請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22449完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛文証 | |
| dc.contributor.author | Tsung-Han Yu | en |
| dc.contributor.author | 余宗翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:18:03Z | - |
| dc.date.copyright | 2010-07-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | [1] E. Yablonovitch,“Inhibited spontaneous emission in solid-State physics and electronics”, Phys. Rev. Lett. 58, 259 (1987)
[2] S. John,“Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486 (1987) [3] E. Yablonovitch and T. J. Gmitter,“Photonic band structure: the face-centered- cubic case”, Phys. Rev. Lett. 63, 1950-1953 (1989) [4] E. Yablonovitch and T. J. Gmitter and K. M. Leung,“The face-centered-cubic case employing nonspherical atoms”, Phys. Rev. Lett. 67, 2295-2298 (1991) [5] M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos,“An all-dielectric coaxial waveguide”, Science289, 415–419 (2000) [6] S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink,“Ternal reflection from omnidirectional dielectric mirror fibers”, Science 296, 510–513 (2002) [7] W. J. Hsueh, C. T. Chen, and C. H. Chen,“Omnidirectional band gap in Fibonacci photonic crystal with metamaterials using a band-edge formalism”, Phys. Rev. A 78, 013836 (2008) [8] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector”, Science 282, 1679–1682 (1998). [9] J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos,“Omnidirectional reflection from a one-dimensional photonic crystal”, Opt. Lett. 23, 1573–1575 (1998) [10] J. Lekner,“Omnidirectional reflection by multilayer dielectric mirrors”, J. Opt. A: Pure Appl. Opt. 2, 349–352 (2000) [11] W. H. Southwell,“Omnidirectional mirror design with quarter-wave dielectric stacks”, Appl. Opt. 38, 5464-5467 (1999) [12] S. K. Kim and C. K. Hwangbo,“Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands”, Appl. Opt. 41, 3187-3192 (2002) [13] P.Yeh, Optical Waves in Layered Media. New York: Wiley, 1988 [14] J. Chilwell and I. Hodgkinson,“Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides”, J. Opt. Soc. Am. A 1, 742-753 (1984) [15] W. J. Hsueh and J. C. Lin,“Numerical stable method for the analysis of Bloch waves in a general one-dimensional photonic crystal cavity”, J. Opt. Soc. Am. B 24, 2249–2258 (2007) [16] W. J. Hsueh and J. C. Lin,“Determination of band structure in one-dimensional complex photonic crystals:a bandedge approach”, Opt Commun.278,334-339 (2007) [17] D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V.Gaponenko, “All-dielectric one-dimensional periodic struc-tures for total omnidirectional reflection and partial spon-taneous emission control”, J. Lightwave Technol. 17, 2018–2024 (1999) [18]W. J. Hsueh, S. J. Wun,and T. H. Yu,“Characterization of omnidirectional bandgaps in multiple frequency ranges of one-dimensional photonic crystals”, J. Opt. Soc. Am. B 27,1092-1098 (2010) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22449 | - |
| dc.description.abstract | 本文主要在探討平板光子晶體之全方向反射特性,首先對光子晶體的概念和理論作基本的介紹,並針對平板光子晶體,利用轉移矩陣法,以不同結構參數,不同入射角等情形來探討反射頻譜和帶隙結構圖,而帶隙結構圖又可分為通帶和禁帶,由分析結果顯示,當結構週期數夠多時,反射頻譜中反射率為1的頻率範圍,會對應到帶隙結構圖中的禁帶頻率範圍。在特定的參數條件下,平板光子晶體會有全方向反射產生,首先利用帶隙結構圖,討論結構厚度在四分之ㄧ波長時所求得的全方向能隙,並利用數值分析之數值解和近似解析解來分別探討全方向能隙的頻寬,邊界和中心頻率。而不同的結構厚度,全方向能隙的大小也會不同,其最大值也不一定發生在厚度為四分之ㄧ波長時,因此由改變厚度比例,找到全方向能隙之最大值,探討最大值的頻寬、中心頻率、和所對應的厚度, 並改變折射率之參數來觀察全方向能隙特性的趨勢,以便於設計發生全方向能隙時所需要的結構參數。 | zh_TW |
