請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華 | |
| dc.contributor.author | Wei-Chung Lee | en |
| dc.contributor.author | 李為中 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:16:44Z | - |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-01 | |
| dc.identifier.citation | Ali, A., Hoeflich, K.P., and Woodgett, J.R. (2001). Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev 101, 2527-2540.
Baeyens, L., and Bouwens, L. (2008). Can beta-cells be derived from exocrine pancreas? Diabetes Obes Metab 10 Suppl 4, 170-178. Bernal-Mizrachi, E., Wen, W., Stahlhut, S., Welling, C.M., and Permutt, M.A. (2001). Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108, 1631-1638. Boucher, M.J., Selander, L., Carlsson, L., and Edlund, H. (2006). Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem 281, 6395-6403. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820. Burks, D.J., and White, M.F. (2001). IRS proteins and beta-cell function. Diabetes 50 Suppl 1, S140-145. Butler, A.E., Janson, J., Soeller, W.C., and Butler, P.C. (2003). Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52, 2304-2314. Cai, W., He, J.C., Zhu, L., Chen, X., Striker, G.E., and Vlassara, H. (2008). AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. Am J Physiol Cell Physiol 294, C145-152. Cai, W., He, J.C., Zhu, L., Lu, C., and Vlassara, H. (2006). Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc Natl Acad Sci U S A 103, 13801-13806. Clegg, D.J., Riedy, C.A., Smith, K.A., Benoit, S.C., and Woods, S.C. (2003). Differential sensitivity to central leptin and insulin in male and female rats. Diabetes 52, 682-687. Cohen, P. (2006). The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol 7, 867-873. Cohen, P., and Frame, S. (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol 2, 769-776. Cohen, P., and Goedert, M. (2004). GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3, 479-487. Cozar-Castellano, I., Fiaschi-Taesch, N., Bigatel, T.A., Takane, K.K., Garcia-Ocana, A., Vasavada, R., and Stewart, A.F. (2006). Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev 27, 356-370. Cozar-Castellano, I., Takane, K.K., Bottino, R., Balamurugan, A.N., and Stewart, A.F. (2004). Induction of beta-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenovirus-mediated transfer of cyclin-dependent kinase-4 and cyclin D1. Diabetes 53, 149-159. Dal Col, J., and Dolcetti, R. (2008). GSK-3beta inhibition: at the crossroad between Akt and mTOR constitutive activation to enhance cyclin D1 protein stability in mantle cell lymphoma. Cell Cycle 7, 2813-2816. Doble, B.W., Patel, S., Wood, G.A., Kockeritz, L.K., and Woodgett, J.R. (2007). Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12, 957-971. Docherty, H.M., Hay, C.W., Ferguson, L.A., Barrow, J., Durward, E., and Docherty, K. (2005). Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter. Biochem J 389, 813-820. Dokken, B.B., Sloniger, J.A., and Henriksen, E.J. (2005). Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle. Am J Physiol Endocrinol Metab 288, E1188-1194. Dor, Y. (2006). beta-Cell proliferation is the major source of new pancreatic beta cells. Nat Clin Pract Endocrinol Metab 2, 242-243. Elghazi, L., Balcazar, N., and Bernal-Mizrachi, E. (2006). Emerging role of protein kinase B/Akt signaling in pancreatic beta-cell mass and function. Int J Biochem Cell Biol 38, 157-163. Elghazi, L., Rachdi, L., Weiss, A.J., Cras-Meneur, C., and Bernal-Mizrachi, E. (2007). Regulation of