Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22398
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為
dc.contributor.authorWei-Chiang Changen
dc.contributor.author張暐強zh_TW
dc.date.accessioned2021-06-08T04:16:56Z-
dc.date.copyright2011-09-18
dc.date.issued2011
dc.date.submitted2011-08-29
dc.identifier.citation[1] D. Kahng, and M. M. Atalla, “Silicon-silicon dioxide field induced surface devices,” in IRE-AIEEE Solid-State Device Research Conference, (Carnegie Inst. of Tech., Pittsburgh, PA), 1960.
[2] G. E. Moore, “Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965),” Proc. IEEE, vol. 86, no. 1, pp. 82-85, Jan, 1998.
[3] C.-Y. Peng, F. Yuan, C.-Y. Yu, P.-S. Kuo, M. H. Lee, S. Maikap, C.-H. Hsu, and C. W. Liu, “Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si,” Appl. Phys. Lett., vol. 90, p. 012114, 2007.
[4] M. L. Lee, and E. A. Fitzgerald, “Optimized strained Si/strained Ge dual-channel heterostructures for high mobility P- and N-MOSFETs,” IEDM Tech. Dig., pp. 429, 2003.
[5] A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of High-Quality p-MOSFET in Ge Grown Heteroepitaxially on Si,” IEEE Electron Device Lett., vol. 26, no. 5, p. 311, 2005.
[1] B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett., vol. 91,p. 112107, 2007.
[2] E. Maruyama, et al., in: Proceedings of WCPEC-4, Hawaii, 2006, pp. 1455–1460.M.
[3] H. Fujiwara and M. Kondo, Appl. Phys. Lett., vol. 90, p. 013503, 2007.
[4] B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys., vol. 104, p. 044903, 2008.
[5] P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, Appl. Phys. Lett., vol. 95, p. 151502, 2009.
[6] B. Hoex, J. J. H. Gielis, M. C. M van de Sanden, and W. M. M. Kessels, J. Appl. Phys., vol. 104, p. 113703, 2008.
[7] C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita and A. Toriumi, “Record-high Electron Mobility in Ge n-MOSFETs exceeding Si Universality” IEDM Tech. Dig., pp. 457-460, 2009.
[8] Jin-Hong Park, Tada, M.; Kuzum, D. Kapur, P., Hyun-Yong Yu Wong, H.-S.P. Saraswat, K.C., “Low temperature (≤ 380°C) and high performance Ge CMOS technology with novel source/drain by metal-induced dopants activation and high-k/metal gate stack for monolithic 3D integration,” IEDM Tech. Dig., pp. 1-4, 15-17, 2008.
[9] Delabie, F. Bellenger, M. Houssa, T. Conard, S. V. Elshocht, M. Aymax, M. M. Heyns, and M. Meuris, “Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide,” Appl. Phys. Lett., vol. 91, p. 082904, 2007.
[10] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, “Evidence of low interface trap density in GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation” Appl. Phys. Lett., vol. 93, p. 032104, 2008.
[11] T. Takahashi, T. Nishimura, L. Chen, S. Sakata, K. Kita, and A. Toriumi, “Proof of Ge-interfacing Concepts for Metal/High-k/Ge CMOS - Ge-intimate Material Selection and Interface Conscious Process Flow” IEDM Tech. Dig., pp. 697-700, 2007.
[12] M. Passlack, Materials Fundamentals of Gate Dielectrics (Springer, the Netherlands), p. 403, 2005.
[13] K. Prabhakarana, T. Ogino, R. Hull, J.C. Bean, and L.J. Peticolas, “An efficient method for cleaning Ge (100) surface,” Surf. Sci., vol. 316, p. 1031, 1994.
[14] H. Okumura, T. Akane, and S. Matsumoto, “Carbon contamination free Ge(100) surface cleaning for MBE,” Appl. Surf. Sci., vol. 125, p. 125, 1998.
[15] Z. H. Lu, “Air-stable Cl-terminated Ge(111),” Appl. Phys. Lett., vol. 68, no.4, p. 520, 1996.
[16] T. Hosoi, K. Kutsuki, G. Okamoto, M. Saito, T. Shimura, and H. Watanabe, “Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO2 /Ge metal-oxide-semiconductor devices,” Appl. Phys. Lett., vol. 94, p. 202112, 2009.
[17] CASTAGNE, R., & VAPAILLE, A.”APPARENT INTERFACE STATE DENSITY INTRODUCED BY THE SPATIAL FLUCTUATIONS OF SURFACE POTENTIAL IN AN MOS. STRUCTURE,” Electronics Letters, 6(22), 691-694, 1970.
[18] TERMAN, L. M., “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron., 5, pp. 285-299, 1962.
[19] GRAY, p. v., and BROWN, D. M., “Density of SiO2-Si interface states,” Appl. Phys. Lett., 8, pp. 31-33, 1966.
[20] T. Sasada, Y. Nakakita, M. Takenaka, and S. Takagi, “Surface orientation dependence of interface properties of GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation,” Journal of Applied Physics, vol. 106, 2009, p. 073716.
[21] [1] T. Hosoi, K. Kutsuki, G. Okamoto, M. Saito, T. Shimura, and H. Watanabe, “Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO2/Ge metal-oxide-semiconductor devices,” Applied Physics Letters, vol. 94, 2009, p. 202112.
[22] Deal-Grove Model
[23] Y. Oniki, H. Koumo, Y. Iwazaki, and T. Ueno, “Evaluation of GeO desorption behavior in the metal/GeO2/Ge structure and its improvement of the electrical characteristics,” Journal of applied physics, vol. 107, Jun. 2010, p. 124113.
