請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22477完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | Jeffrey Chi-Sheng Wu(吳紀聖) | |
| dc.contributor.author | Van-Huy Nguyen | en |
| dc.contributor.author | 胡阮凡 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:18:42Z | - |
| dc.date.copyright | 2010-07-29 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-26 | |
| dc.identifier.citation | [1] ICIS Chemical Business (ICB) Chemical Profile (September 2007 ed.). (2007), Available: http://www.icis.com
[2] M. Bohnet, Ullmann's Encyclopedia of Industrial Chemistry: John Wiley & Sons, Inc, 2009. [3] Klaus Weissermel, Hans-Jürgen Arpe, and C. R. Lindley, Industrial organic chemistry, 4, illustrated ed.: Wiley-VCH, 2003. [4] J. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, and M. Haruta, 'Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters13,' Angewandte Chemie International Edition, vol. 48, pp. 7862-7866, 2009. [5] M. ISHINO, 'Development of New Propylene Oxide Process,' in 16th Saudi Arabia -Japan Joint Symposium, Dhahran, Saudi Arabia, 2006. [6] U. W. Dietmar Kahlich, Jörg Lindner, 'Propylene Oxide,' in Ullmann's Encyclopedia of Industrial Chemistry, ed Weinheim: Wiley-VCH, 2002. [7] H. S. D. Bank. 1,2-Propylene Oxide Profile. (2001), [8] J. Kaur and I. V. Kozhevnikov, 'Polyoxometalate-catalysed epoxidation of propylene with hydrogen peroxide: microemulsion versus biphasic process,' Catalysis Communications, vol. 5, pp. 709-713, 2004. [9] C. Qi, T. Akita, M. Okumura, and M. Haruta, 'Epoxidation of propylene over gold catalysts supported on non-porous silica,' Applied Catalysis A: General, vol. 218, pp. 81-89, 2001. [10] J. Lu, X. Zhang, J. J. Bravo-Suárez, K. K. Bando, T. Fujitani, and S. T. Oyama, 'Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H2 and O2: Effect of Au particle size,' Journal of Catalysis, vol. 250, pp. 350-359, 2007. [11] T. Hayashi, K. Tanaka, and M. Haruta, 'Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen,' Journal of Catalysis, vol. 178, pp. 566-575, 1998. [12] J. Q. Lu, X. M. Zhang, J. J. Bravo-Suarez, T. Fujitani, and S. T. Oyama, 'Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2,' Catalysis Today, vol. 147, pp. 186-195, Oct 15 2009. [13] T. A. Nijhuis, B. J. Huizinga, M. Makkee, and J. A. Moulijn, 'Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports,' Industrial & Engineering Chemistry Research, vol. 38, pp. 884-891, Mar 1999. [14] L. Cumaranatunge and W. N. Delgass, 'Enhancement of Au capture efficiency and activity of Au/TS-1 catalysts for propylene epoxidation,' Journal of Catalysis, vol. 232, pp. 38-42, 2005. [15] A. K. Sinha, S. Seelan, S. Tsubota, and M. Haruta, 'A Three-Dimensional Mesoporous Titanosilicate Support for Gold Nanoparticles: Vapor-Phase Epoxidation of Propene with High Conversion13,' Angewandte Chemie International Edition, vol. 43, pp. 1546-1548, 2004. [16] A. K. Sinha, S. Seelan, M. Okumura, T. Akita, S. Tsubota, and M. Haruta, 'Three-Dimensional Mesoporous Titanosilicates Prepared by Modified Sol−Gel Method: Ideal Gold Catalyst Supports for Enhanced Propene Epoxidation,' The Journal of Physical Chemistry B, vol. 109, pp. 3956-3965, 2005. [17] B. Chowdhury, J. J. Bravo-Suárez, M. Daté, S. Tsubota, and M. Haruta, 'Trimethylamine as a Gas-Phase Promoter: Highly Efficient Epoxidation of Propylene over Supported Gold Catalysts13,' Angewandte Chemie International Edition, vol. 45, pp. 412-415, 2006. [18] E. E. Stangland, B. Taylor, R. P. Andres, and W. N. Delgass, 'Direct Vapor Phase Propylene Epoxidation over Deposition-Precipitation Gold-Titania Catalysts in the Presence of H2/O2: Effects of Support, Neutralizing Agent, and Pretreatment†,' The Journal