請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22399完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭明良 | |
| dc.contributor.author | Ching-Yao Yang | en |
| dc.contributor.author | 楊卿堯 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:16:57Z | - |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | 1. Okuda K, Kojiro M, Okuda H. Neoplasms of the liver. In: Schiff L, Schiff R, eds. Diseases of the liver. Philadelphia: Lippincott; 1993:1236-1296.
2. Department of health, Executive Yuan. Replublic of China: Annual Report of Cancer Registration, 2010. 3. Rahbari NN, Mehrabi A, Mollberg, et al. Hepatocellular carcinoma: current management and perspectives for the future. Ann Surg 2011;253:453-469. 4. Minagawa M, Ikai I, Matsuyama Y, et al. Staging of hepatocellular carcinoma: assessment of the Japanese TNM and AJCC/UICC TNM systems in a cohort of 13,772 patients in Japan. Ann Surg 2007;245:909-922. 5. Lim KC, Chow PK, Allen JC, et al. Microvascular Invasion is a Better Predictor of Tumor Recurrence and Overall Survival After Surgical Resection for Hepatocellular Carcinoma Compared to the Milan Criteria. Ann Surg 2011;254:108-113. 6. Cha C, Fong Y, Jarnagin WR, et al. Predictors and patterns of recurrence after resection of hepatocellular carcinoma. J Am Coll Surg 2003;197:753-758. 7. Yeh CN, Chen MF, Lee WC, et al. Prognostic factors of hepatic resection for hepatocellular carcinoma with cirrhosis: univariate and multivariate analysis. J Surg Oncol 2002;81:195-202. 8. Munir S, Singh S, Kaur K, et al. Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in virus infected cells. Biol proced Online 2004;6:94-104. 9. Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci 1996;93:6025-6030. 10. Wu CG, Hakvoort TBM, Lamers WH, et al. Isolation of up- and down-regulated cDNAs associated with hepatocellular carcinoma by a subtraction-enhanced display technique. Biochimica et Biophysica Acta 1996;1315:169-175. 11. Liang L, Ding YQ, Li Xin, et al. Construction of a metastasis-associated gene subtracted cDNA library of human colorectal carcinoma by suppression subtraction hybridization. World J Gastroenterol 2004;10:1301-1305. 12. Shackel NA, McGuinness PH, Abbott CA, et al. Novel differential gene expression in human cirrhosis detected by suppression subtractive hybridization. Hepatology 2003;38:577-588. 13. Sakamoto H, Mashima T, Kizaki A, et al. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 2000;95:3214-3218. 14. Zang Z and Dubois RN. Detection of differentially expressed genes in human colon carcinoma cells treated with a selective COX-2 inhibitor. Oncogene 2001;20:4450-4456. 15. Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer Research 2001;61:2129-2137. 16. Yang GP, Ross DT, Kuang WW, et al. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Research 1999;27:1517-1523. 17. Amatschek S, Koenig U, Auer H, et al. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor specific genes. Cancer Research 2004;64:844-856. 18. Jiang Y, Harlocker SL, Molesh DA, et al. Discovery of differentially expressed genes in human breast cancer using subtracted cDNA libraries and cDNA microarrays. Oncogene 2002; 2270-2282. 19. Wu YL, Yang CY, and Kuo ML. The role of leukocyte cell-derived chemotaxin 2 gene in hepatocellular carcinoma. Proc Amer Assoc Cancer Res, 2006(1):821 Abstract #3499. 