[24] Lee, C. H., Tabata, T., Nishimura, T., Nagashio, K., Kita, K., & Toriumi, A., “Ge/GeO2 Interface Control with High-Pressure Oxidation for Improving Electrical Characteristics,” Applied Physics Express, 2, 071404, 2009.
[25] Processing, G., Interface, P., Kita, K., Wang, S. K., Yoshida, M., Lee, C. H., et al., “Comprehensive Study of GeO2 Oxidation , GeO Desorption and GeO2 Metal Interaction,” 693-696, 2009
[26] Wang, S. K., Kita, K., Lee, C. H., Tabata, T., Nishimura, T., Nagashio, K., et al. “Desorption kinetics of GeO from GeO2/Ge structure,” Journal of Applied Physics, 108(5), 054104, 2010.
[27] Delabie, A., Bellenger, F., Houssa, M., Conard, T., Van Elshocht, S., Caymax, M., et al., “Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide,” Applied Physics Letters, 91(8), 082904, 2007.
[28] Kobayashi, M., Thareja, G., Ishibashi, M., Sun, Y., Griffin, P., McVittie, J., et al., “Radical oxidation of germanium for interface gate dielectric GeO2 formation in metal-insulator-semiconductor gate stack,” Journal of Applied Physics, 106(10), 10411, 2009.
[29] Kuzum, D., Krishnamohan, T., Pethe, A. J., Okyay, A. K., Oshima, Y., Sun, Y., et al., “Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density,” IEEE Electron Device Letters, 29(4), 328-330, 2008.
[30] Prabhakaran, K., “Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study,” Surface Science, 325(3), 263-271, 1995.
[31] Tabet, N., “High resolution XPS study of oxide layers grown on Ge substrates,” Surface Science, 523(1-2), 68-72, 2003.
[32] Vilcarromero, J., & Marques, F. C., “XPS study of the chemical bonding in hydrogenated amorphous germanium-carbon alloys,” Applied Physics A: Materials Science & Processing, 70(5), 581-585, 2000.
[1] S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, Inc, New York, 1981.
[2] A. Toriumi, T. Tabata, C.-H. Lee, T. Nishimura, K. Kita and K. Nagashio, “Opportunities and challenges for Ge CMOS – Control of interfacing field on Ge is a key,” Microelectronic Engineering, vol. 86, pp. 1571-1576, 2009.
[3] C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A Sub-400ºC Germanium MOSFET Technology with High-κ Dielectric and Metal Gate,” IEDM Tech. Dig., p. 4370, 2002.
[4] E. P. Gusev, H. Shang, M. Copel, M. Grilbeyuk, C. D’Emic, P. Kozlowski, T. Zabel, “Microstructure and thermal stability of HfO2 gate dielectric deposited on Ge(100),” App. Phys. Lett., vol. 85, p. 2334, 2004.
[5] C. O. Chui, S. Ramanathan, B. B. Triplet, P. C. McIntyre, K. C. Saraswat, “Ge MOS capacitors incorporating ultrathin High-k gate dielectric,” IEEE Elec. Dev. Lett., vol. 23, p. 473, 2002.
[6] D. S. Yu, K. C. Chiang, C. F. Cheng, A. Chin, C. Zhu, M. F. Li, D-L. Kwong, “Fully silicided NiSi:Hf-LaAlO3/SC-GOI n-MOSFETs with high electron mobility,” IEEE Elec. Dev. Lett., vol. 25, p. 559, 2004.
[7] C.-C. Cheng, C.-H. Chien, G.-L. Luo, J.-C. Liu, C.-C. Kei, D.-R. Liu, C.-N. Hsiao, C.-H. Yang, and C.-Y. Changa, “Characteristics of Atomic-Layer-Deposited Al2O3 High-k Dielectric Films Grown on Ge Substrates,” J. Electrochem. Soc., vol. 155, no. 10, G203-G208, 2008.
[8] S. Iwauchi, T. Tanaka, “Interface properties of Al2O3-Ge structure and characteristics of Al2O3-Ge MOS transistors,” Jpn. J. Appl. Phys., vol. 10, p. 260, 1971.
[9] S. F. Galata, G. Mavrou, P. Tsipas, A. Sotiropoulos, Y. Panayiotatos, and A. Dimoulas, “Metal-oxide-semiconductor devices on p-type Ge with La2O3 and ZrO2/La2O3 as gate dielectric and the effect of postmetallization anneal,” J. Vac. Sci. Technol. B, vol. 27, no. 1, p. 246, Jan/Feb 2009.
[10] A. Dimoulas, D. Tsoutsou, Y. Panayiotatos, A. Sotiropoulos, G. Mavrou, S. F. Galata, and E. Golias, “The role of La surface chemistry in the passivation of Ge,” App. Phys. Lett., vol. 96, p. 012902, 2010.
[11] C. X. Li and P. T. Lai, “Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide semiconductor capacitors with high-k HfTiO gate dielectric,” App. Phys. Lett., vol. 95, p. 022910, 2009.
[12] J. J. Rosenberg, S. C. Martin, “Self-aligned germanium MOSFETs using a nitride native oxide gate insulator,” IEEE Elec. Dev. Lett., vol. 9, p. 639, 1988.
[13] H. Shang, K-L. Lee, P. Kozlowski, C. D’emic, I. Babich, E. Sikorski, M. Ieong, H. –S. P. Wong, K. Guarini, W. Haensch, “Self-aligned n-channel germanium MOSFETs with a thin Ge oxynitride gate dielectric and tungsten gate,” IEEE Elec. Dev. Lett., vol. 25, p. 135, 2004.