of Physical Chemistry B, vol. 109, pp. 2321-2330, 2004. [19] B. Taylor, J. Lauterbach, and W. N. Delgass, 'Gas-phase epoxidation of propylene over small gold ensembles on TS-1,' Applied Catalysis A: General, vol. 291, pp. 188-198, 2005. [20] Q. Wang, L. Wang, and Z. Mi, 'Influence of Pt–Pd/TS-1 Catalyst Preparation on Epoxidation of Olefins with Hydrogen Peroxide,' Catalysis Letters, vol. 103, pp. 161-164, 2005. [21] W. Laufer, R. Meiers, and W. Hölderich, 'Propylene epoxidation with hydrogen peroxide over palladium containing titanium silicalite,' Journal of Molecular Catalysis A: Chemical, vol. 141, pp. 215-221, 1999. [22] G. Li, X. Wang, H. Yan, Y. Liu, and X. Liu, 'Epoxidation of propylene using supported titanium silicalite catalysts,' Applied Catalysis A: General, vol. 236, pp. 1-7, 2002. [23] V. Arca, A. Boscolo Boscoletto, N. Fracasso, L. Meda, and G. Ranghino, 'Epoxidation of propylene on Zn-treated TS-1 catalyst,' Journal of Molecular Catalysis A: Chemical, vol. 243, pp. 264-277, 2006. [24] N. Yap, R. P. Andres, and W. N. Delgass, 'Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2,' Journal of Catalysis, vol. 226, pp. 156-170, 2004. [25] X. Liu, X. Wang, X. Guo, and G. Li, 'Effect of solvent on the propylene epoxidation over TS-1 catalyst,' Catalysis Today, vol. 93-95, pp. 505-509, 2004. [26] W. Cheng, X. Wang, G. Li, X. Guo, and S. Zhang, 'Highly efficient epoxidation of propylene to propylene oxide over TS-1 using urea + hydrogen peroxide as oxidizing agent,' Journal of Catalysis, vol. 255, pp. 343-346, 2008. [27] L. Y. Chen, G. K. Chuah, and S. Jaenicke, 'Propylene epoxidation with hydrogen peroxide catalyzed by molecular sieves containing framework titanium,' Journal of Molecular Catalysis A: Chemical, vol. 132, pp. 281-292, 1998. [28] T. Liu, P. Hacarlioglu, S. T. Oyama, M.-F. Luo, X.-R. Pan, and J.-Q. Lu, 'Enhanced reactivity of direct propylene epoxidation with H2 and O2 over Ge-modified Au/TS-1 catalysts,' Journal of Catalysis, vol. 267, pp. 202-206, 2009. [29] J. K. F. Buijink, J. J. M. van Vlaanderen, M. Crocker, and F. G. M. Niele, 'Propylene epoxidation over titanium-on-silica catalyst--the heart of the SMPO process,' Catalysis Today, vol. 93-95, pp. 199-204, 2004. [30] G. F. Thiele and E. Roland, 'Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: Activity, deactivation and regeneration of the catalyst,' Journal of Molecular Catalysis A: Chemical, vol. 117, pp. 351-356, 1997. [31] S. Park, K. M. Cho, M. H. Youn, J. G. Seo, J. C. Jung, S.-H. Baeck, T. J. Kim, Y.-M. Chung, S.-H. Oh, and I. K. Song, 'Direct epoxidation of propylene with hydrogen peroxide over TS-1 catalysts: Effect of hydrophobicity of the catalysts,' Catalysis Communications, vol. 9, pp. 2485-2488, 2008. [32] R. Wang, J. Hao, X. Guo, X. Wang, and X. Liu, 'Propylene epoxidation over Ag/Ts-1 catalysts,' in Studies in Surface Science and Catalysis. vol. Volume 154, Part 3, M. C. E. van Steen and L. H. Callanan, Eds., ed: Elsevier, 2004, pp. 2632-2638. [33] J. Lu, X. Zhang, J. J. Bravo-Suárez, T. Fujitani, and S. T. Oyama, 'Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2,' Catalysis Today, vol. 147, pp. 186-195, 2009. [34] G. Jenzer, T. Mallat, M. Maciejewski, F. Eigenmann, and A. Baiker, 'Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 catalyst,' Applied Catalysis A: General, vol. 208, pp. 125-133, 2001. [35] G. Li, X. Wang, H. Yan, Y. Chen, and Q. Su, 'Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite,' Applied Catalysis A: General, vol. 218, pp. 31-38, 2001. [36] B. Taylor, J. Lauterbach, G. E. Blau, and W. N. Delgass, 'Reaction kinetic analysis of the gas-phase epoxidation of propylene over Au/TS-1,' Journal of Catalysis, vol. 242, pp. 