20. Yamagoe S, Yamakawa Y, Matsuo Y, et al. Purification and primary amino acid sequence of a novel neutrophil chemotactic factor LECT2. Immunol Lett. 1996;52:9-13. 21. Yamagoe S, Kameoka Y, Hashimoto K, et al. Molecular cloning, structural characterization, and chromosomal mapping of the human LECT2 gene. Genomics. 1998;48:324-329. 22. Yamagoe S, Mizuno S, and Suzuki K. Molecular cloning of human and bovine LECT2 having a neutrophil chemotactic activity and its specific expression in the liver. Biochim Biophys Acta. 1998;1396:105-13. 23. Ito M, Nagata K, Kato Y, et al. Expression, oxidative refolding, and characterization of six-histidine-tagged recombinant human LECT2, a 16-kDa chemotactic protein with three disulfide bonds. Protein Expr Purif. 2003;27:272-8. 24. Yamagoe S, Akasaka T, Uchida T, et al. Expression of a neutrophil chemotactic protein LECT2 in human hepatocytes revealed by immunochemical studies using polyclonal and monoclonal antibodies to a recombinant LECT2. Biochem Biophys Res Commun. 1997;237:116-20. 25. Hiraki Y, Inoue H, Kondo J, et al. A novel growth-promoting factor derived from fetal bovine cartilage, chondromodulin II. Purification and amino acid sequence. J Biol Chem. 1996;271:22657-62. 26. Mori Y, Hiraki Y, Shukunami C, et al. Stimulation of osteoblast proliferation by the cartilage-derived growth promoting factors chondromodulin-I and -II. FEBS Lett. 1997;406:310-4. 27. Segawa Y, Itokazu Y, Inoue N, et al. Possible changes in expression of chemotaxin LECT2 mRNA in mouse liver after concanavalin A-induced hepatic injury. Biol Pharm Bull. 2001;24:425-8. 28. Saito T, Okumura A, Watanabe H, et al. Increase in hepatic NKT cells in leukocyte cell-derived chemotaxin 2-deficient mice contributes to severe concanavalin A-induced hepatitis. J Immunol. 2004;173:579-85. 29. Uchida T, Nagai H, Gotoh K, et al. Expression pattern of a newly recognized protein, LECT2, in hepatocellular carcinoma and its premalignant lesion. Pathol Int. 1999 ;49:147-51. 30. Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer Research 2001 ;61:2129-2137. 31. Ovejero C, Cavard C, Perianin A, et al. Identification of the leukocyte cell-derived chemotaxin 2 as a direct target gene of beta-catenin in the liver. Hepatology 2004 ;40:167-76. 32. Wu YL, Yang CY, Chung WC, et al. The roles of leukocyte cell-derived chemotaxin 2 (LECT2) in hepatocellular carcinoma invasion and angiogenesis. 2008 AACR abstract. 33. Yang CY, Wu YL, Lee WJ, et al. Leukocyte cell-derived chemotaxin 2 (LECT2) gene expression can influence intravasation and metastatic ability of hepatoma cells through in vivo study. 2009 AACR abstract. 34. Yang CY, Ho MC, Chen CK, et al. The prognostic value of the downregulation of leukocyte cell-derived chemotaxin 2 gene of hepatocellular carcinoma. ASCO Annual Meeting Proceedings, JCO 2011;29 (15S):644s Abstract#10559 35. Ong HT, Tan PK, Wang SM, et al. The tumor suppressor function of LECT2 in human hepatocellular carcinoma makes it a potential therapeutic target. Cancer Gene Ther 2011;18:399-406. 36. Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, Tamagnone L,Comoglio PM. 2002. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4:720–724. 37. Silvia B, Paolo MC. 2007. The MET Receptor Tyrosine Kinase in Invasion and Metastasis. Journal of Cellular Physiology 213:316-325 38. Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M, Comoglio PM. 1995. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene;10:739–749. 