and inhibitory synapses in the cerebellar cortex. J Comp Neurol 1974;155:93-125. 8 Kennedy MB. The postsynaptic density at glutamatergic synapses. Trends Neurosci 1997;20:264-268. 9 Ziff EB. Enlightening the postsynaptic density. Neuron 1997;19:1163-1174. 10 Banker G, Churchill L, Cotman CW. Proteins of the postsynaptic density. J Cell Biol 1974;63:456-465. 11 Blomberg F, Cohen RS, Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. Ii. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol 1977;74:204-225. 12 Kennedy MB. The postsynaptic density. Curr Opin Neurobiol 1993;3:732-737. 13 Dosemeci A, Tao-Cheng JH, Vinade L, Winters CA, Pozzo-Miller L, Reese TS. Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci U S A 2001;98:10428-10432. 14 Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. Structure-stability-function relationships of dendritic spines. Trends Neurosci 2003;26:360-368. 15 Sheng M, Sala C. Pdz domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001;24:1-29. 16 Ranganathan R, Ross EM. Pdz domain proteins: Scaffolds for signaling complexes. Curr Biol 1997;7:R770-773. 17 Saraste M, Sibbald PR, Wittinghofer A. The p-loop--a common motif in atp- and gtp-binding proteins. Trends Biochem Sci 1990;15:430-434. 18 Long JF, Tochio H, Wang P, Fan JS, Sala C, Niethammer M, Sheng M, Zhang M. Supramodular structure and synergistic target binding of the n-terminal tandem pdz domains of psd-95. J Mol Biol 2003;327:203-214. 19 Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51:7-61. 20 Scannevin RH, Huganir RL. Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci 2000;1:133-141. 21 Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW, Crabtree GR. L-type calcium channels and gsk-3 regulate the activity of nf-atc4 in hippocampal neurons. Nature 1999;401:703-708. 22 Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Stimulation of ionotropic glutamate receptors activates transcription factor nf-kappa b in primary neurons. Proc Natl Acad Sci U S A 1995;92:9618-9622. 23 Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H. Neuronal activity-dependent nucleocytoplasmic shuttling of hdac4 and hdac5. J Neurochem 2003;85:151-159. 24 Hoey SE, Williams RJ, Perkinton MS. Synaptic nmda receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloid-beta production. J Neurosci 2009;29:4442-4460. 25 Hoe HS, Fu Z, Makarova A, Lee JY, Lu C, Feng L, Pajoohesh-Ganji A, Matsuoka Y, Hyman BT, Ehlers MD, Vicini S, Pak DT, Rebeck GW. The effects of amyloid precursor protein on postsynaptic composition and activity. J Biol Chem 2009;284:8495-8506. 26 Lesne S, Ali C, Gabriel C, Croci N, MacKenzie ET, Glabe CG, Plotkine M, Marchand-Verrecchia C, Vivien D, Buisson A. Nmda receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 2005;25:9367-9377. 27 Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 2006;26:7212-7221. 28 Turner PR, O'Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003;70:1-32. 29 Hardy J, Selkoe DJ. The amyloid hypothesis of alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002;297:353-356. 30 Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002;416:535-539. 31 Storey E, Cappai R. The amyloid precursor protein of alzheimer's disease and the abeta peptide. Neuropathol Appl Neurobiol 1999;25:81-97. 32 Vetrivel KS, Thinakaran G. Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 2006;66:S69-73. 33 Wolfe MS. Intramembrane proteolysis. Chem Rev 2009;109:1599-1612. 34 Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C. Reconstitution of gamma-secretase activity. Nat Cell Biol 2003;5:486-488. 35 Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc Natl Acad Sci U S A 2003;100:6382-6387. 36 Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T. The role of presenilin cofactors in the gamma-secretase complex. Nature 2003;422:438-441. 