142-152, 2006. [37] Q. Wang, L. Wang, J. Chen, Y. Wu, and Z. Mi, 'Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene,' Journal of Molecular Catalysis A: Chemical, vol. 273, pp. 73-80, 2007. [38] R. Wang, X. Guo, X. Wang, J. Hao, G. Li, and J. Xiu, 'Effects of preparation conditions and reaction conditions on the epoxidation of propylene with molecular oxygen over Ag/TS-1 in the presence of hydrogen,' Applied Catalysis A: General, vol. 261, pp. 7-13, 2004. [39] D. P. Serrano, R. Sanz, P. Pizarro, I. Moreno, P. de Frutos, and S. Blázquez, 'Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation,' Catalysis Today, vol. 143, pp. 151-157, 2009. [40] C. Qi, M. Okumura, T. Akita, and M. Haruta, 'Vapor-phase epoxidation of propylene using H2/O2 mixture over gold catalysts supported on non-porous and mesoporous titania-silica: effect of preparation conditions and pretreatments prior to reaction,' Applied Catalysis A: General, vol. 263, pp. 19-26, 2004. [41] B. Taylor, J. Lauterbach, and W. N. Delgass, 'The effect of mesoporous scale defects on the activity of Au/TS-1 for the epoxidation of propylene,' Catalysis Today, vol. 123, pp. 50-58, 2007. [42] C. Qi, T. Akita, M. Okumura, K. Kuraoka, and M. Haruta, 'Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature,' Applied Catalysis A: General, vol. 253, pp. 75-89, 2003. [43] T. A. Nijhuis, M. Makkee, J. A. Moulijn, and B. M. Weckhuysen, 'The Production of Propene Oxide: Catalytic Processes and Recent Developments,' Industrial & Engineering Chemistry Research, vol. 45, pp. 3447-3459, 2006. [44] Z. Suo, M. Jin, J. Lu, Z. Wei, and C. Li, 'Direct gas-phase epoxidation of propylene to propylene oxide using air as oxidant on supported gold catalyst,' Journal of Natural Gas Chemistry, vol. 17, pp. 184-190, 2008. [45] A. Takahashi, N. Hamakawa, I. Nakamura, and T. Fujitani, 'Effects of added 3d transition-metals on Ag-based catalysts for direct epoxidation of propylene by oxygen,' Applied Catalysis A: General, vol. 294, pp. 34-39, 2005. [46] B. Moens, H. De Winne, S. Corthals, H. Poelman, R. De Gryse, V. Meynen, P. Cool, B. F. Sels, and P. A. Jacobs, 'Epoxidation of propylene with nitrous oxide on Rb2SO4-modified iron oxide on silica catalysts,' Journal of Catalysis, vol. 247, pp. 86-100, 2007. [47] Y. Liu, K. Murata, M. Inaba, and N. Mimura, 'Syntheses of Ti- and Al-containing hexagonal mesoporous silicas for gas-phase epoxidation of propylene by molecular oxygen,' Applied Catalysis A: General, vol. 309, pp. 91-105, 2006. [48] Z. Song, N. Mimura, J. J. Bravo-Suárez, T. Akita, S. Tsubota, and S. T. Oyama, 'Gas-phase epoxidation of propylene through radicals generated by silica-supported molybdenum oxide,' Applied Catalysis A: General, vol. 316, pp. 142-151, 2007. [49] Y. Liu, K. Murata, M. Inaba, and N. Mimura, 'Direct epoxidation of propylene by molecular oxygen over Pd(OAc)2-[(C6H13)4N]3{PO4[W(O)(O2)2]4}-CH3OH catalytic system,' Applied Catalysis B: Environmental, vol. 58, pp. 51-59, 2005. [50] J. Lu, J. J. Bravo-Suárez, A. Takahashi, M. Haruta, and S. T. Oyama, 'In situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen,' Journal of Catalysis, vol. 232, pp. 85-95, 2005. [51] G. Jin, G. Lu, Y. Guo, Y. Guo, J. Wang, W. Kong, and X. Liu, 'Effect of preparation condition on performance of Ag-MoO3/ZrO2 catalyst for direct epoxidation of propylene by molecular oxygen,' Journal of Molecular Catalysis A: Chemical, vol. 232, pp. 165-172, 2005. [52] G. Jin, G. Lu, Y. Guo, Y. Guo, J. Wang, and X. Liu, 'Direct epoxidation of propylene with molecular oxygen over Ag-MoO3/ZrO2 catalyst,' Catalysis Today, vol. 93-95, pp. 173-182, 2004. [53] J. Lu, M. Luo, H. Lei, and C. Li, 'Epoxidation of propylene on NaCl-modified