39. Natali PG, Prat M, Nicotra MR, Bigotti A, Olivero M, Comoglio PM, Di Renzo MF. 1996. Overexpression of the met/HGF receptor in renal cell carcinomas. Int J Cancer; 69:212–217. 40. Di Renzo MF, Olivero M, KatsarosD, Crepaldi T, Gaglia P, Zola P, Sismondi P, Comoglio PM. 1994. Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer;58:658–662. 41. Takeo S, Arai H, Kusano N, Harada T, Furuya T, Kawauchi S, Oga A, Hirano T, Yoshida T, Okita K, Sasaki K. 2001. Examination of oncogene amplification by genomic DNA microarray in hepatocellular carcinomas: Comparison with comparative genomic hybridization analysis. Cancer Genet Cytogenet ;130:127–132. 42. Olivero M, Rizzo M, Madeddu R, Casadio C, Pennacchietti S, Nicotra MR, Prat M, Maggi G, Arena N, Natali PG, Comoglio PM, Di Renzo MF. 1996. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer;74:1862–1868. 43. Taniguchi K, Yonemura Y, Nojima N, Hirono Y, Fushida S, Fujimura T, Miwa K, Endo Y, Yamamoto H, Watanabe H. 1998. The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer;82:2112–2122. 44. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR. 1995b. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer.Cancer Res;55:1129–1138. 45. Suzuki K, Hayashi N, Yamada Y, Yoshihara H, Miyamoto Y, Ito Y et al. (1994). Expression of the c-met protooncogene in human hepatocellular carcinoma. Hepatology; 20:1231–1236. 46. Kiss A, Wang NJ, Xie JP, Thorgeirsson SS. (1997). Analysis of transforming growth factor (TGF)-alpha/epidermal growth factor receptor, hepatocyte growth factor/c-met, TGF-beta receptor type II, and p53 expression in human hepatocellular carcinomas. Clin Cancer Res;3:1059–1066. 47. Boix L, Rosa JL, Ventura F, Castells A, Bruix J, Rodes J et al. (1994). c-MET mRNA overexpression in human hepatocellular carcinoma. Hepatology;19:88–91. 48. Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. (1997). Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma. Hepatology;25:619–623. 49. Tavian D, De PG, Benetti A, Portolani N, Giulini SM, Barlati S. (2000). u-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int J Cancer;87:644–649. 50. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. (2006). Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest;116:1582–1595. 51. Su JL, Yang PC, Shih JY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 2006;9:209-223. 52. Sato Y, Watanabe H, Kameyama H, et al. Serum LECT2 level as a prognostic indicator in acute liver failure. Transplant Proc. 2004;36:2359-61. 53. Sato Y, Watanabe H, Kameyama H, et al. Changes in serum LECT 2 levels during the early period of liver regeneration after adult living related donor liver transplantation. Transplant Proc. 2004;36:2357-2358. 54. Whittaker S, Marais R, and Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29:4989-5005 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22399 | - |
| dc.description.abstract | 肝細胞癌是世界上最常見的癌症之一,高復發率是肝癌的致死主因之一,血管侵犯是高復發主要原因及預後差的主要危險因子, 因此, 若能找出有血管侵犯的肝癌和沒有血管侵犯的肝癌的差異表現之基因, 進而了解使肝癌變的較有侵犯性的機轉,甚至發現治療的方向, 將會很有意義。所以,這個研究計畫的目的是利用抑制性雜合扣除法及微陣列實驗, 來發現並選殖出有血管侵犯的肝癌和沒有血管侵犯的肝癌的差異表現之基因,並進一步的探索這些基因和肝癌在臨床表現的相關性, 並利用肝癌細胞株實驗來闡明其角色及機轉。
我們的實驗成功的找出二十個和肝癌腫瘤有無血管侵犯具有差異表現的基因,其中之一是LECT2 基因。臨床病理的研究顯示,LECT2 基因或蛋白表現較低的肝癌,統計後發現腫瘤的stage 較advanced,grade 較差,早期復發率高,預後較差。進一步的研究結果發現: LECT2 表現越低的肝癌細胞株,其爬行能力,侵犯性,以及穿越內皮細胞的能力越強; 動物實驗包括雞胚絨毛膜穿越血管實驗以及小鼠肝癌細胞株原位注射轉移實驗,含低LECT2 基因的肝癌細胞株,侵犯性及轉移率變強; 反之則變弱。分子機轉及訊息傳遞的研究則發現: LECT2 蛋白是全新發現的c-Met 的new ligand,透過和c-Met 的細胞膜外之domain 結合,抑制c-Met 磷酸化及其下游之訊息傳遞功能進而抑制肝癌的血管侵犯和轉移。 總結來說,我們是世界上第一個團隊發現LECT2 是c-Met 的new ligand,而且是重要的肝癌腫瘤抑制因子,極有潛力開發為生物標記及治療的應用。 | zh_TW |