[14] T. Maeda, M. Nishizawa, Y. Morita, “Role of germanium nitride interfacial layers in HfO2/germanium nitride/germanium metal-insulator-semiconductor structures,” Appl. Phys. Lett., vol. 90, p. 072911, 2007.
[15] C. O. Chui, F. Ito, K. Saraswat, “Nanoscale germanium MOS dielectrics- Part I: Germanium oxynitrides,” IEEE Trans. Elec. Dev., vol. 53, p. 1501, 2006.
[16] Y. Oshima, M. Shandalov, Y. Sun, P. Pianetta, P. C. McIntyre, “Hafnium oxide/germanium oxynitride gate stacks on germanium: capacitance scaling and interface state denstity,” Appl. Phys. Lett., vol. 94, p. 183102, May 2009.
[17] H. Kim, P. C. McIntyre, C. O. Chui, K. C. Saraswat, M.-H. Cho, “Interfacial characteristics of HfO2 grown on nitrided Ge (100) substrates by atomic-layer deposition,” Appl. Phys. Lett., vol. 85, p. 2902, 2004.
[18] C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, “Atomic Layer Deposition of High-k Dielectric for Germanium MOS Applications—Substrate Surface Preparation,” IEEE Elec. Dev. Lett., vol. 25, no. 5, May 2004.
[19] T. Sugawara, R. Sreenivasan, and P. C. McIntyre, “Mechanism of germanium plasma nitridation,” J. Vac. Sci. Technol. B, vol. 24, Issue 5, p. 2442-2448, 2006.
[20] N. Taoka, M. Harada, Y. Yamashita, T. Yamamoto, N. Sugiyama, S. Takagi, “Effects of Si passivation on Ge metal-insulator-semiconductor interface properties and inversion hole mobility,” Appl. Phys. Lett., vol. 92, p. 113511, 2008.
[21] B. De Jaeger , R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris and M. Heyns, “Optimization of a thin layer epitaxial Si as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectronic Engineering, vol. 80, p. 26, 2005.
[22] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, G. Groeseneken, “On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor substrates,” IEEE Trans. Elec. Dev., vol. 55, p. 547-555, Feb. 2008.
[23] M. Caymax, F. Leys, J. Mitard, K. Martens, L. Yang, G. Pourtois, W. Vandervorst, M. Meuris, and R. Looa, “The Influence of the Epitaxial Growth Process Parameters on Layer Characteristics and Device Performance in Si-Passivated Ge pMOSFETs,” J. Electrochem. Soc., vol. 156, no. 12, H979-H985, 2009.
[24] M. M. Frank, S. J. Koester, M. Copel, J. A. Ott, V. K. Paruchuri, H. Shang, “Hafnium oxide gate dielectrics on sulfur-passivated germanium,” Appl. Phys. Lett., vol. 89, p. 112905, 2006.
[25] R. Xie and C. Zhu, “Effects of Sulfur Passivation on Germanium MOS Capacitors With HfON Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 28, no. 11, 2007.
[26] G. W. Anderson, M. C. Hanf, P. R. Norton, Z. H. Lu, and M. J. Graham, “The S-passivation of Ge(100)-(1×1),” Appl. Phys. Lett., vol. 66, no. 9, Feb. 1995.
[27] R. Xie, W. He, M. Yu, and C. Zhu, “Effects of fluorine incorporation and forming gas annealing on high-k gated germanium metal–oxide–semiconductor with GeO2 surface passivation,” Appl. Phys. Lett., vol. 93, no. 7, p. 073504, 2008.
[28] R. Xie, M. Yu, M. Y. Lai, L. Chan, and C. Zhu, “High-k gate stack on germanium substrate with fluorine incorporation,” Appl. Phys. Lett., vol. 92, no. 16, p. 163505, 2008.
[29] S. J. Whang, S. J. Lee, F. Gao, N. Wu, C. X. Zhu, J. S. Pan, L. J. Tang, D. L. Kwong, “Germanium p- & n-MOSFETs fabricated with novel surface passivation (plasma-PH3 and thin AIN) and TaN/HfO2 Gate stack,” IEDM Tech. Dig., p. 307, 2004.
[30] F. Bellenger, B. De Jaeger, C. Merckling, M. Houssa, J. Penaud, L. Nyns, E. Vrancken, M. Caymax, M. Meuris, T. Hoffmann, K. De Meyer, and M. Heyns, “High FET Performance for a Future CMOS GeO2-Based Technology,” IEEE Electron Device Lett., vol. 31, no. 5, p. 402, 2010.
[31] E. E. Crisman, J. I. Lee, P. J. Stiles, and O. J. Gregory, “Characterization of n-channel germanium MOSFET with gate insulator formed by high-pressure thermal oxidation,” Electr. Lett., vol. 23, no. 1, p. 8, Jan. 1987.
[32] O. J. Gregory, E. E. Crisman, L. Pruitt, D. J. Hymes, and J. J. Rosenberg,“Electrical characterization of some native insulators on germanium,” Mater. Res. Soc. Symp. Proc., vol. 76, p. 307–311, 1987.
[33] V. Craciun, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low temperature vacuum ultravioletassisted oxidation,” Appl. Phys. Lett., vol. 75, no. 9, pp. 1261, 1999.
[34] R. S. Johnson, H. Niimi, and G. Lucovsky, “New approach for the fabrication of device-quality Ge/GeO2/SiO2 interfaces using low temperature remote plasma processing,” J. Vac. Sci. Technol. A, vol. 18, no. 4, pp. 1230, Jul. 2000.