37 Kornilova AY, Bihel F, Das C, Wolfe MS. The initial substrate-binding site of gamma-secretase is located on presenilin near the active site. Proc Natl Acad Sci U S A 2005;102:3230-3235. 38 Gu Y, Chen F, Sanjo N, Kawarai T, Hasegawa H, Duthie M, Li W, Ruan X, Luthra A, Mount HT, Tandon A, Fraser PE, St George-Hyslop P. Aph-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin.Nicastrin complexes. J Biol Chem 2003;278:7374-7380. 39 Prokop S, Shirotani K, Edbauer D, Haass C, Steiner H. Requirement of pen-2 for stabilization of the presenilin n-/c-terminal fragment heterodimer within the gamma-secretase complex. J Biol Chem 2004;279:23255-23261. 40 Lazarov VK, Fraering PC, Ye W, Wolfe MS, Selkoe DJ, Li H. Electron microscopic structure of purified, active gamma-secretase reveals an aqueous intramembrane chamber and two pores. Proc Natl Acad Sci U S A 2006;103:6889-6894. 41 Morohashi Y, Kan T, Tominari Y, Fuwa H, Okamura Y, Watanabe N, Sato C, Natsugari H, Fukuyama T, Iwatsubo T, Tomita T. C-terminal fragment of presenilin is the molecular target of a dipeptidic gamma-secretase-specific inhibitor dapt (n-[n-(3,5-difluorophenacetyl)-l-alanyl]-s-phenylglycine t-butyl ester). J Biol Chem 2006;281:14670-14676. 42 De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998;391:387-390. 43 De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R. A presenilin-1-dependent gamma-secretase-like protease mediates release of notch intracellular domain. Nature 1999;398:518-522. 44 Lleo A. Activity of gamma-secretase on substrates other than app. Curr Top Med Chem 2008;8:9-16. 45 McCarthy JV, Twomey C, Wujek P. Presenilin-dependent regulated intramembrane proteolysis and gamma-secretase activity. Cell Mol Life Sci 2009;66:1534-1555. 46 Berezovska O, McLean P, Knowles R, Frosh M, Lu FM, Lux SE, Hyman BT. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 1999;93:433-439. 47 Sestan N, Artavanis-Tsakonas S, Rakic P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 1999;286:741-746. 48 Zhao G, Mao G, Tan J, Dong Y, Cui MZ, Kim SH, Xu X. Identification of a new presenilin-dependent zeta-cleavage site within the transmembrane domain of amyloid precursor protein. J Biol Chem 2004;279:50647-50650. 49 Guardia-Laguarta C, Pera M, Lleo A. Gamma-secretase as a therapeutic target in alzheimer's disease. Curr Drug Targets;11:506-517. 50 Fortini ME. Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 2002;3:673-684. 51 Minopoli G, de Candia P, Bonetti A, Faraonio R, Zambrano N, Russo T. The beta-amyloid precursor protein functions as a cytosolic anchoring site that prevents fe65 nuclear translocation. J Biol Chem 2001;276:6545-6550. 52 Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the beta-amyloid precursor protein is stabilized by fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 2001;276:40288-40292. 53 von Rotz RC, Kohli BM, Bosset J, Meier M, Suzuki T, Nitsch RM, Konietzko U. The app intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci 2004;117:4435-4448. 54 Cao X, Sudhof TC. Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 2004;279:24601-24611. 55 Hebert SS, Serneels L, Tolia A, Craessaerts K, Derks C, Filippov MA, Muller U, De Strooper B. Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Rep 2006;7:739-745. 56 Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K. Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 2006;103:11172-11177. 57 Sisodia SS. Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A 1992;89:6075-6079. 58 Goodger ZV, Rajendran L, Trutzel A, Kohli BM, Nitsch RM, Konietzko U. Nuclear signaling by the app intracellular domain occurs predominantly through the amyloidogenic processing pathway. J Cell Sci 2009;122:3703-3714. 59 Ozaki T, Li Y, Kikuchi H, Tomita T, Iwatsubo T, Nakagawara A. The intracellular domain of the amyloid precursor protein (aicd) enhances the p53-mediated apoptosis. Biochem Biophys Res Commun 2006;351:57-63. 