| dc.description.abstract | One of the major problem in hepatocellular carcinoma (HCC) treatment is high recurrent rate. Vascular invasion of HCC is the major factor of recurrence. Through suppression subtraction hybridization and microarray, we identified leukocyte cell-derived chemotoxin 2 is a significantly down-regulated gene in vascular-invasive HCC as compared with non-vascular invasive HCC. Clinicopathologic research from 73 patients revealed low expressing level of LECT2 gene or protein in HCC correlated with vascular invasion, advanced stage, early recurrence, and poor prognosis. In vitro experiments revealed LECT2 gene expression status inversely correlated with abilities of migration, invasion, and transendothelial cell migration of HCC cell lines. LECT2 protein can inhibit these motility functions of HCC cells as well. In vivo experiments including chorioallantoic membrane intravasation assay, and orthotopic liver injection animal models revealed LECT2 can inhibit HCC cells vascular invasion and migration.
By dissection of the mechanism and tools of protein-protein interactions, we found LECT2 protein is a novel, new ligand of c-Met by directly binding to its extracellular domain, and attenuate phosphorylation of c-Met, and its down-stream signaling pathway. In conclusion, we are the first team to identify LECT2 is an important HCC tumor suppressor, a new, novel ligand of c-Met, and a promising biomarker and therapeutic target. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:16:57Z (GMT). No. of bitstreams: 1 ntu-100-D91447002-1.pdf: 21330737 bytes, checksum: 220cdf8f74d2773a491dbfb0627848a4 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書......……………………………………………………………… i
誌謝………………………………………………………………………….……. ii Abbreviations………………………………………………………………….….. iv 中文摘要……………………………………………………………………..…… v 英文摘要....……………………………………………………………………..… vi Introduction ………………………………………………………………….……. 1 Materials and Methods ……………………………………………………………. 6 Results ………………………………………………………………….…………. 26 Discussion ………………………………………………………………….……... 45 Tables …..……………………………………………………………….………… 49 Figures and figure legends ...……………………………………………………… 51 References……………………………………………………………….………… 85 | |
| dc.language.iso | en | |
| dc.subject | LECT2 | zh_TW |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 抑制性雜合扣除法 | zh_TW |
| dc.subject | 微陣列 | zh_TW |
| dc.subject | 血管侵犯 | zh_TW |
| dc.subject | 轉移 | zh_TW |
| dc.subject | hepatocellular carcinoma | en |
| dc.subject | metastasis | en |
| dc.subject | vascular invasion | en |
| dc.subject | Met | en |
| dc.subject | c-Met | en |
| dc.subject | leukocyte cell-derived chemotoxin 2 | en |
| dc.subject | HCC | en |
| dc.subject | LECT2 | en |
| dc.title | LECT2 蛋白透過抑制 c-Met 磷酸化及其功能
進而抑制肝癌的血管侵犯和轉移 | zh_TW |
| dc.title | Leukocyte Cell-Derived Chemotoxin 2 Inhibit Vascular Invasion and Metastasis of HCC by Attenuating Phosphorylation of c-Met | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林明燦,洪文俊,李伯皇,陳炯年 | |
| dc.subject.keyword | 肝細胞癌,抑制性雜合扣除法,微陣列,血管侵犯,轉移,LECT2, | zh_TW |
| dc.subject.keyword | hepatocellular carcinoma,HCC,leukocyte cell-derived chemotoxin 2,LECT2,c-Met,Met,vascular invasion,metastasis, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 20.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