[35] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Appl. Phys. Lett., vol. 76, p. 2244, 2000.
[36] Y. Kamata, “High-k Ge MOSFETs for future nanoelectronics,” Materials Today, vol. 11, no. 1-2, p. 30, Jan/Feb 2008.
[37] A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. V. Elshocht, M. Caymax, M. Heyns, and M. Meuris, “Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide,” Appl. Phys. Lett., vol. 91, p. 082904, 2005.
[38] D. Kuzum, T. Krishnamohan, A. J. Pethe, A. K. Okyay, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, “Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density,” IEEE Electron Device Lett., vol. 29, no. 4, p. 328, 2008.
[39] M. Kobayashi, G. Thareja, M. Ishibashi, Y. Sun, P. Griffin, J. McVittie, P. Pianetta, K. C. Saraswat, and Y. Nishi, “Radical oxidation of germanium for interface gate dielectric GeO2 formation in metal-insulator-semiconductor gate stack,” J. Appl. Phys., Vol. 106, p. 104117, 2009.
[40] C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, “Ge/GeO2 Interface Control with High-Pressure Oxidation for Improving Electrical Characteristics,” Appl. Phys. Exp., vol. 2, p. 071404, 2009.
[41] V. V. Afanas’ev, A. Stesmans, A. Delabie, F. Bellenger, M. Houssa, and M. Meuris, “Electronic structure of GeO2-passivated interfaces of (100)Ge with Al2O3 and HfO2,” Appl. Phys. Lett., vol. 92, p. 022109, 2008.
[42] S. Saito, T. Hosoi, H. Watanabe, and T. Ono, “First-principles study to obtain evidence of low interface defect density at Ge/GeO2 interfaces,” Appl. Phys. Lett., vol. 95, p. 011908, 2009.
[43] A. Delabie, A. Alian, F. Bellenger, M. Caymax, T. Conard, A. Franquet, S. Sioncke, S. Van Elshocht, ,z M. M. Heyns, and M. Meurisa, “H2O- and O3-Based Atomic Layer Deposition of High-k Dielectric Films on GeO2 Passivation Layers,” J. Electrochem. Soc., vol. 156, no. 10, G163-G167, 2009.
[44] F. Bellenger, M. Houssa, A. Delabie, V. Afanasiev, T. Conard, M. Caymax, M. Meuris, K. De Meyer, and M. M. Heyns, “Passivation of Ge(100)/GeO2/high-k Gate Stacks Using Thermal Oxide Treatments,” J. Electrochem. Soc., vol. 155, no. 2, G33-G38, 2008.
[45] Bethge, S. Abermann, C. Henkel, C. J. Straif, H. Hutter, J. Smoliner, and E. Bertagnolli, “Process temperature dependent high frequency capacitance-voltage response of ZrO2/GeO2/germanium capacitors,” Appl. Phys. Lett., vol. 96, p. 052902, 2010
[46] Z. H. Lu, “Air-stable Cl-terminated Ge(111),” Appl. Phys. Lett., vol. 68, no.4, p. 520, 1996.
[47] Y. Kamata, T. Ino, M. Koyama, and A. Nishiyama, “Improvement in C-V characteristics of Ge metal-oxide semiconductor capacitor by H2O2 incorporated HCl pretreatment,” Appl. Phys. Lett., vol. 92, p. 063512, 2008.
[48] H. Okumura, T. Akane, and S. Matsumoto, “Carbon contamination free Ge(100) surface cleaning for MBE,” Appl. Surf. Sci., vol. 125, p. 125, 1998.
[49] S. Sun, Y. Sun, Z. Liu, D.-I. Lee, S. Peterson, and P. Pianetta, “Surface termination and roughness of Ge(100) cleaned by HF and HCl solutions,” Appl. Phys. Lett., vol. 88, p. 021903, 2006.
[50] T. Sasada, Y. Nakakita, M. Takenaka, and S. Takagi, “Surface orientation dependence of interface properties of GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation,” J. Appl. Phys., vol. 106, p. 073716, 2009.
[51] E. H. Nicollian and A. Goetzberger, “The Si SiO2 interface. Electrical properties as determined by the metal insulator silicon conductance technique,” Bell Syst. Tech. J. 46, pp. 1055-1133, 1967.
[52] N. Taoka, T. Yamamoto, M. Harada, Y. Yamashita, N. Sugiyama, and S. Takagi, “Importance of minority carrier response in accurate characterization of Ge metal-insulator-semiconductor interface traps,” Journal of Applied Physics, vol. 106, 2009, p. 044506.
[53] T. Maeda, M. Nishizawa, Y. Morita, and S. Takagi, “Role of germanium nitride interfacial layers in HfO2/germanium nitride/germanium metal-insulator-semiconductor structures,” Applied Physics Letters, vol. 90, 2007, p. 072911.
[54] C.H. Lee, T. Tabata, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, “Ge/GeO 2 Interface Control with High-Pressure Oxidation for Improving Electrical Characteristics,” Applied Physics Express, vol. 2, Jul. 2009, p. 071404.
[55] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley- Interscience, New York, p. 850, 1983.
[56] P. Batude, X. Garros, L. Clavelier, C. Le Royer, J. M. Hartmann, V. Loup, P. Besson, L. Vandroux, Y. Campidelli, S. Deleonibus, and F. Boulanger, J. Appl. Phys. 102, 034514, 2007.
[57] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, IEEE Trans. Electron Devices, 55, 547, 2008.