| dc.description.abstract | In this thesis, the properties of omnidirectional reflection of planar photonic crystals are investigated. At first, we introduce the concept theories of photonic crystals, and then discuss transfer matrix method with the characteristics of reflectance spactra and band structures by changing the parameters of planar photonic crystals and incident angle. The band structures can be divided into allow band and forbidden band. The analysis showed that if the number of periods is high enough, the frequency range of reflectance equaling to one of reflectance spectrum corresponded to the forbidden band of band structure. Under centain parameters, the planar photonic crystals will produce the omnidirectional reflection. It could be investigated the omnidirectional band gap by the bandstructure at the thickness of structure in quarter-wave wavelength. We can find the gapwidth, boundary, and center frequency of omnidirectional band gap by using approximate analytic solution and numerical solution. When the thickness of structure changes, the size of omnidirectional band gap follows, also the maximum does not certainly occur at the thickness in quarter-wave wavelength. Therefore, we can change the thickness ratio to find the maximum gapwidth of omnidirectional band gap and investigate the maixmum gapwidth, central frequency as well as the corresponding thickness. Furthermore we change the refractive index of parameters to observe the trend of the characteristics of omnidirectional band gap so that we can confine the parameters of structure that meets the condition of omnidirectional band gap. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:18:03Z (GMT). No. of bitstreams: 1 ntu-99-R97525062-1.pdf: 691894 bytes, checksum: d94d8b72391f2816a8d0b3cf399744a8 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………i
英文摘要………………………………………………………………ii 目錄……………………………………………………………………iii 圖目錄…………………………………………………………………v 表目錄…………………………………………………………………vii 符號表…………………………………………………………………viii 第一章 導論 1 1.1 背景與研究動機 1 1.2 文獻回顧 2 1.3 論文架構 3 第二章 光子晶體之原理 4 2.1 材料特性與原理 4 2.2 電磁波理論 5 2.2.1 邊界條件 8 2.3 布洛赫定理(Bloch theorem) 9 第三章 光子晶體之能帶關係 11 3.1 TE mode與TM mode之轉移矩陣分析 11 3.1.1 TE mode 12 3.1.2 TM mode 14 3.2 穿透與反射之特性 16 3.2.1反射頻譜之特性分析 18 3.3 帶隙理論 24 3.3.1帶隙結構之特性分析 26 3.3.2 增加結構週期數的反射頻譜與帶隙結構之關係 32 第四章 光子晶體之全方向反射特性 40 4.1 帶隙結構的全方向能隙 40 4.1.1 全方向能隙之近似解析解 47 4.1.2 反射頻譜的全方向反射與帶隙結構之關係 51 4.1.3折射率對全方向能隙頻寬的影響 55 4.2全方向能隙之最大值與光子晶體結構設計 58 4.2.1 光子晶體結構厚度對全方向能隙之影響 58 4.2.2光子晶體折射率對全方向能隙的影響 61 第五章 結論與未來展望..………………………………………………………67 5.1 結論 67 5.2未來展望 68 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 帶隙結構圖 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 全方向反射 | zh_TW |
| dc.subject | 轉移矩陣法 | zh_TW |
| dc.subject | 反射頻譜 | zh_TW |
| dc.subject | omnidirectional reflection | en |
| dc.subject | band structure | en |
| dc.subject | reflectance spectrum | en |
| dc.subject | transfer matrix | en |
| dc.subject | photonic crystals | en |
| dc.title | 平板光子晶體之全方向反射特性 | zh_TW |
| dc.title | Omnidirectional Reflection of Planar Photonic Crystals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孔慶華,李佳翰,林志昌 | |
| dc.subject.keyword | 光子晶體,全方向反射,轉移矩陣法,反射頻譜,帶隙結構圖, | zh_TW |
| dc.subject.keyword | photonic crystals,omnidirectional reflection,transfer matrix,reflectance spectrum,band structure, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 675.68 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