beta-cell mass and function by the Akt/protein kinase B signalling pathway. Diabetes Obes Metab 9 Suppl 2, 147-157. El-seweidy, M.M., El-Swefy, S.E., Ameen, R.S., and Hashem, R.M. (2002). Effect of age receptor blocker and/or anti-inflammatory coadministration in relation to glycation, oxidative stress and cytokine production in stz diabetic rats. Pharmacol Res 45, 391-398. Engelman, J.A., Luo, J., and Cantley, L.C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7, 606-619. Fiaschi-Taesch, N., Bigatel, T.A., Sicari, B., Takane, K.K., Salim, F., Velazquez-Garcia, S., Harb, G., Selk, K., Cozar-Castellano, I., and Stewart, A.F. (2009). Survey of the human pancreatic beta-cell G1/S proteome reveals a potential therapeutic role for cdk-6 and cyclin D1 in enhancing human beta-cell replication and function in vivo. Diabetes 58, 882-893. Forde, J.E., and Dale, T.C. (2007). Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci 64, 1930-1944. Fu, M.X., Requena, J.R., Jenkins, A.J., Lyons, T.J., Baynes, J.W., and Thorpe, S.R. (1996). The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 271, 9982-9986. Gregory, M.A., Qi, Y., and Hann, S.R. (2003). Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278, 51606-51612. Ha, T.S. (2010). High-glucose and advanced glycosylation end products increased podocyte permeability via PI3-K/Akt signaling. J Mol Med 88, 391-400. Halushka, M.K., Selvin, E., Lu, J., Macgregor, A.M., and Cornish, T.C. (2009). Use of human vascular tissue microarrays for measurement of advanced glycation endproducts. J Histochem Cytochem 57, 559-566. Han, S.I., Aramata, S., Yasuda, K., and Kataoka, K. (2007). MafA stability in pancreatic beta cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol Cell Biol 27, 6593-6605. Hinault, C., Hu, J., Maier, B.F., Mirmira, R.G., and Kulkarni, R.N. (2008). Differential expression of cell cycle proteins during ageing of pancreatic islet cells. Diabetes Obes Metab 10 Suppl 4, 136-146. Huebschmann, A.G., Regensteiner, J.G., Vlassara, H., and Reusch, J.E. (2006). Diabetes and advanced glycoxidation end products. Diabetes Care 29, 1420-1432. Ikeda, K., Higashi, T., Sano, H., Jinnouchi, Y., Yoshida, M., Araki, T., Ueda, S., and Horiuchi, S. (1996). N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35, 8075-8083. Iwamoto, K., Kanno, K., Hyogo, H., Yamagishi, S., Takeuchi, M., Tazuma, S., and Chayama, K. (2008). Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. J Gastroenterol 43, 298-304. Jetton, T.L., Lausier, J., LaRock, K., Trotman, W.E., Larmie, B., Habibovic, A., Peshavaria, M., and Leahy, J.L. (2005). Mechanisms of compensatory beta-cell growth in insulin-resistant rats: roles of Akt kinase. Diabetes 54, 2294-2304. Jope, R.S., and Johnson, G.V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29, 95-102. Jope, R.S., Yuskaitis, C.J., and Beurel, E. (2007). Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32, 577-595. Kahn, S.E., Hull, R.L., and Utzschneider, K.M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840-846. Kaneto, H., Miyatsuka, T., Kawamori, D., Yamamoto, K., Kato, K., Shiraiwa, T., Katakami, N., Yamasaki, Y., Matsuhisa, M., and Matsuoka, T.A. (2008). PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr J 55, 235-252. Kargar, C., and Ktorza, A. (2008). Anatomical versus functional beta-cell mass in experimental diabetes. Diabetes Obes Metab 10 Suppl 4, 43-53. Kasuga, M. (2006). Insulin resistance and pancreatic beta cell failure. J Clin Invest 116, 1756-1760. Kauri, L.M., Wang, G.S., Patrick, C., Bareggi, M., Hill, D.J., and Scott, F.W. (2007). Increased islet neogenesis without increased islet mass precedes autoimmune attack in diabetes-prone rats. Lab Invest 87, 1240-1251. Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., Hofmann, M., Yan, S.F., Pischetsrieder, M., Stern, D., et al. (1999). N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274, 31740-31749. Kushner, J.A., Ciemerych, M.A., Sicinska, E., Wartschow, L.M., Teta, M., Long, S.Y., Sicinski, P., and White, M.F. (2005). Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25, 3752-3762. Lee, Y.C., and Nielsen, J.H. (2009). Regulation of beta cell replication. Mol Cell Endocrinol 297, 18-27. Leslie, R.D., Beyan, H., Sawtell, P., Boehm, B.O., Spector, T.D., and Snieder, H. (2003). Level of an advanced glycated end product is genetically determined: a study of normal twins. Diabetes 52, 2441-2444. Lieuw-a-Fa, M.L., Schalkwijk, C.G., Engelse, M., and van Hinsbergh, V.W. (2006). Interaction of Nepsilon(carboxymethyl)lysine- and methylglyoxal-modified albumin with endothelial cells and macrophages. Splice variants of RAGE may limit the responsiveness of human endothelial cells to AGEs. Thromb Haemost 95, 320-328. Lim, M., Park, L., Shin, G., Hong, H., Kang, I., and Park, Y. (2008). Induction of apoptosis of Beta cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus. Ann N Y Acad Sci 1150, 311-315. Lima, M., Assar, S.H., and Ames, J.M. (2010). Formation of N(epsilon)-(carboxymethyl)lysine and loss of lysine in casein glucose-fatty acid model systems. J Agric Food Chem 58, 1954-1958. Ling, C., Del Guerra, S., Lupi, R., Ronn, T., Granhall, C., Luthman, H., Masiello, P., Marchetti, P., Groop, L., and Del Prato, S. (2008). Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51, 615-622. Liu, H., Remedi, M.S., Pappan, K.L., Kwon, G., Rohatgi, N., Marshall, C.A., and McDaniel, M.L. (2009). Glycogen synthase kinase-3 and mammalian target of rapamycin pathways contribute to DNA synthesis, cell cycle progression, and proliferation in human islets. Diabetes 58, 663-672. Liu, Z., Tanabe, K., Bernal-Mizrachi, E., and Permutt, M.A. (2008). Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation. Diabetologia 51, 623-631. Lohwasser, C., Neureiter, D., Weigle, B., Kirchner, T., and Schuppan, D. (2006). The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha. J Invest Dermatol 126, 291-299. MacAulay, K., Doble, B.W., Patel, S., Hansotia, T., Sinclair, E.M., Drucker, D.J., Nagy, A., and Woodgett, J.R. (2007). Glycogen synthase kinase 3alpha-specific regulation of murine hepatic glycogen metabolism. Cell Metab 6, 329-337. Mariappan, M.M., Shetty, M., Sataranatarajan, K., Choudhury, G.G., and Kasinath, B.S. (2008). Glycogen synthase kinase 3beta is a novel regulator of high glucose- and high insulin-induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells. J Biol Chem 283, 30566-30575. Martin, B.C., Warram, J.H., Krolewski, A.S., Bergman, R.N., Soeldner, J.S., and Kahn, C.R. (1992). Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340, 925-929. Masiello, P. (2006). Animal models of type 2 diabetes with reduced pancreatic beta-cell mass. Int J Biochem Cell Biol 38, 873-893. Medina-Gomez, G., Yetukuri, L., Velagapudi, V., Campbell, M., Blount, M., Jimenez-Linan, M., Ros, M., Oresic, M., and Vidal-Puig, A. (2009). Adaptation and failure of pancreatic beta cells in murine models with different degrees of metabolic syndrome. Dis Model Mech 2, 582-592. Monnier, V.M. (2003). Intervention against the Maillard reaction in vivo. Arch Biochem Biophys 419, 1-15. Monnier, V.M., and Wu, X. (2003). Enzymatic deglycation with amadoriase enzymes from Aspergillus sp. as a potential strategy against the complications of diabetes and aging. Biochem Soc Trans 31, 1349-1353. Muellenbach, E.M., Diehl, C.J., Teachey, M.K., Lindborg, K.A., Hasselwander, O., Matuschek, M., and Henriksen, E.J. (2009). Metabolic interactions of AGE inhibitor pyridoxamine and antioxidant alpha-lipoic acid following 22 weeks of treatment in obese Zucker rats. Life Sci 84, 563-568. Muoio, D.M., and Newgard, C.B. (2008). Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9, 193-205. Murgatroyd, L.B., and Tucker, M.J. (1981). Pancreatic islet cell hypertrophy in the Syrian hamster. J Comp Pathol 91, 455-459. Mussmann, R., Geese, M., Harder, F., Kegel, S., Andag, U., Lomow, A., Burk, U., Onichtchouk, D., Dohrmann, C., and Austen, M. (2007). Inhibition of GSK3 promotes replication and survival of pancreatic beta cells. J Biol Chem 282, 12030-12037. Nadler, S.T., Stoehr, J.P., Rabaglia, M.E., Schueler, K.L., Birnbaum, M.J., and Attie, A.D. (2001). Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice. Am J Physiol Endocrinol Metab 281, E1249-1254. Ohashi, K., Takahashi, H.K., Mori, S., Liu, K., Wake, H., Sadamori, H., Matsuda, H., Yagi, T., Yoshino, T., Nishibori, M., et al. (2010). Advanced glycation end products enhance monocyte activation during human mixed lymphocyte reaction. Clin Immunol 134, 345-353. Omary, M.B., Lugea, A., Lowe, A.W., and Pandol, S.J. (2007). The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 117, 50-59. Patel, S., Doble, B., and Woodgett, J.R. (2004). Glycogen synthase kinase-3 in insulin and Wnt signalling: a double-edged sword? Biochem Soc Trans 32, 803-808. Patti, M.E., and Kahn, B.B. (2004). Nutrient sensor links obesity with diabetes risk. Nat Med 10, 1049-1050. Peppa, M., Brem, H., Ehrlich, P., Zhang, J.G., Cai, W., Li, Z., Croitoru, A., Thung, S., and Vlassara, H. (2003). Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes 52, 2805-2813. Pipeleers, D., Chintinne, M., Denys, B., Martens, G., Keymeulen, B., and Gorus, F. (2008). Restoring a functional beta-cell mass in diabetes. Diabetes Obes Metab 10 Suppl 4, 54-62. Prentki, M., and Nolan, C.J. (2006). Islet beta cell failure in type 2 diabetes. J Clin Invest 116, 1802-1812. Radu, A., Neubauer, V., Akagi, T., Hanafusa, H., and Georgescu, M.M. (2003). PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 23, 6139-6149. Rafacho, A., Ribeiro, D.L., Boschero, A.C., Taboga, S.R., and Bosqueiro, J.R. (2008). Increased pancreatic islet mass is accompanied by activation of the insulin receptor substrate-2/serine-threonine kinase pathway and augmented cyclin D2 protein levels in insulin-resistant rats. Int J Exp Pathol 89, 264-275. Rhodes, C.J. (2005). Type 2 diabetes-a matter of beta-cell life and death? Science 307, 380-384. Robertson, L.A., Kim, A.J., and Werstuck, G.H. (2006). Mechanisms linking diabetes mellitus to the development of atherosclerosis: a role for endoplasmic reticulum stress and glycogen synthase kinase-3. Can J Physiol Pharmacol 84, 39-48. Robertson, R.P. (2004). Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279, 42351-42354. Rocques, N., Abou Zeid, N., Sii-Felice, K., Lecoin, L., Felder-Schmittbuhl, M.P., Eychene, A., and Pouponnot, C. (2007). GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol Cell 28, 584-597. Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806. Sandu, O., Song, K., Cai, W., Zheng, F., Uribarri, J., and Vlassara, H. (2005). Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes 54, 2314-2319. Santana, R.B., Xu, L., Chase, H.B., Amar, S., Graves, D.T., and Trackman, P.C. (2003). A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes 52, 1502-1510. Seo, Y.H., Jung, H.J., Shin, H.T., Kim, Y.M., Yim, H., Chung, H.Y., Lim, I.K., and Yoon, G. (2008). Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation. Aging Cell 7, 894-907. Shafrir, E., Ziv, E., and Mosthaf, L. (1999). Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892, 223-246. Shanmugam, N., Todorov, I.T., Nair, I., Omori, K., Reddy, M.A., and Natarajan, R. (2006). Increased expression of cyclooxygenase-2 in human pancreatic islets treated with high glucose or ligands of the advanced glycation endproduct-specific receptor (AGER), and in islets from diabetic mice. Diabetologia 49, 100-107. Simeone, D.M., Zhang, L., Treutelaar, M.K., Graziano, K., Logsdon, C.D., and Burant, C.F. (2006). Islet hypertrophy following pancreatic disruption of Smad4 signaling. Am J Physiol Endocrinol Metab 291, E1305-1316. Singh, B.K., and Mascarenhas, D.D. (2008). Bioactive peptides control receptor for advanced glycated end product-induced elevation of kidney insulin receptor substrate 2 and reduce albuminuria in diabetic mice. Am J Nephrol 28, 890-899. Singh, R., Barden, A., Mori, T., and Beilin, L. (2001). Advanced glycation end-products: a review. Diabetologia 44, 129-146. Soro-Paavonen, A., Watson, A.M., Li, J., Paavonen, K., Koitka, A., Calkin, A.C., Barit, D., Coughlan, M.T., Drew, B.G., Lancaster, G.I., et al. (2008). Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57, 2461-2469. Stukenbrock, H., Mussmann, R., Geese, M., Ferandin, Y., Lozach, O., Lemcke, T., Kegel, S., Lomow, A., Burk, U., Dohrmann, C., et al. (2008). 9-cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic beta cell protection and replication. J Med Chem 51, 2196-2207. Surjit, M., and Lal, S.K. (2007). Glycogen synthase kinase-3 phosphorylates and regulates the stability of p27kip1 protein. Cell Cycle 6, 580-588. Tajiri, Y., and Grill, V. (2000). Aminoguanidine exerts a beta-cell function-preserving effect in high glucose-cultured beta-cells (INS-1). Int J Exp Diabetes Res 1, 111-119. Takahashi-Yanaga, F., and Sasaguri, T. (2008). GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 20, 581-589. Takamoto, I., Terauchi, Y., Kubota, N., Ohsugi, M., Ueki, K., and Kadowaki, T. (2008). Crucial role of insulin receptor substrate-2 in compensatory beta-cell hyperplasia in response to high fat diet-induced insulin resistance. Diabetes Obes Metab 10 Suppl 4, 147-156. Tanabe, K., Liu, Z., Patel, S., Doble, B.W., Li, L., Cras-Meneur, C., Martinez, S.C., Welling, C.M., White, M.F., Bernal-Mizrachi, E., et al. (2008). Genetic deficiency of glycogen synthase kinase-3beta corrects diabetes in mouse models of insulin resistance. PLoS Biol 6, e37. Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7, 85-96. Tanji, N., Markowitz, G.S., Fu, C., Kislinger, T., Taguchi, A., Pischetsrieder, M., Stern, D., Schmidt, A.M., and D'Agati, V.D. (2000). Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol 11, 1656-1666. Teerlink, T., Barto, R., Ten Brink, H.J., and Schalkwijk, C.G. (2004). Measurement of Nepsilon-(carboxymethyl)lysine and Nepsilon-(carboxyethyl)lysine in human plasma protein by stable-isotope-dilution tandem mass spectrometry. Clin Chem 50, 1222-1228. Terauchi, Y., Takamoto, I., Kubota, N., Matsui, J., Suzuki, R., Komeda, K., Hara, A., Toyoda, Y., Miwa, I., Aizawa, S., et al. (2007). Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 117, 246-257. Trumper, A., Trumper, K., Trusheim, H., Arnold, R., Goke, B., and Horsch, D. (2001). Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15, 1559-1570. van de Merbel, N.C., Mentink, C.J., Hendriks, G., and Wolffenbuttel, B.H. (2004). Liquid chromatographic method for the quantitative determination of Nepsilon-carboxymethyllysine in human plasma proteins. J Chromatogr B Analyt Technol Biomed Life Sci 808, 163-168. van Deutekom, A.W., Niessen, H.W., Schalkwijk, C.G., Heine, R.J., and Simsek, S. (2008). Increased Nepsilon-(carboxymethyl)-lysine levels in cerebral blood vessels of diabetic patients and in a (streptozotocin-treated) rat model of diabetes mellitus. Eur J Endocrinol 158, 655-660. Weir, G.C., and Bonner-Weir, S. (2007). A dominant role for glucose in beta cell compensation of insulin resistance. J Clin Invest 117, 81-83. Xu, C., Kim, N.G., and Gumbiner, B.M. (2009). Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 8, 4032-4039. Yeh, C.H., Sturgis, L., Haidacher, J., Zhang, X.N., Sherwood, S.J., Bjercke, R.J., Juhasz, O., Crow, M.T., Tilton, R.G., and Denner, L. (2001). Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50, 1495-1504. Zhao, Z., Zhao, C., Zhang, X.H., Zheng, F., Cai, W., Vlassara, H., and Ma, Z.A. (2009). Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology 150, 2569-2576. Zimmet, P., Alberti, K.G., and Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature 414, 782-787. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22388 | - |
| dc.description.abstract | 二型糖尿病是目前常見的代謝疾病之一,主要和胰島素阻抗有關。當外源性或內源性胰島素對細胞的刺激不足時,細胞會無法有效的利用胰島素,造成血糖無法進入細胞被利用而滯留在循環中,此時胰島β細胞會代償性增加胰島素的分泌量以便能提高對循環中糖分的處理,當血糖在此機制下長期都無法完全達到正常血糖控制時,會造成胰島素濃度較正常人為高,也就是耐糖障礙的產生,長期惡性循環之下,便產生胰島素阻抗;此階段可能維持數年之久,直到胰島β細胞出現疲乏,細胞功能逐漸衰退,血糖值也會越來越高,即進入所謂第二型糖尿病階段。在進入第二型糖尿病階段前,動物體內葡萄糖的含量漸高,會產生梅納反應,也就是還原糖的羰基(carbonyl group)和蛋白質上的一級胺基 (primary amino group) 進行非酵素性縮合反應,而產生後期糖化終產物 (advanced glycation end products, AGEs),而N-ε-carboxymethyl-lysine (CML) 則是AGEs中的一種。但是目前AGEs和CML與胰島的代償作用機制尚不清楚,因此本實驗目的在主要是探討葡萄糖及胰島素在高濃度時對胰島β細胞所產生的影響,而在高血糖狀態下大量產生的AGEs,是否也是透過誘發RAGE/P38/MAPK/NF-κB以及IRS2/AKT的訊息途徑,繼而造成胰島肥大的因子之一,最後形成胰島β細胞的功能異常而導致胰島素阻抗的產生。
吾人進行的實驗首先是採用糖尿病之對照組小鼠六隻(三隻公的及三隻母的),;糖尿病實驗組則是採用40-50g、8-12周(2∼3月齡)之db/db小鼠四隻(二隻公的及二隻母的)。觀察小鼠的胰島在經過生理上的代償作用後,發現有胰島肥大的現象發生,吾人接著利用葡萄糖濃度值2.8mM、11.1mM及30mM之培養基模擬血糖之狀態,以及外加2nM之胰島素加入培養基中,模擬胰島β細胞周圍含有高濃度胰島素的情形。培養胰島β細胞株(RIN-m5f)後收取細胞總蛋白質(total protein),並利用西方墨點法(western blot)觀察發現,在IRS2/AKT訊息途徑上主要的幾個磷酸化蛋白包括:P-IRS2、P-PDK、P-AKT、P-P70s6k及P-GSK3α/β,皆會隨著葡萄糖及胰島素而造成磷酸化的反應增加;由此結果推測,葡萄糖及胰島素在胰島β細胞的生理環境中,有可能會透過IRS2/AKT之訊息傳遞路徑繼而影響胰島β細胞的增生作用。另外藉由對照組的五隻母小鼠及實驗組五隻db/db母的小鼠犧牲之後取出胰臟組織,經過包埋及切片過程後,使用AGEs及CML antibody進行免疫組織化學染色的結果顯示,AGEs及CML在胰島中有表現增加的趨勢,同樣的採用CML濃度為0、0.1、1、5、20μg/ml進行western blot分析,也發現CML會增加IRS2/AKT的活化作用,最後利用免疫組織化學染色也發現胰島中IRS2/AKT有增加的趨勢,因此判斷這條代償作用的相關路徑可能是經由IRS2的磷酸化作用,活化PI3K、AKT,並抑制GSK-3β,促進cyclin D1的表現而產生。因此推測AGEs及CML在db/db小鼠中,可能是經由IRS2/AKT訊息路徑會造成GSK-3β在細胞中的活性降低,可能會導致cyclin D1的表現增加,進而增加細胞周期的運作而促進細胞的活性,造成胰島的肥大。 | zh_TW |