1. Y. Kamata, Mater. Today 11, 30 _2008_.
2. K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, ECS Trans. 11, 461 _2007_.
3. Y. Oniki, H. Koumo, Y. Iwazaki, and T. Ueno, “Evaluation of GeO desorption behavior in the metal/GeO2/Ge structure and its improvement of the electrical characteristics,” Journal of applied physics, vol. 107, Jun. 2010, p. 124113.
4. T. Takahashi, T. Nishimura, L. Chen, S. Sakata, K. Kita, and A. Toriumi, Tech. Dig. - Int. Electron Devices Meet. 2007, 697.
5. T. Sasada, Y. Nakakita, M. Takenaka, and S. Takagi, “Surface orientation dependence of interface properties of GeO[sub 2]/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation,” Journal of Applied Physics, vol. 106, 2009, p. 073716.
6. C.H. Lee, T. Tabata, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, “Ge/GeO 2 Interface Control with High-Pressure Oxidation for Improving Electrical Characteristics,” Applied Physics Express, vol. 2, Jul. 2009, p. 071404.
7. M. Kobayashi, G. Thareja, M. Ishibashi, Y. Sun, P. Griffin, J. McVittie, P. Pianetta, K. Saraswat, and Y. Nishi, “Radical oxidation of germanium for interface gate dielectric GeO[sub 2] formation in metal-insulator-semiconductor gate stack,” Journal of Applied Physics, vol. 106, 2009, p. 104117.
8. P. Broqvist, J.F. Binder, and A. Pasquarello, “Band offsets at the Ge/GeO[sub 2] interface through hybrid density functionals,” Applied Physics Letters, vol. 94, 2009, p. 141911.
9. M. Perego, G. Scarel, M. Fanciulli, I.L. Fedushkin, and a a Skatova, “Fabrication of GeO[sub 2] layers using a divalent Ge precursor,” Applied Physics Letters, vol. 90, 2007, p. 162115.
10. Y. Kamata, Y. Kamimuta, T. Ino, and A. Nishiyama, Jpn. J. Appl. Phys., Part 1 44, 2323, 2005.
11. C. O. Chui, H. Kim, D. Chi, P. C. McIntyre, and K. Saraswat, IEEE Trans. Electron Devices 53, 1509, 2006.
12. J. Oh, P. Majhi, C. Y. Kang, J.-W. Yang, H.-H. Tseng, and R. Jammy, Appl. Phys. Lett. 90, 202102, 2007.
13. J. Robertson, J. Appl. Phys. 104, 124111 _2008_.
14. S. Migita, Y. Watanabe, H. Ota, H. Ito, Y. Kamimuta, T. Nabatame, and A. Toriumi, Dig. Tech. Pap. - Symp. VLSI Technol. 2008, 512.
15. K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 89, 142902, 2006.
16. L. Zhang, W. He, D. S. H. Chan, and B. J. Cho, ECS Trans. 19(2), 615, 2009.
17. C. Adelmann, V. Sriramkumar, S. V. Elshocht, P. Lehnen, T. Conard, and S. D. Gendt, Appl. Phys. Lett. 91, 162902, 2007.
18. Y. Kamata, Mater. Today 11, 30, 2008.
19. J. Müller T.S. Böscke, U. Schröder, M. Reinicke, L. Oberbeck, D. Zhou, W. Weinreich, P. Kücher, M. Lemberger, and L. Frey, Microelectron. Eng. 86, 1818, 2009.
20. G. M. Rignanese, J. Phys.: Condens. Matter 17, R357, 2005.
21. X. Zhao and D. Vanderbilt, Phys. Rev. B 65, 075105, 2002.
22. Y. H.Wu, C. K. Kao, B. Y. Chen, Y. S. Lin,M. Y. Li, and H. C.Wu, Appl. Phys. Lett. 93, 033511, 2008.
23. Y. H. Wu, L. L. Chen, Y. S. Lin, M. Y. Li, and H. C. Wu, IEEE Electron Device Lett. 30, 1290, 2009.
24. D. Fischer and A. Kersch, Appl. Phys. Lett. 92, 012908, 2008.
25. P. Tsipas, S.N. Volkos, a Sotiropoulos, S.F. Galata, G. Mavrou, D. Tsoutsou, Y. Panayiotatos, a Dimoulas, C. Marchiori, and J. Fompeyrine, “Germanium-induced stabilization of a very high-k zirconia phase in ZrO[sub 2]/GeO[sub 2] gate stacks,” Applied Physics Letters, vol. 93, 2008, p. 082904.
26. Y.-H. Wu, M.-L. Wu, J.-R. Wu, and L.-L. Chen, “Ge-stabilized tetragonal ZrO[sub 2] as gate dielectric for Ge metal-oxide-semiconductor capacitors fabricated on Si substrate,” Applied Physics Letters, vol. 97, 2010, p. 043503.
27. D. Tsoutsou, G. Apostolopoulos, S. Galata, P. Tsipas, a Sotiropoulos, G. Mavrou, Y. Panayiotatos, and a Dimoulas, “Stabilization of a very high-k tetragonal ZrO2 phase by direct doping with germanium,” Microelectronic Engineering, vol. 86, Jul. 2009, pp. 1626-1628.
28. D. Tsoutsou, G. Apostolopoulos, S.F. Galata, P. Tsipas, a Sotiropoulos, G. Mavrou, Y. Panayiotatos, a Dimoulas, a Lagoyannis, a G. Karydas, V. Kantarelou, and S. Harissopoulos, “Stabilization of very high-k tetragonal phase in Ge-doped ZrO[sub 2] films grown by atomic oxygen beam deposition,” Journal of Applied Physics, vol. 106, 2009, p. 024107.