60 Chang KA, Suh YH. Pathophysiological roles of amyloidogenic carboxy-terminal fragments of the beta-amyloid precursor protein in alzheimer's disease. J Pharmacol Sci 2005;97:461-471. 61 Alves da Costa C, Sunyach C, Pardossi-Piquard R, Sevalle J, Vincent B, Boyer N, Kawarai T, Girardot N, St George-Hyslop P, Checler F. Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in alzheimer's disease. J Neurosci 2006;26:6377-6385. 62 Gall JG, Bellini M, Wu Z, Murphy C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 1999;10:4385-4402. 63 Villa T, Pleiss JA, Guthrie C. Spliceosomal snrnas: Mg(2+)-dependent chemistry at the catalytic core? Cell 2002;109:149-152. 64 Cioce M, Lamond AI. Cajal bodies: A long history of discovery. Annu Rev Cell Dev Biol 2005;21:105-131. 65 Raska I, Ochs RL, Andrade LE, Chan EK, Burlingame R, Peebles C, Gruol D, Tan EM. Association between the nucleolus and the coiled body. J Struct Biol 1990;104:120-127. 66 Hebert MD, Szymczyk PW, Shpargel KB, Matera AG. Coilin forms the bridge between cajal bodies and smn, the spinal muscular atrophy protein. Genes Dev 2001;15:2720-2729. 67 Hyson RL, Rubel EW. Activity-dependent regulation of a ribosomal rna epitope in the chick cochlear nucleus. Brain Res 1995;672:196-204. 68 Carafoli E, Molinari M. Calpain: A protease in search of a function? Biochem Biophys Res Commun 1998;247:193-203. 69 Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH. Disruption of the mouse mu-calpain gene reveals an essential role in platelet function. Mol Cell Biol 2001;21:2213-2220. 70 Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 2000;405:360-364. 71 Suzuki K, Ohno S. Calcium activated neutral protease--structure-function relationship and functional implications. Cell Struct Funct 1990;15:1-6. 72 Hamakubo T, Kannagi R, Murachi T, Matus A. Distribution of calpains i and ii in rat brain. J Neurosci 1986;6:3103-3111. 73 Nixon RA, Quackenbush R, Vitto A. Multiple calcium-activated neutral proteinases (canp) in mouse retinal ganglion cell neurons: Specificities for endogenous neuronal substrates and comparison to purified brain canp. J Neurosci 1986;6:1252-1263. 74 Onizuka K, Kunimatsu M, Ozaki Y, Muramatsu K, Sasaki M, Nishino H. Distribution of mu-calpain proenzyme in the brain and other neural tissues in the rat. Brain Res 1995;697:179-186. 75 Melloni E, Michetti M, Salamino F, Minafra R, Pontremoli S. Modulation of the calpain autoproteolysis by calpastatin and phospholipids. Biochem Biophys Res Commun 1996;229:193-197. 76 Glading A, Chang P, Lauffenburger DA, Wells A. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an erk/map kinase signaling pathway. J Biol Chem 2000;275:2390-2398. 77 Shiraha H, Glading A, Gupta K, Wells A. Ip-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. J Cell Biol 1999;146:243-254. 78 duVerle D, Takigawa I, Ono Y, Sorimachi H, Mamitsuka H. Campdb: A resource for calpain and modulatory proteolysis. Genome Inform;22:202-213. 79 Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell 1984;39:499-509. 80 Wen W, Meinkoth JL, Tsien RY, Taylor SS. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995;82:463-473. 81 Chen M, Fernandez HL. Stimulation of beta-amyloid precursor protein alpha-processing by phorbol ester involves calcium and calpain activation. Biochem Biophys Res Commun 2004;316:332-340. 82 Pontremoli S, Sparatore B, Salamino F, Michetti M, Sacco O, Melloni E. Reversible activation of human neutrophil calpain promoted by interaction with plasma membranes. Biochem Int 1985;11:35-44. 83 Pontremoli S, Melloni E, Viotti PL, Michetti M, Di Lisa F, Siliprandi N. Isovalerylcarnitine is a specific activator of the high calcium requiring calpain forms. Biochem Biophys Res Commun 1990;167:373-380. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22483 | - |