silver catalysts with air as the oxidant,' Applied Catalysis A: General, vol. 237, pp. 11-19, 2002. [54] J. Lu, J. J. Bravo-Suárez, M. Haruta, and S. T. Oyama, 'Direct propylene epoxidation over modified Ag/CaCO3 catalysts,' Applied Catalysis A: General, vol. 302, pp. 283-295, 2006. [55] Y. Wang, H. Chu, W. Zhu, and Q. Zhang, 'Copper-based efficient catalysts for propylene epoxidation by molecular oxygen,' Catalysis Today, vol. 131, pp. 496-504, 2008. [56] H. Chu, L. Yang, Q. Zhang, and Y. Wang, 'Copper-catalyzed propylene epoxidation by molecular oxygen: Superior catalytic performances of halogen-free K+-modified CuOx/SBA-15,' Journal of Catalysis, vol. 241, pp. 225-228, 2006. [57] W. Su, S. Wang, P. Ying, Z. Feng, and C. Li, 'A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant,' Journal of Catalysis, vol. 268, pp. 165-174, 2009. [58] G. Jin, Y. Guo, X. Liu, W. Yao, Y. Guo, Y. Wang, F. Yuan, and G. Lu, 'In situ FT-IR Study on the Direct Gas Phase Epoxidation of Propylene over Ag-MoO3 Catalyst,' Acta Physico-Chimica Sinica, vol. 22, pp. 809-814, 2006. [59] N. Serpone and E. Pelizzetti, Photocatalysis. Fundementals and Applications., 1 ed. New York: Wiley, 1989. [60] H. Yoshida, C. Murata, and T. Hattori, 'Screening study of silica-supported catalysts for photoepoxidation of propene by molecular oxygen,' Journal of Catalysis, vol. 194, pp. 364-372, Sep 10 2000. [61] H. Yoshida, C. Murata, and T. Hattori, 'Photocatalytic epoxidation of propene by molecular oxygen over highly dispersed titanium oxide species on silica,' Chemical Communications, pp. 1551-1552, Aug 21 1999. [62] C. Murata, H. Yoshida, J. Kumagai, and T. Hattori, 'Active Sites and Active Oxygen Species for Photocatalytic Epoxidation of Propene by Molecular Oxygen over TiO2−SiO2 Binary Oxides,' The Journal of Physical Chemistry B, vol. 107, pp. 4364-4373, 2003. [63] C. Murata, T. Hattori, and H. Yoshida, 'Electrophilic property of photoformed on isolated Ti species in silica promoting alkene epoxidation,' Journal of Catalysis, vol. 231, pp. 292-299, 2005. [64] F. Amano and T. Tanaka, 'Modification of photocatalytic center for photo-epoxidation of propylene by rubidium ion addition to V2O5/SiO2,' Catalysis Communications, vol. 6, pp. 269-273, 2005. [65] H. Kanai, M. Shono, K. Hamada, and S. Imamura, 'Photooxidation of propylene with oxygen over TiO2-SiO2 composite oxides prepared by rapid hydrolysis,' Journal of Molecular Catalysis a-Chemical, vol. 172, pp. 25-31, Jul 5 2001. [66] C. Murata, H. Yoshida, and T. Hattori, 'Titania-silica catalysts prepared by sol-gel method for photoepoxidation of propene with molecular oxygen,' in Studies in Surface Science and Catalysis. vol. Volume 143, D. E. D. V. P. G. P. A. J. J. A. M. P. R. E. Gaigneaux and G. Poncelet, Eds., ed: Elsevier, 2000, pp. 845-853. [67] T. Tanaka, H. Nojima, H. Yoshida, H. Nakagawa, T. Funabiki, and S. Yoshida, 'Preparation of highly dispersed niobium oxide on silica by equilibrium adsorption method,' Catalysis Today, vol. 16, pp. 297-307, 1993. [68] S. T. Oyama, Mechanisms in homogeneous and heterogeneous epoxidation catalysis, 1st ed. Amsterdam ; Boston: Elsevier, 2008. [69] A. K. Yudin. (2006). Aziridines and epoxides in organic synthesis. Available: http://www.myilibrary.com?id=72273 [70] R. W. Missen, C. A. Mims, and B. A. Saville, Introduction to chemical reaction engineering and kinetics. New York: J. Wiley, 1999. [71] Wikipedia®. Activation energy. (2010), (15 June). Available: http://en.wikipedia.org/wiki/Activation_energy [72] E. M. Levin, C. R. Robbins, and M. H. F., 'Phase Diagrams for Ceramists,' The American Ceramic Society, vol. 76, pp. 4150-4999, 1975. [73] D. F. Ollis and H. Al-Ekabi, 'Photocatalytic