29. H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, “Evidence of low interface trap density in GeO[sub 2]/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation,” Applied Physics Letters, vol. 93, 2008, p. 032104.
30. C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A Sub-400ºC Germanium MOSFET Technology with High-κ Dielectric and Metal Gate,” IEDM Tech. Dig., p. 4370, 2002.
31. G. Processing, P. Interface, K. Kita, S.K. Wang, M. Yoshida, C.H. Lee, K. Nagashio, T. Nishimura, and A. Toriumi, “Comprehensive Study of GeO 2 Oxidation , GeO Desorption and GeO 2 -Metal Interaction,” 2009, pp. 693-696.
32. A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. Van Elshocht, M. Caymax, M. Heyns, and M. Meuris, Appl. Phys. Lett. 91, 082904, 2007.
33. A. Toriumi, T. Tabata, C. H. Lee, T. Nishimura, K. Kita, and K. Nagashio, Microelectron. Eng. 86, 1571, 2009.
34. K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, Appl. Phys. Lett. 76, 2244, 2000
35. K. Kita, K. Kyuno, and A. Toriumi, Appl. Phys. Lett. 85, 52 _2004_.
36. C. O. Chui, H. Kim, D. Chi, P. C. McIntyre, and K. C. Saraswat, IEEE Trans. Electron Devices 53, 1509 _2006_.
37. A. Dimoulas, G. Mavrou, G. Vellianitis, E. Evangelou, N. Bukos, M. Houssa, and M. Caymax, Appl. Phys. Lett. 86, 032908 _2005_.
38. V. V. Afanas’ev, Y. G. Fedorenko, and A. Stesmans, Appl. Phys. Lett. 87, 032107 _2005_.
39. M. Caymax, S. Van Elshocht, M. Houssa, A. Delabie, T. Conard, M. Meuris, M. M. Heyns, A. Dimoulas, S. Spiga, M. Fanciulli, J. W. Seo, and L. V. Goncharova, Mater. Sci. Eng., B 135, 256 _2006_.
40. M. Houssa, L. Pantisano, L. Å. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M. M. Heyns, Mater. Sci. Eng., R. 51, 37 _2006_.
41. R. Xie and C. Zhu, IEEE Electron Device Lett. 28, 976 _2007_.
42. Y. Kamata, Mater. Today 11, 30 _2008_.
43. Dimoulas, D. P. Brunco, S. Ferrari, J. W. Seo, Y. Panayiotatos, A. Sotiropoulos, T. Conard, M. Caymax, S. Spiga, M. Fanciulli, Ch. Dieker, E. K. Evangelou, S. Galata, M. Houssa, and M. M. Heyns, Thin Solid Films 515, 6337 _2007_.
44. G. Mavrou, S. Galata, P. Tsipas, A. Sotiropoulos, Y. Panayiotatos, A. Dimoulas, E. K. Evangelou, J. W. Seo, and Ch. Dieker, J. Appl. Phys. 103, 014506 _2008_.
45. J. Song, K. Kakushima, P. Ahmet, K. Tsutsui, N. Sugii, T. Hattori, and H. Iwai, Microelectron. Eng. 84, 2336 _2007_.
46. G. Mavrou, S. F. Galata, A. Sotiropoulos, P. Tsipas, Y. Panayiotatos, A. Dimoulas, E. K. Evangelou, J. W. Seo, and Ch. Dieker, Microelectron. Eng. 84, 2324 _2007_.
47. Molle and M. Perego, Md. N. K. Bhuiyan, C. Wiemer, G. Tallarida, M. Fanciulli, J. Appl. Phys. 102, 034513 _2007_.
48. M. Houssa, G. Pourtois, M. Caymax, M. Meuris, and M. M. Heyns, Appl. Phys. Lett. 92, 242101 _2008_.
49. D. P. Brunco, A. Dimoulas, N. Boukos, M. Houssa, T. Conard, K. Martens, C. Zhao, F. Bellenger, M. Caymax, M. Meuris, and M. M. Heyns, J. Appl. Phys. 102, 024104 _2007_.
50. G. Nicholas, D. P. Brunco, A. Dimoulas, J. van Steenbergen, F. Bellenger, M. Houssa, M. Caymax, M. Meuris, Y. Panayiotatos, and A. Sotiropoulos, IEEE Trans. Electron Devices 54, 1425 _2007_.
51. V. V. Afanas’ev, S. Shamuillia, A. Stesmans, A. Dimoulas, Y. Panayiotatos, A. Sotiropoulos, M. Houssa, and D. P. Brunco, Appl. Phys. Lett. 88, 132111 _2006_
52. M. Houssa, G. Pourtois, M. Caymax, M. Meuris, and M.M. Heyns, “First-principles study of the structural and electronic properties of (100)Ge/Ge(M)O2 interfaces (M=Al, La, or Hf),” Applied Physics Letters, vol. 92, 2008, p. 242101.
53. M. Nieminen, M. Putkonen, L. Niinisto, Applied Surface Science 174 (2001) 155.
54. D.H. Triyoso, R.I. Hegde, J.M. Grant, J.K. Schaeffer, D. Roan, B.E. White Jr., P.J. Tobin, Journal of Vacuum and Science Technology B 23 (1) (2005) 288.
55. S.Y. Kim, H. Kwon, S.J. Jo, J.S. Ha, W.T. Park, D.K. Kang, B.-H. Kim, Applied Physics Letters 90 (2007) 103104.
56. S. Abermann, C. Henkel, O. Bethge, C.J. Straif, H. Hutter, E. Bertagnolli, Journal of the Electrochemical Society 156 (2009) G53.