| dc.description.abstract | Type 2 diabetes is characterized by hyperglycemia due to insulin resistance in peripheral tissues and deficient insulin secretion by pancreatic islet β-cells. Hyperglycemia also fosters the endogenous nonenzymatic glycoxidation of proteins, lipids, and nucleic acids, and results in the accumulation of heterogeneous molecules known as advanced glycation end products (AGEs). Nε-(carboxymethyl)lysine (CML) were modified proteins have been identified as major AGEs. Compelling evidence implicates this accumulation of AGEs in the pathogenesis of diabetic complications. However, their role in β-cell dysfunction is less clear. It has been found that the compensation involves expansion of β cell mass and enhanced insulin biosynthesis in type 2 diabetes mice. In this study, CML treatment of pancreatic β cell line (RIN-m5f) was not arrest proliferation, and highly expressed phosphor IRS2/phosphor AKT, RAGE, and phosphor GSK-3β/cyclin D1, on the protein level when analyzed by Western blotting. Islets exhibited an increased frequency of these proteins staining, indicating a potential role for β-cell differentiation. Moreover we also found that the expansion of islet mass, increased insulin biosynthesis, and IRS2/AKT, and GSK-3β/cyclin D1 expressions in islets of db/db-diabetic mice. Thus, several adaptive mechanisms account for the compensatory growth of β-cells, a combination of enhanced survival and neogenesis as a potential mediator in these processes. It might be suggested that AGEs have identified a key role for the potential regulatory mechanisms whereby IRS2/AKT signaling promotes enhanced β-cell mass in an animal that develops severe insulin resistance in adulthood. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:16:44Z (GMT). No. of bitstreams: 1 ntu-99-R97447007-1.pdf: 4466715 bytes, checksum: df1e9643600a1da0ce5cf005882a2cb4 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………….II
目錄………………………………….…………………………..….III 縮寫表……………………………………………………………..….IV 中文摘要……………………………………………………………….1 英文摘要……………………………………………………………….3 第一章 導論………………………………………………………….4 第一節 糖尿病的簡介……………..………………………..…...4 第二節 胰島β 細胞之功能及相關機制……………………………6 第三節 胰島β 細胞與二型糖尿病之關係………..………...….10 第四節 二型糖尿病之後期糖化終產物之生成及影響……………….15 第二章 研究目的………………………………………………...…19 第三章 材料與方法…………………………………………..…….20 第一節 實驗材料………………………..……………………..….20 第二節 實驗方法………………………………………………….…26 第四章 實驗結果…………………………………………………...40 第一節 觀察胰島素及葡萄糖分泌情形與胰島形態……………….40 第二節 觀察胰島素及葡萄糖對胰島β 細胞之影響……………….41 第三節 觀察AGEs 及CML 在胰島之表現及其影響………………..42 第四節 正常小鼠及db/db 小鼠之胰島組織學訊息傳遞路徑之觀察..44 第五章 結果討論…………………………………………………...45 第一節 研究動機…………………………………………………….45 第二節 參考依據…………………………………………….………45 第三節 IRS-2/AKT 與GSK-3β 在胰島β 細胞中的功能探討…….46 第四節 AGEs 及CML 在胰島之表現及其功能探討…………………47 第五節 組織學的染色觀察並探討相關蛋白在胰島中的表現…….....48 第六節 結論……………………………………………....……….50 圖次…………………………………………………………………...52 參考文獻…………………………………………………………...72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 胰島肥大作用 | zh_TW |
| dc.subject | 二型糖尿病 | zh_TW |
| dc.subject | 胰島素阻抗 | zh_TW |
| dc.subject | IRS2/AKT 的訊息途徑 | zh_TW |
| dc.subject | 後期糖化終產物 | zh_TW |
| dc.subject | compensatory growth of β-cells | en |
| dc.subject | Type 2 diabetes | en |
| dc.subject | insulin resistance | en |
| dc.subject | IRS2/AKT signaling | en |
| dc.subject | advanced glycation end products | en |
| dc.title | 探討糖尿病對於胰島β細胞成長及功能之影響 | zh_TW |
| dc.title | The effects of diabetes in growth and function of islet β cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭水銀,楊榮森 | |
| dc.subject.keyword | 二型糖尿病,胰島素阻抗,IRS2/AKT 的訊息途徑,後期糖化終產物,胰島肥大作用, | zh_TW |
| dc.subject.keyword | Type 2 diabetes,insulin resistance,IRS2/AKT signaling,advanced glycation end products,compensatory growth of β-cells, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