Purification and Treatment of Water and Air,' Amsterdam, 1993. [74] A. Mills and S. Le Hunte, 'An overview of semiconductor photocatalysis,' Journal of Photochemistry and Photobiology A: Chemistry, vol. 108, pp. 1-35, 1997. [75] A. Fujishima and K. Honda, 'Electrochemical Photolysis of Water at a Semiconductor Electrode,' Nature, vol. 238, pp. 37-38, 1972. [76] J. Zhang, T. Ayusawa, M. Minagawa, K. Kinugawa, H. Yamashita, M. Matsuoka, and M. Anpo, 'Investigations of TiO2 Photocatalysts for the Decomposition of NO in the Flow System: The Role of Pretreatment and Reaction Conditions in the Photocatalytic Efficiency,' Journal of Catalysis, vol. 198, pp. 1-8, 2001. [77] A. E. Goresy, M. Chen, L. Dubrovinsky, P. Gillet, and G. Graup, 'An Ultradense Polymorph of Rutile with Seven-Coordinated Titanium from the Ries Crater,' Science, vol. 293, pp. 1467-1470, August 24, 2001 2001. [78] A. El Goresy, M. Chen, P. Gillet, L. Dubrovinsky, G. Graup, and R. Ahuja, 'A natural shock-induced dense polymorph of rutile with [alpha]-PbO2 structure in the suevite from the Ries crater in Germany,' Earth and Planetary Science Letters, vol. 192, pp. 485-495, 2001. [79] R. Marchand, L. Brohan, and M. Tournoux, 'TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17,' Materials Research Bulletin, vol. 15, pp. 1129-1133, 1980. [80] M. Latroche, L. Brohan, R. Marchand, and M. Tournoux, 'New hollandite oxides: TiO2(H) and K0.06TiO2,' Journal of Solid State Chemistry, vol. 81, pp. 78-82, 1989. [81] J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki, and H. Takei, 'Topotactic Oxidation of Ramsdellite-Type Li0.5TiO2, a New Polymorph of Titanium Dioxide: TiO2(R),' Journal of Solid State Chemistry, vol. 113, pp. 27-36, 1994. [82] P. Y. Simons and F. Dachille, 'The structure of TiO2II, a high-pressure phase of TiO2,' Acta Crystallographica, vol. 23, pp. 334-336, 1967. [83] H. SATO, S. ENDO, M. SUGIYAMA, T. KIKEGAWA, O. SHIMOMURA, and K. KUSABA, 'Baddeleyite-Type High-Pressure Phase of TiO2,' Science, vol. 251, pp. 786-788, February 15, 1991 1991. [84] N. A. Dubrovinskaia, L. S. Dubrovinsky, R. Ahuja, V. B. Prokopenko, V. Dmitriev, H. P. Weber, J. M. Osorio-Guillen, and B. Johansson, 'Experimental and Theoretical Identification of a New High-Pressure TiO2 Polymorph,' Physical Review Letters, vol. 87, p. 275501, 2001. [85] M. Mattesini, J. S. de Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson, and R. Ahuja, 'High-pressure and high-temperature synthesis of the cubic Ti O2 polymorph,' Physical Review B, vol. 70, p. 212101, 2004. [86] L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm, and B. Johansson, 'Materials science: The hardest known oxide,' Nature, vol. 410, pp. 653-654, 2001. [87] F.-L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, 'Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying,' Applied Catalysis B: Environmental, vol. 68, pp. 74-84, 2006. [88] M. A. Fox and M. T. Dulay, 'Heterogeneous photocatalysis,' Chem. Rev., vol. 93, pp. 341-357, 1993. [89] U. Diebold, 'The surface science of titanium dioxide,' Surface Science Reports, vol. 48, pp. 53-229, 2003. [90] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemannt, 'Environmental Applications of Semiconductor Photocatalysis,' Chemical reviews, vol. 95, pp. 69-96, 1995. [91] Y. Nosaka and M. A. Fox, 'Kinetics for Electron Transfer from Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen,' Phys. Chem., vol. 88, pp. 1893-1897, 1988. [92] Y. Zhu, L. Zhang, W. Yao, and L. Cao, 'The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-Gel method with TiCl4 as a precursor,' Applied Surface Science, vol. 158, pp. 32-37, 2000. [93] M. Anpo, H. Yamashita, Y. Ichihashi, and