57. G. Mavrou, S. Galata, P. Tsipas, A. Sotiropoulos, Y. Panayiotatos, A. Dimoulas, E.K. Evangelou, J.W. Seo, Ch. Dieker, Applied Physics Letters 103 (2008) 014506.
58. G. Mavrou, P. Tsipas, A. Sotiropoulos, S. Galata, Y. Panayiotatos, A. Dimoulas, C. Marchiori, J. Fompeyrine, Applied Physics Letters 93 (2008) 212904
59. L. Lamagna, C. Wiemer, S. Baldovino, A. Molle, M. Perego, S. Schamm-Chardon, P.E. Coulon, M. Fanciulli, Applied Physics Letters 95 (2009) 122902.
60. D. Tsoutsou, L. Lamagna, S.N. Volkos, A. Molle, S. Baldovino, S. Schamm, P.E. Coulon, M. Fanciulli, Applied Physics Letters 94 (2009) 053504.
61. A. Dimoulas, D. Tsoutsou, Y. Panayiotatos, a Sotiropoulos, G. Mavrou, S.F. Galata, and E. Golias, “The role of La surface chemistry in the passivation of Ge,” Applied Physics Letters, vol. 96, 2010, p. 012902.
62. S. Abermann, C. Henkel, O. Bethge, G. Pozzovivo, P. Klang, and E. Bertagnolli, “Stabilization of a very high-k crystalline ZrO2 phase by post deposition annealing of atomic layer deposited ZrO2/La2O3 dielectrics on germanium,” Applied Surface Science, vol. 256, Jun. 2010, pp. 5031-5034.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22398-
dc.description.abstract在光電產業中,鍺元素因其相對於矽較小的能隙(Bandgap),能更有效的吸收遠紅外光,因而在三五太陽能電池中也扮演著非常重要的角色。因此,鍺的表面鈍化(Surface passivation)技術也變得相當重要,而二氧化鍺因為可以有效的減少界面缺陷(Interface defect)及固定電荷(Fixed charge),被認為是一個非常合適於鈍化鍺表面的材料。在此實驗中,鍺金氧半電容原件被製造來幫助我們區分影響光激發螢光量測的兩個因素:(1) 界面缺陷及(2) 固定電荷。另一方面,在電性量測中,可以發現在常溫中電容因頻率改變而導致的變動非常小,表示我們的二氧化鍺鈍化層有很好的品質和界面特性。最後憑藉high-low frequency capacitance method的計算,我們可以發現成長5小時的二氧化鍺與鍺的界面有著最小的界面陷阱濃度,約為約為1.8*10^11 cm-2eV-1。
憑藉著鋁/二氧化鍺/鍺金氧半原件的電性量測(C-V measurement),包含frequency dispersion、hysteresis和stretch-out behavior,並期望可以完整的了解這些與成長二氧化鍺相關的缺陷對於電性量測的影響及其來源,不幸的,仍有一些現象無法被很好的解釋,並需要更進一步的研究來幫助我們。
透過Material Studio軟體的模擬,我們可以依照first-principle原理來導出在二氧化鍺中各種不同價電的氧缺陷之轉化能級(transition level)。其中(+2/0)代表著在二氧化鍺中有正價電固定電荷的存在,因為其轉化能級的位置離費米能級(Fermi level)相對很遠。而(+1/0)則代表著二氧化鍺的正電荷抓陷中心(hole trap center)非常靠近鍺的價帶(Valence band),提供了直接穿透(direct tunneling)所造成的滯留現象(hysteresis)一個非常有效的解釋。另一方面,二氧化鍺界面陷阱的來源也被解釋的非常清楚,來自不同氧化數的鍺所形成之懸盪鍵(dangling baond)提供了不同能級的界面陷阱。
低等效氧化層厚度(EOT)金氧半原件是一直以來半導體產業追求的目標;在此實驗中,我們利用擁有較高介電係數的三氧化二鑭(La2O3)來替代二氧化鍺鈍化層,並伴隨著由基材擴散而來的鍺介入而轉化成的超高介電係數正方晶相二氧化鋯(tetragonal ZrO2),成功的將等效氧化層厚度降低至約1.4 奈米等級。此外,如果氧化層沉積後有經過攝氏六百度的退火處理(Post-deposition-annealing),我們元件的等效氧化層厚度可以更進一步的降低到約1.1奈米,但經過攝氏五百度的退火處理的元件擁有最好的量測電性。
zh_TW
dc.description.abstractIn photovoltaic industry, Ge material also plays an important role for III-V solar cells since Ge with smaller band-gap than Si is used as the bottom junction to absorb the infrared (IR) light, so the Ge layer passivation becomes more important. GeO2 is a considered a suitable material to passivate the surface due to the reducing the interface defect density (Dit) and positive fixed charge. The metal oxide semiconductor (MOS) capacitors were fabricated to help separate these two factors, which also shows almost no frequency dispersion from 1 K to 1 MHz at room temperature. The minimum value of Dit with 5 hour oxidation treatment is obtained around 1.8*10^11 cm-2eV-1 by high-low frequency capacitance method.
Al/GeO2/Ge MOSCAPs were fabricated to investigate the C-V performance, including frequency dispersion (in both accumulation and strong inversion region), hysteresis and stretch-out behavior, expecting to fully understand the C-V distortion induced by defect states related to the growth of GeO2. Unfortunately, some of the characters still need continuing studies to further understand them.