dc.description.abstract | ANKS1B表現於成人的大腦與睪丸組織中,目前被認為可能與細胞內蛋白質的生成有關。因ANKS1B與第一型穿膜蛋白APP有交互作用,故ANKS1B又被稱為AIDA-1。過去的研究指出若以NMDA刺激會促使ANKS1B產生斷裂,而後N端片段移動至細胞核內而C端片段則留在細胞質中。在這裡我們想釐清APP processing是否影響ANKS1B進入細胞核。我們發現當使用DAPT處理SH-SY5Y抑制AICD從APP釋放時,NMDA刺激造成的ANKS1B進核現象會受到抑制。但是當在細胞內表現失去PTB domain與C端末端的ANKS1B時,則其不需經NMDA刺激即可進入細胞核中。當在細胞中大量表現含YENPTY序列的AICD,使其與膜上APP競爭與ANKS1B的交互作用,發現ANKS1B不需經NMDA刺激,即可進入核內。這些結果指出膜上APP對ANKS1B可能扮演anchor的角色。同時觀察到在大量表現AICD競爭時,進入核中的同樣只有N端的ANKS1B片段,我們因此假設APP對ANKS1B可能也具有保護的作用,當ANKS1B失去與APP除AICD外的其他部分的交互作用時,會使ANKS1B被細胞內某一種蛋白酶切割,而後產生的N端片段得以進入細胞核中。我們發現在NMDA刺激與大量表現free AICD時都會導致細胞內鈣離子濃度上升,在利用CaMPDB計算受鈣離子活化的蛋白酶calpains在ANKS1B上可能的作用位置後,發現若在第283個胺基酸後產生交互作用則產生出來的斷裂片段大小與受NMDA刺激產生出的片段大小相似,懷疑其可能為對ANKS1B作用的蛋白酶,目前的實驗結果顯示在NMDA刺激造成ANKS1B斷裂的條件下,未觀察到calpain活化態的產生。根據這些結果, APP在ANKS1B的進核現象中扮演著重要的角色,彼此的交互作用可能影響ANKS1B在細胞內的功能。 | zh_TW |
dc.description.abstract | ANKS1B is detected in brain and testis in normal human tissues, it is proposed to regulate the protein synthesis. Because ANKS1B interacts with APP, it is also called APP intracellular domain associated protein-1. Past studies of ANKS1B indicate that NMDA stimulation induces the proteolytic cleavage of ANKS1B in primary neuronal cultures. The N-term fragment shuttles to the nucleus while the C-term fragment remains in the cytoplasm. We want to clarify the role of APP processing in NMDA-mediated translocation of ANKS1B. When SH-SY5Y cells were treated with DAPT (γ-secretase inhibitor) to block the release of AICD from APP, our result shows the translocation of ANKS1B was inhibited. However, ANKS1B losing its PTB binding domain and C-terminus can translocate to nucleus in the absence of NMDA stimulation. Interestingly, when YENPTY-containing AICD was overexpressed to compete for the interaction with ANKS1B, the translocation of ANKS1B was observed. These results suggest APP may be an anchor to attach ANKS1B to the membrane. We also noticed that the N-terminal ANKS1B fragment shuttles to nucleus when AICD was overexpressed. Therefore we hypothesized that APP may prevent the cleavage of ANKS1B and some proteases may be able to interact with ANKS1B once ANKS1B loses its interaction with APP. NMDA stimulation and AICD overexpression both can elevate the intracellular calcium concentration, and the prediction result reveals that if calpain interacts to the 283th amino acid of ANKS1B, the size of produced fragments are similar to NMDA stimulation. However, our result indicats no active form calpain is noticed after NMDA stimulation. According to these results, APP plays an important role in the translocation of ANKS1B. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:18:51Z (GMT). No. of bitstreams: 1 ntu-99-R97423009-1.pdf: 4066054 bytes, checksum: 4f71a7bc7645f767d9a4e393d26fbc9c (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書I
誌謝II 中文摘要 III 英文摘要 IV 英文縮寫表 V 序論1 1.ANKS1B 1 2.PSD與ANKS1B間的交互作用3 3.NMDAR對APP的影響4 4.Cajal bodies與ANKS1B的交互作用6 5.Calpain在ANKS1B進核現象中扮演的角色7 材料與方法9 一、建構質體DNA 9 二、APP與ANKS1B交互作用的探討-共軛焦顯微鏡11 三、APP與ANKS1B交互作用的探討-抽核內蛋白13 四、鈣離子在APP與ANKS1B的交互作用中扮演的角色-流式細胞儀15 實驗結果16 1.闡明APP processing對ANKS1B進核現象的影響16 1-1 以NMDA刺激SH-SY5Y細胞株促使ANKS1B 進入細胞核中16 1-2 AICD的釋放影響ANKS1B受NMDA刺激後的進核現象16 1-3 overexpress帶有YENPTY序列的AICD會導致ANKS1B進入細胞核中17 1-4 NMDA對APP processing的影響17 2.探索ANKS1B在進入細胞核的過程中可能的調控路徑18 2-1 ANKS1B N端不需經NMDA刺激即可進入細胞核中18 2-2 AICD可能為ANKS1B 進入細胞核過程中幫助其入核的carrier 18 2-3 ANKS1B進核過程中可能幫助其斷裂的蛋白酶18 討論20 圖表23 參考文獻39 | |
dc.language.iso | zh-TW | |
dc.title | APP在NMDA刺激所引起的ANKS1B進核現象中扮演角色之探討 | zh_TW |
dc.title | Investigation on the role of APP in NMDA-mediated translocation of ANKS1B | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李財坤,兵岳忻,顧記華 | |
dc.subject.keyword | ANKS1B, | zh_TW |
dc.relation.page | 46 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-07-26 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 3.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.