S. Ehara, 'Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts,' Journal of Electroanalytical Chemistry, vol. 396, pp. 21-26, 1995. [94] Wikipedia®. Epoxide. (2010 ), Available: http://en.wikipedia.org/wiki/Epoxide [95] R. Saladino, V. Neri, A. R. Pelliccia, and E. Mincione, 'Selective epoxidation of monoterpenes with H2O2 and polymer-supported methylrheniumtrioxide systems,' Tetrahedron, vol. 59, pp. 7403-7408, 2003. [96] H. S. D. Bank. 1,2-Propylene Oxide Profile [Online]. [97] P. H. Howard, Handbook of Environmental Fate & Exposure Data for Organic Chem. vol. 1: Lewis Publishers, 1989. [98] PERP Program - Propylene Oxide. (2009), (19 June). Available: http://www.chemsystems.com [99] S. Carrá, E. Santacesaria, M. Morbidelli, and L. Cavalli, 'Synthesis of propylene oxide from propylene chlorohydrins--I : Kinetic aspects of the process,' Chemical Engineering Science, vol. 34, pp. 1123-1132, 1979. [100] X. Zuwei, Z. Ning, S. Yu, and L. Kunlan, 'Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide,' Science, vol. 292, pp. 1139-1141, May 11, 2001 2001. [101] E. A. Carter and W. A. Goddard, 'The surface atomic oxyradical mechanism for Ag-catalyzed olefin epoxidation,' Journal of Catalysis, vol. 112, pp. 80-92, 1988. [102] T. Alexander, 'Towards a new propene epoxidation process - Transient adsorption and kinetics measurements applied in catalysis,' Ph.D., Delft University of Technology, Delft, The Netherlands, 1997. [103] Y. A. Kalvachev, T. Hayashi, S. Tsubota, and M. Haruta, 'Selective partial oxidation of propylene to propylene oxide on Au/Ti-MCM catalysts in the presence of hydrogen and oxygen,' 3rd World Congress on Oxidation Catalysis, vol. 110, pp. 965-972, 1997. [104] L. Wang, Y. Zhou, and Z. Mi, 'Epoxidation of allyl chloride and hydrogen peroxide over titanium silicalite-1 film on SiO2 pellet support,' Journal of Chemical Technology & Biotechnology, vol. 82, pp. 414-420, 2007. [105] R. Meiers, U. Dingerdissen, and W. F. Holderich, 'Synthesis of propylene oxide from propylene, oxygen, and hydrogen catalyzed by palladium-platinum-containing titanium silicalite,' Journal of Catalysis, vol. 176, pp. 376-386, Jun 10 1998. [106] M. G. Clerici, G. Bellussi, and U. Romano, 'Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite,' Journal of Catalysis, vol. 129, pp. 159-167, 1991. [107] B. Notari, 'Microporous Crystalline Titanium Silicates,' in Advances in Catalysis. vol. Volume 41, W. O. H. D.D. Eley and G. Bruce, Eds., ed: Academic Press, 1996, pp. 253-334. [108] S. S. S.J. Limmer, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao,, 'Template-Based Growth of Various Oxide Nanorods by Sol-Gel Electrophoresis,' Advanced Functional Materials, vol. 12, pp. 59-64, 2002. [109] Y.-F. Yang, P. Sangeetha, and Y.-W. Chen, 'Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream,' International Journal of Hydrogen Energy, vol. 34, pp. 8912-8920, 2009. [110] G. R. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, 'The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO_2 for CO oxidation,' Catal. Lett., vol. 44, pp. 83-87, 1997. [111] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed. New Jersey: Prentice Hall, 2001. [112] W. W. Wendlandt and H. G. Hecht, Reflectance Sprectroscopy. New York: Wiley, 1966. [113] J. R. Anderson and K. C. Pratt, Introduction to Characterization and Tesing of Catalysts. Florida: Academic Press, 1985. [114] Omnicure S1500 (2010), (May, 26). Available: http://www.gentec.be/exfo_s1500.htm [115] B. F. Mentzen and F. Lefebvre, 'Structural study of the silicalite (MFI)/tetrachlorethylene (TCET) host-guest system by X-ray powder diffraction and 29Si NMR. Locations of the TCET molecules at low and high