With the help of MS, the transition levels of oxygen vacancy (Vo) in GeO2 with different charge state are calculated by first principle method. The formation energy of GeO2 indicate there is a (+2/0) fix charge state in bulk GeO2. The (+1/0) transition level which near the Ge valence band maximum shows positive charge trap of GeO2. The hysteresis of CV measured by different extent of Vg sweep shows a negative VFB shift which corresponds to the positive charge trap as theoretical calculation implies.
And the interface trap states level were also calculated to originate from Ge dangling bonds with different oxidation number, namely, Ge1+, Ge2+ for the states near Ec and Ge0+ correspond to the states near Ev. For which need more investigation to prove.
Low EOT MOSCAP was successfully fabricated by using La2O3 as an alternative passivation layer, and with the very high-k tetragonal ZrO2 originated from the incorporation of Ge ion, which is regarded to diffuse from the beneath Ge substrate with the help of high-temperature post-deposition-annealing (PDA). The measured CET is scaled to about 1.4 nm for Pt/ZrO2/La2O3/p-Ge MOSCAP without any annealing process, and is dramatically decrease to about 1.1 nm for Pt/ZrO2/La2O3/p-Ge MOSCAP with 600°C PDA, whereas the MOSCAP with 500°C PDA has the best C-V performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:16:56Z (GMT). No. of bitstreams: 1
ntu-100-R98941002-1.pdf: 4674441 bytes, checksum: 2e164c21c476a4cce21b576878e2497a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Chapter 1 Introduction
1.1 Background and Motivation 1
1.2 Thesis organization 6
References 7
Chapter 2 PL enhancement of Ge by GeO2 passivation
2.1 Introduction 8
2.2 Experiments 10
2.3 Photoluminescence of GeO2 passivated p-Ge 11
2.4 Al/GeO2/p-Ge MOSCAPs Analysis 14
2.4.1 Al/GeO2/p-Ge MOSCAPs Analysis — Density of Interface Trap 15
2.4.2 Al/GeO2/p-Ge MOSCAPs Analysis — Density of Fixed Charge 17
2.4.3 Al/GeO2/p-Ge MOSCAPs Analysis — MS Simulation 21
2.4.4 Al/GeO2/p-Ge MOSCAPs Analysis — Conclusion 23
2.5 Material Properties of GeO2/p-Ge
2.5.1 Transmission Electron Microscopy 25
2.5.2 Atomic Force Microscopy 29
2.5.3 X-Ray Photoelectron Spectroscopy 32
2.6 Photoluminescence of GeO2/p-Ge with GeO2 grown by RTA 34
2.7 Al/GeO2/n-Ge MOSCAPs Analysis 35
2.8 Summary 37
References 38
Chapter 3 GeO2/Ge based MOSCAPs Characterization
3.1 Introduction 41
3.2 Al/GeO2/Ge MOSCAPs Character — Interface Traps
3.2.1 Overview of Conductance method 43
3.2.2 GeO2/Ge Interface Characterization —RT Conductance method 48
3.2.3 GeO2/Ge Interface Characterization —MS Simulations 52
3.2.4 GeO2/Ge Interface Characterization — Conclusion 55
3.3 Al/GeO2/Ge MOSCAPs Character —Hysteresis Voltage
3.3.1 Introduction of Border Traps 56
3.3.2 Multi-Frequency Hysteresis Voltage 58
3.3.3 Hysteresis Voltage Measurement — Vg sweep extension 60
3.3.4 Material Studio Simulation and Conclusion 61
3.4 Al/GeO2/Ge MOSCAPs Character —Minority Carrier Response 64
3.5 MOSCAPs with Al/Pt Gate Metal 65
3.6 Summary 69
Reference 70
Chapter 4 Low EOT MOS with La2O3 passivation layer
4.1 Introduction 76
4.2 Al/ZrO2/GeO2 MOSCAP s Character
4.2.1 Al/ZrO2/GeO2/p-Ge MOSCAPs Fabrication 80
4.2.2 Al/ZrO2/GeO2-furnace/p-Ge MOSCAPs Characterization 81
4.2.3 Al/ZrO2/GeO2-RTA/p-Ge MOSCAPs Characterization 87
4.3 Pt/ZrO2/La2O3/Ge MOSCAPs Character
4.3.1 ZrO2/La2O3 based MOSCAPs introductions 90
4.3.2 Pt/ZrO2/La2O3/p-Ge MOSCAPs Fabrication 93
4.3.3 Pt/ZrO2/La2O3/p-Ge MOSCAPs Character 94
4.3.4 Pt/ZrO2/La2O3/p-Ge MOSCAPs — Effect of PDA 95
4.4 Summary 99
Reference 100
Chapter 5 Summary and Future Work
5.1 Summary 105
5.2 Future Works 107
dc.language.isoen
dc.subject二氧化三鑭zh_TW
dc.subject氧化鍺鈍化zh_TW
dc.subject超薄等效氧化層zh_TW
dc.subject二氧化鋯zh_TW
dc.subjectGeO2 passivationen
dc.subjectLa2O3en
dc.subjectZrO2en
dc.subjectlow EOTen
dc.title二氧化鍺鈍化層之研究與超薄等效氧化層之鍺金氧半元件製備zh_TW
dc.titleGeO2 Passivation Layer Investigation and the Fabrication of Ultra-Low EOT Ge MOSCAPsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡振國,郭宇軒,林中一,林吉聰
dc.subject.keyword氧化鍺鈍化,超薄等效氧化層,二氧化鋯,二氧化三鑭,zh_TW
dc.subject.keywordGeO2 passivation,low EOT,ZrO2,La2O3,en
dc.relation.page108
dc.rights.note未授權
dc.date.accepted2011-08-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved