請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22429
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉開溫 | |
dc.contributor.author | Yao-Nung Chuang | en |
dc.contributor.author | 莊曜濃 | zh_TW |
dc.date.accessioned | 2021-06-08T04:17:36Z | - |
dc.date.copyright | 2010-07-29 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-28 | |
dc.identifier.citation | 楊玉婷。2010年。全球蘭花發展現況與未來展望-兼論我國蝴蝶蘭與文心蘭發展策略。台灣經濟研究月刊。
Apse, M.P., Aharon, G.S., Snedden, W.A., and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256–1258. Apse, M.P., and Blumwald, E. (2002). Engineering salt tolerance in plants. Curr. Opin. Biotechnol. 13: 146–150. Apse, M.P., Sottosanto, J.B., and Blumwald, E. (2003). Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J. 36: 229–239. Blumwald, E., Aharon, G.S., and Apse, M.P. (2000). Sodium transport in plant cells. Biochim. Biophys. Acta 1465: 140–151. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A., and Lamb, C. (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393. Broun, P. (2005). Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol. 8:272. Cao, X., and Jacobsen, S.E. (2002). Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci. 99: 16491–16498. Chandler, S., and Tanaka, Y. (2007). Genetic modification in floriculture. Crit. Rev. Plant Sci. 26: 169–197. Chang, Y.Y., Chiu, Y.F., Wu, J.W., and Yang, C.H. (2009). Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol. 50:1425-1438. Chang,Y.Y., Kao, N.H., Li, J.Y., Hsu, W.H., Liang, Y.L., Wu, J.W., and Yang, C.H. (2010). Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiology 152:837-853. Chiou, C.Y., and Yeh, K.W. (2008). Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Mol Biol. 66:379–388. Chiou, C.Y., Pan, H.A., Chuang Y.N., and Yeh, K.W. (2010). Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta. In press. Chiou, C.Y., Wu, K., and Yeh, K.W. (2008). Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey. Biotechnol Lett. 30:1861–1866. Courtney-Gutterson, N., Napoli, C., Lemieux, C., Morgan, A., Firoozabady, E., and Robinson, K.E. (1994). Modification of flower color in florist’s chrysanthemum: production of a white-flowering variety through molecular genetics. Biotechnology (NY) 12: 268–271. Dixon, R.A., Xie, D.Y., and Sharma, S.B. (2005). Proanthocyanidins-a final frontier in flavonoid research? New Phytologist 165:9–28. Finnegan, E.J., and Kovac, K.A. (2000). Plant DNA methyltransferases. Plant Mol Biol. 43:189-201. Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N., and Iida, S. (2000). Colour-enhancing protein in blue petals. Nature 407: 581. Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H., and Tanaka, Y. (2004). Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 45: 146–159. Fukuda, A., Nakamura, A. and Tanaka, Y. (1999). Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim. Biophys. Acta 1446: 149–155. Gaxiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., and Fink, G.R. (1999). The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl Acad. Sci. USA 96: 1480–1485. Gonzalez, A., Zhao, M., Leavitt, J.M., and Lloyd, A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 53:814–827. Grotewold, E. (2006). The genetics and biochemistry of floral pigments. Annu Rev Plant Biol. 57:761–780. Grotewold, E., Drummond, B.J., Bowen, B., and Peterson, T. (1994). The mybhomologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76:543–553. Hanumappa, M., Choi, G., Ryu, S., and Choi, G. (2007). Modulation of flower colour by rationally designed dominant-negative chalcone synthase. J Exp Bot. 58: 2471-2478. Harborne, J.B., and Williams, C.A. (2000). Advances in flavonoid research since 1992. Phytochemistry 55:481–504. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Boil. 51: 463–499. Hew, C.S. (1978). Crassulacean acid metabolism in young orchid seedlings. Proc. of the Symposium on Orchidology, Singapore 13-17. Hew, C.S., and Khoo, S.I. (1980). Photosynthesis of young orchid seedlings. New Phytologist 86: 349-357. Hieber, A.D., Mudalige-Jayawickrama, R.G., and Kuehnle, A.R. (2006). Color genes in the orchid Oncidium Gower Ramsey: identification, expression, and potential genetic instability in an interspecific cross. Planta 223: 521-531. Holton, T.A., Brugliera, F., and Tanaka, Y. (1993). Cloning and expression of flavonol synthase from Petunia hybrida. Plant Journal 4: 1003-1010. Holton, T.A., and Cornish, E.C. (1995). Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071-1083. Hoshino, A., Morita, Y., Choi, J.D., Saito, N., Toki, K., Tanaka, Y., and Iida, S. (2003). Spontaneous mutations of the flavonoid3’-hydoxylase gene conferring reddish flowers in the three morning glory species. Plant and Cell Physiology 44: 990–1001. Hou, C.J., and Yang, C.H. (2009). Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol. 50:1544-1557. Hsu, H.F., Hsieh, W.P., Chen, M.K., Chang, Y.Y., and Yang, C.H. (2010). C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol. 51:1029-1045. Jorgensen, R.A., Cluster, P.D., English, J., Que, Q., and Napoli, C.A. (1996). Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Molecular Biology 31: 957–973. Katsumoto, Y., Mizutani, M., and Fukui, Y. (2007). Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48: 1589–1600. Koes, R., Verweij, W., and Quattrocchio, F. (2005). Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236–242 Kondo, T., Yoshida, K., Nakagawa, A., Kawai, T., Tamura, H., and Goto, T. (1992). Structure basis of blue-colour development in flower petals from Commelina communis. Nature 358: 515–518. Kumar, S., Tamura., K., and Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163. Law, J.A., and Jacobsen, S.E. (2009). Molecular Biology. Dynamic DNA methylation. Science 323:1568-1569. Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., and Jacobsen, S.E. (2001). Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292: 2077-2080. Momonoi, K., Yoshida, K., Takahashi, H., Nakamori, C., Shoji, K., Nitta, A., and Nishimura, M. (2009). A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant Journal 59: 437-447. Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2: 279-289. Nass, R., Cunningham, K.W., and Rao, R. (1997). Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. J. Biol. Chem. 272: 26145–26152. Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., and Lepiniec, L. (2000). The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878. Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., and Sumitomo, K. (2006). Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 142: 1193-1201. Ohnishi, M., Tanaka, S., Hoshino, A., Takada, J., Inagaki, Y., and Iida, S. (2005). Characterization of novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japenese morning glory. Plant Cell Physiol. 46: 259-267. Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., and Hayakawa, T. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 532: 279–282. Payne, C.T., Zhang, F., and Lloyd, A.M. (2000). GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349–1362. Ramsay, N.A., and Glover, B.J. (2005). MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 10: 63–70. Seitz, C., Eder, C., Deiml, B., Kellner, S., Martens, S., and Forkmann, G. (2006). Cloning, functional identification and sequence analysis of flavonoid 3’-hydroxylase and flavonoid 3,5’-hydroxylase cDNA reveals independent evolution of flavonoid 3’,5’-hydroxylase in the Asteraceae family. Plant Mol. Biol. 61: 365–381. Shen, C.H., Krishnamurthy, R., and Yeh, K.W. (2009). Decreased L-Ascorbate Content Mediating Bolting is Mainly Regulated by the Galacturonate Pathway in Oncidium. Plant and Cell Physiology 5:935-946. Shen, C.H., and Yeh, K.W. (2010). Hydrogen peroxide mediates the expression of ascorbate-relatedgenes in response to methanol stimulation in Oncidium. Journal of plant physiology 167:400-407. Tanaka, Y., Sasaki, N., and Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant Journal 54:733-749. Tanaka, Y., Tsuda, S., and Kusumi, T. (1998). Metabolic engineering to modify flower color. Plant and Cell Physiology 39: 1119–1126. Tester, M., and Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91: 503–527. Thiruvengadam, M., and Yang, C.H. (2009). Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Rep. 28:1463-1473. Tropf, S., Karcher, B., Schroder, G., and Schroder, J. (1995). Reaction mechanisms of homodimeric plant polyketide synthase (stilbenes and chalcone synthase): a single active site for the condensing reaction is sufficient for synthesis of stilbenes, chalcones, and 6’-deoxychalcones. Journal of Biological Chemistry 270: 7922–7928. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N., and Stuitje, A.R. (1990). Flavonoid genes in petunia: addition of a limited number of genecopies may lead to a suppression of gene expression. The Plant Cell 2: 291–299. Vishnevetsky, M., Ovadis, M., Zuker, A., and Vainstein, A. (1999). Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes. Plant Journal 20: 423-431. Wang, C.Y., Chiou, C.Y., Wang, H.L., Krishnamurthy, R., Venkatagiri, S., Tan, J., and Yeh, K.W. (2008). Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta. 227: 1063-1077. Wu, C.A., Yang, G.D., Meng, Q.W., and Zheng, C.C. (2004). The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol. 45: 600–607. Yamaguchi, T., Fukada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, Y., and Iida, S. (2001). Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol. 42: 451–461. Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 5: 218-223. Yoshida, K., Kawachi, M., Mori, M., Maeshima, M., Kondo, M., Nishimura, M., and Kondo, T. (2005). The involvement of tonoplast proton pumps and Na+(K+)H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. Heavenly blue. Plant Cell Physiol. 46: 407-415. Yoshida, K., Kondo, T., Okazaki, Y., and Katou, K. (1995). Cause of blue petal colour. Nature 373: 291. Zhang, H.X., and Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 19: 765–768. Zhang, H.-X., Hodson, J.N., Williams, J.P., and Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl Acad. Sci. USA 98: 12832–12836. Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6: 441–445. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22429 | - |
dc.description.abstract | 文心蘭萳西品系(Oncidium Gower Ramsey)在亞洲的蘭花產業是一重要的切花項目。其花色特徵為整個花部器官為鮮黃色,暗紅色澤斑雜分佈於花瓣上,但不同品系仍有花色分佈之差異。本研究的主要目的是研究三個文心蘭不同品系間花青素生合成基因之差異表現機制。在本研究中,以三個不同的文心蘭品系,萳西品系、檸檬品系(Oncidium Honey Dollp)和巧克力品系(Oncidium Sharry Baby)為材料,分析其花青素生合成有關基因在花瓣上的差異,並進一步分析基因調控機制,表現情形。研究分析顯示,造成文心蘭萳西品系與檸檬文心蘭之間顏色的差異是由於檸檬文心蘭在其花瓣及花瓣中間瘤狀突起處沒有花青素的累積所造成。檸檬文心蘭中缺少chalcone synthase (OgCHS)基因的表現,是由於其啟動子發生甲基化所造成。將CHS基因短暫表現於花瓣組織中,可誘導花青素的生合成,造成花瓣上有許多小紅點的產生,證實了OgCHS基因的甲基化是檸檬文心缺少花青素之主因。另外,造成巧克力文心蘭呈現紫紅色的外表型,是由於花青素與類胡蘿蔔素共同作用所產生的。我們的研究結果顯示,造成文心蘭之間花色的不同是由於與花青素生合成基因的基因表現量不同所造成的。由於我們已經解開了文心蘭中與花色相關之色素生合成的分子機制此研究可作為日後建立新顏色文心蘭品系之基礎。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:17:36Z (GMT). No. of bitstreams: 1 ntu-99-R97b42016-1.pdf: 3839984 bytes, checksum: 21e55025e748aaaaa163e45ac9db225f (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書 …………………………………………………………………………i
致謝 …………………………………………………………………………ii 目錄 …………………………………………………………………………iii 圖目錄 …………………………………………………………………………iv 中文摘要 …………………………………………………………………………v 英文摘要 …………………………………………………………………………vi 第一章 前言…………………………………………………………………………1 第一節 文心蘭(Oncidium)簡介及研究狀況………………………………….1 第二節 花青素(anthocyanins)及其生合成代謝途徑…………………………2 第三節 DNA甲基化(methylation)…………………………………………….4 第四節 NHX基因之生理生化功能…………………………………………...5 第五節 本論文研究方向……………………………………………………….6 第二章 材料與方法………………………………………………………………….7 第一節 花青素含量分析……………………………………………………….7 第二節 基因選殖與轉殖載體之構築………………………………………….8 第三節 基因表現量分析………………………………………………………14 第四節 啟動子的選殖與分析…………………………………………………20 第五節 植物基因轉殖法………………………………………………………29 第三章 結果…………………………………………………………………………33 第四章 討論…………………………………………………………………………40 參考文獻……………………………………………………………………………..44 圖表…………………………………………………………………………………..52 附圖…………………………………………………………………………………..71 附表…………………………………………………………………………………..77 | |
dc.language.iso | zh-TW | |
dc.title | 三種文心蘭品系花色差異之研究 | zh_TW |
dc.title | Study on the floral color differences of three different Oncidium cultivars | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林秋榮,陳虹樺,楊文彬,謝旭亮 | |
dc.subject.keyword | 文心蘭萳西品系,檸檬文心蘭,巧克力文心蘭,花青素,CHS基因, | zh_TW |
dc.subject.keyword | anthocyanin,CHS gene,DNA methylation,Oncidium Gower Ramsey,Oncidium Honey Dollp,Oncidium Sharry Baby, | en |
dc.relation.page | 78 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-07-29 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。