pore-fillings,' Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry, vol. 3, pp. 843-847, 2000. [116] M. Taramasso, Perego, G., and Notari, B.,, 'TS-1,' U.S. Patent 4,410,501, 1983. [117] J. Q. Lu, X. M. Zhang, J. J. Bravo-Suarez, T. Fujitani, and S. T. Oyama, 'Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H-2 and O-2,' Catalysis Today, vol. 147, pp. 186-195, Oct 15 2009. [118] H. Yoshida, T. Tanaka, M. Yamamoto, T. Funabiki, and S. Yoshida, 'Photooxidation of propene by O-2 over silica and Mg-loaded silica,' Chemical Communications, pp. 2125-2126, Sep 21 1996. [119] F. Amano, T. Yamaguchi, and T. Tanaka, 'Photocatalytic Oxidation of Propylene with Molecular Oxygen over Highly Dispersed Titanium, Vanadium, and Chromium Oxides on Silica,' The Journal of Physical Chemistry B, vol. 110, pp. 281-288, 2006. [120] H. Yoshida, T. Tanaka, M. Yamamoto, T. Yoshida, T. Funabiki, and S. Yoshida, 'Epoxidation of Propene by Gaseous Oxygen over Silica and Mg-Loaded Silica under Photoirradiation,' Journal of Catalysis, vol. 171, pp. 351-357, 1997. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22477 | - |
| dc.description.abstract | 近年來有許多學者致力於環氧化反應的研究,然而在大多的反應情形中,都伴隨著廢水廢熱問題,且產物需要經由分離再純化,經濟效益也不高,且最大的問題在於反應形成環氧丙烷的轉化率和選擇率都仍然很低。從經濟效益和環境保護的觀點來看,氧氣是相當理想的氧化劑,可用來跟丙烯選擇性反應生成環氧丙烷,已經有一些研究致力於發展這樣的乾淨製程,藉由提供光能給光觸媒材料,便可輔助氣相原料間的直接氧化反應產生環氧丙烷,這是相當具有前景的化學品生產途徑。
本研究目標在研究不同種類的光觸媒於室溫下進行光催化環氧反應,希望能提升目標產物環氧丙烷(PO)的選擇率。負載金的TiO2和釩的SiO2光觸媒是分別由光沉積法和含浸法製得,TS-1則是經由水熱結晶法製備。在多組實驗結果中,最佳反應條件為使用TS-1觸媒,在50oC一大氣壓下照射強度1W/cm2 之UVA紫外光,進料流速3000ml/h,反應四小時可得PO產率28.75μmol.g-cat−1.h−1,且PO選擇率達43.2%。此外,在相同條件下若使用Au(0.1 wt%)/TS-1觸媒,可進一步觀察到反應生成PO的平均產率能維持在24-26 μmol.g-cat–1.h–1達15小時,失活情形大為減少。 | zh_TW |
| dc.description.abstract | In recent years, there has been great research focus on epoxidation; however, in most case, we face the disposal, separation, and economic problems. In addition, the propylene conversion and the selectivity to propylene oxide (PO) are still very low. Molecular oxygen is an ideal oxidant for a selective epoxidation of propylene from the environmental and economic viewpoints. A major research effort has been made in the development of alternative direct epoxidation processes for the production of propylene oxide. The aim is to develop a process for the direct gas-phase photo epoxidation. With the aid of light energy and heterogeneous photocatalyst, it is promising for chemicals production. Therefore, this research explores the photo selective catalytic epoxidation of propylene via O2.
The key is using photo-energy to achieve higher epoxidation products selectivity at room temperature over series of photocatalysts. The catalysts used in this research are the supported gold on TiO2, vanadium loaded SiO2 and titanium silicalite (TS-1) prepared by photo-deposition method, impregnation method and hydrothermal crystallization of gel, respectively. The most favorable photocatalytic epoxidation, with 28.75μmol.g-cat−1.h−1 highest PO specific rate and 43.2% PO selectivity obtained on stream after 4 hrs, was TS-1 photocatalysts under the 3,000 ml.h−1, 1W/cm2 UVA irradiation and very mild conditions (50oC and atmospheric pressure). In addition, the epoxidation was conducted over Au(0.1 wt%)/TS-1 with significant improvement on the lifetime and still achieved ~ 24-26 μmol.g-cat–1.h–1 PO specific rate on stream after 15 hrs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:18:42Z (GMT). No. of bitstreams: 1 ntu-99-R97524092-1.pdf: 12407526 bytes, checksum: 4a08699a5e4ac1be45bb862b77be9d27 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract I
Abstract (Chinese) II Contents III List of Figures VI List of Tables XIII 1 Introduction 1 1.1 Background 1 1.2 Research Motivations 3 1.3 Research Goals 3 2 Literature Survey 4 2.1 Background of Photocatalysis 4 2.1.1 Introduction to TiO2 5 2.1.2 Semiconductor under Excitation 8 2.2 Epoxides Background 10 2.2.1 Epoxides Reactions 11 2.2.2 The Catalytic Mechanisms of Epoxidation 13 2.2.3 Industrially Important Epoxides 15 2.3 Background of Propylene Oxide 19 2.3.1 Introduction 19 2.3.2 Chemical Properties 19 2.3.3 Physical Properties 21 2.3.4 Uses for Propylene Oxide 22 2.3.5 Aspects 23 2.4 Production and Raw Materials from Manufacture of Propylene Oxide 24 2.4.1 Production Route via Propylene Chlorohydrin (CHPO) 27 2.4.2 Production Route via Propylene Co-products 35 2.4.3 Production Route via Hydrogen Peroxide (HPPO) 44 2.4.4 Production Route via Direct Oxidation 46 2.4.5 Production Route via Electrochemical Process 46 2.4.6 Production Route via Biochemical Processes 47 2.5 Selective Catalytic Epoxidation 48 2.5.1 Motivate of Selective Catalytic Epoxidation 48 2.5.2 Directly Photo Selective Catalytic is the Future for Epoxidation 57 3 Experimental 58 3.1 Materials and Apparatus 58 3.1.1 Chemicals 58 3.1.2 Apparatus 59 3.2 Preparation of Photocatalysts 61 3.2.1 Amorphous SiO2 61 3.2.2 V2O5(0.5 wt%)/SiO2 62 3.2.3 Au(x wt%)/TiO2 63 3.2.4 Titanium silicalite (TS-1) 64 3.2.5 Au (0.1 wt%)/TS-1 66 3.3 Photocatalyst Characterization 66 3.3.1 X-Ray Diffraction (XRD) 66 3.3.2 UV-Visible Spectrometer 70 3.3.3 Field Emission Scanning Electron Microscopy (SEM) 71 3.3.4 Energy Dispersive Spectrometer (EDS) 72 3.3.5 Surface Area Measurement by N2 adsorption 73 3.3.6 X-ray Photoelectron Spectroscopy (XPS) 74 3.3.7 Gas Chromatograph Instrument 74 3.4 Photo Selective Catalytic Epoxidation System 84 3.4.1 Reaction System 84 3.4.2 Photo-reactor 86 3.4.3 Light sources 89 4 Results and Discussion 91 4.1 Catalyst Characterization 91 4.1.1 UV-Visible Spectroscopy 91 4.1.2 XRD 93 4.1.3 BET 98 4.1.4 SEM 99 4.1.5 TEM 103 4.1.6 EDS 106 4.1.7 XPS 107 4.2 Photocatalytic epoxide reaction 113 4.2.1 Blank experiments 113 4.2.2 C3H6 Adsorption 114 4.2.3 Photocatalytic epoxidation over TS-1 117 4.2.4 Photocatalytic epoxidation over Au(0.1wt%)/TS-1 124 4.2.5 Photocatalytic epoxidation over P25 127 4.2.6 Photocatalytic epoxidation over Au(0.5 wt%)/TiO2 non calcined 129 4.2.7 Photocatalytic epoxidation over Au(0.5 wt%)/TiO2 130 4.2.8 Photocatalytic epoxidation over Au(3 wt%)/TiO2 132 4.2.9 Photocatalytic epoxidation over Au(2-3 wt%)/TiO2 132 4.2.10 Photocatalytic epoxidation over SiO2_synthesis 134 4.2.11 Photocatalytic epoxidation over V2O5(0.5 wt%)/SiO2 commercial 135 4.2.12 Effect of the light intensity on photocatalytic epoxidation 136 4.2.13 Effect of the temperature on photocatalytic epoxidation 140 5 Summary 142 5.1 Reaction Mechanism of Photo-epoxidation by Propylene 142 5.2 The Role of the Silica Supports 145 5.3 The Carbon Loss 146 5.4 Propylene Oxide Production 147 5.5 Comparison the Epoxidation Results from The Others Group 148 6 Conclusions 151 References 152 Appendices 163 Author's Biography 166 | |
| dc.language.iso | en | |
| dc.subject | 環氧化 | zh_TW |
| dc.subject | 氧氣. | zh_TW |
| dc.subject | 環氧丙烷 | zh_TW |
| dc.subject | 光觸媒 | zh_TW |
| dc.subject | Epoxidation | en |
| dc.subject | photocatalyst | en |
| dc.subject | oxygen. | en |
| dc.subject | propylene oxide | en |
| dc.title | 光催化環氧化丙烯之研究 | zh_TW |
| dc.title | Photocatalytic Epoxidation of Propylene with Molecular Oxygen | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 萬本儒(Ben-Zu Wan),白曛綾(Hsun-Ling Bai) | |
| dc.subject.keyword | 環氧化,環氧丙烷,光觸媒,氧氣., | zh_TW |
| dc.subject.keyword | Epoxidation,propylene oxide,photocatalyst,oxygen., | en |
| dc.relation.page | 166 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 12.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
