Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22386
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏(Jyh-Horng Chen)
dc.contributor.authorTun Jaoen
dc.contributor.author饒敦zh_TW
dc.date.accessioned2021-06-08T04:16:42Z-
dc.date.issued2010
dc.date.submitted2010-08-02
dc.identifier.citationAchard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient,
low-frequency, small-world human brain functional network with highly
connected association cortical hubs. Journal of Neuroscience, 26(1), 63-72.
Alavi, A., & Reivich, M. (2002). Guest editorial: the conception of FDG-PET imaging.
Arnott, S., Heywood, C., Kentridge, R., & Goodale, M. (2008). Voice recognition and
the posterior cingulate: An fMRI study of prosopagnosia. Journal of
Neuropsychology, 2(1), 269-286.
Baehr, M., Frotscher, M., & Duus, P. (2005). Duus' topical diagnosis in neurology:
anatomy, physiology, signs, symptoms: George Thieme Verlag.
Beckmann, C., DeLuca, M., Devlin, J., & Smith, S. (2005). Investigations into
resting-state connectivity using independent component analysis. Philosophical
Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001.
Ben-Simon, E., Podlipsky, I., Arieli, A., Zhdanov, A., & Hendler, T. (2008). Never
resting brain: simultaneous representation of two alpha related processes in
humans. PLoS One, 3(12), e3984.
Berger, H. (1929). Uber das Elektrenkephalogramm des Menchen. Archives fur
Psychiatrie, 87, 527-570.
Bertolo, H., Paiva, T., Pessoa, L., Mestre, T., Marques, R., & Santos, R. (2003). Visual
dream content, graphical representation and EEG alpha activity in congenitally
blind subjects. Cognitive Brain Research, 15(3), 277-284.
Bianciardi, M., Fukunaga, M., van Gelderen, P., Horovitz, S., de Zwart, J., & Duyn, J.
(2009). Modulation of spontaneous fMRI activity in human visual cortex by
behavioral state. NeuroImage, 45(1), 160-168.
Biswal, B., Yetkin, F., Haughton, V., & Hyde, J. (1995). Functional connectivity in the
motor cortex of resting human brain using echo-planar MRI. Magnetic
Resonance in Medicine, 34(4), 537-541.
Brazis, P., Masdeu, J., & Biller, J. (2007). Localization in clinical neurology: Lippincott
Williams & Wilkins.
Buchsbaum, M., Kessler, R., King, A., Johnson, J., & Cappelletti, J. (1984).
Simultaneous cerebral glucography with positron emission tomography and
topographic electroencephalography. Progress in Brain Research, 62, 263-269.
Calhoun, V., Adali, T., Pearlson, G., & Pekar, J. (2001). A method for making group
inferences from functional MRI data using independent component analysis.
Human Brain Mapping, 14(3), 140-151.
Christoff, K., Gordon, A., Smallwood, J., Smith, R., & Schooler, J. (2009). Experience
sampling during fMRI reveals default network and executive system
contributions to mind wandering. Proceedings of the National Academy of
Sciences, 106(21), 8719.
Colzato, L., Slagter, H., Spape, M., & Hommel, B. (2008). Blinks of the eye predict
blinks of the mind. Neuropsychologia, 46(13), 3179-3183.
Colzato, L., van den Wildenberg, W., van Wouwe, N., Pannebakker, M., & Hommel, B.
(2009). Dopamine and inhibitory action control: evidence from spontaneous eye
blink rates. Experimental brain research, 196(3), 467-474.
Cordes, D., Haughton, V., Arfanakis, K., Carew, J., Turski, P., Moritz, C., et al. (2001).
Frequencies contributing to functional connectivity in the cerebral cortex in'
resting-state' data. American Journal of Neuroradiology, 22(7), 1326.
Cordes, D., Haughton, V., Carew, J., Arfanakis, K., & Maravilla, K. (2002).
46
Hierarchical clustering to measure connectivity in fMRI resting-state data.
Magnetic resonance imaging, 20(4), 305-317.
Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C., Smith, S., et al.
(2006). Consistent resting-state networks across healthy subjects. Proceedings of
the National Academy of Sciences, 103(37), 13848-13853.
De Luca, M., Beckmann, C., De Stefano, N., Matthews, P., & Smith, S. (2006). fMRI
resting state networks define distinct modes of long-distance interactions in the
human brain. NeuroImage, 29(4), 1359-1367.
Duus, P. (1998). Topical Diagnosis in Neurology. Stuttgart: Thieme.
Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence
intervals, and other measures of statistical accuracy. Statistical science, 1(1),
54-75.
Fair, D., Cohen, A., Dosenbach, N., Church, J., Miezin, F., Barch, D., et al. (2008). The
maturing architecture of the brain's default network. Proceedings of the National
Academy of Sciences, 105(10), 4028.
Field, A. (2001). Meta-analysis of correlation coefficients: A Monte Carlo comparison
of fixed-and random-effects methods. Psychological Methods, 6(2), 161-180.
Fisch, B., & Spehlmann, R. (1999). Fisch and Spehlmann's EEG primer: basic
principles of digital and analog EEG: Elsevier Science Health Science div.
FitzGerald, M., & Folan-Curran, J. (2002). Clinical neuroanatomy and related
neuroscience: WB Saunders Co.
Fox, M., Corbetta, M., Snyder, A., Vincent, J., & Raichle, M. (2006). Spontaneous
neuronal activity distinguishes human dorsal and ventral attention systems.
Proceedings of the National Academy of Sciences, 103(26), 10046.
Fox, M., & Raichle, M. (2007). Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9),
700-711.
Fox, M., Snyder, A., Vincent, J., Corbetta, M., Van Essen, D., & Raichle, M. (2005).
The human brain is intrinsically organized into dynamic, anticorrelated
functional networks. Proceedings of the National Academy of Sciences of the
United States of America, 102(27), 9673-9678.
Fox, M., Snyder, A., Zacks, J., & Raichle, M. (2005). Coherent spontaneous activity
accounts for trial-to-trial variability in human evoked brain responses. nature
neuroscience, 9(1), 23-25.
Franco, A., Ling, J., Caprihan, A., Calhoun, V., Jung, R., Heileman, G., et al. (2008).
Multimodal and Multi-Tissue Measures of Connectivity Revealed by Joint
Independent Component Analysis. IEEE journal of selected topics in signal
processing, 2(6), 986-997.
G Aguirre, M. D. E. (1999). Experimental design for brain fMRI. Functional MRI,
369-380.
Gaab, N., Gabrieli, J., & Glover, G. (2008). Resting in peace or noise: Scanner
background noise suppresses default-mode network. Human Brain Mapping,
29(7), 858-867.
Gilden, D., Thornton, T., & Mallon, M. (1995). 1/f noise in human cognition. Science,
267(5205), 1837.
Golanov, E., Yamamoto, S., & Reis, D. (1994). Spontaneous waves of cerebral blood
flow associated with a pattern of electrocortical activity. American Journal of
Physiology- Regulatory, Integrative and Comparative Physiology, 266(1), 204.
Goldman, R., Stern, J., Engel Jr, J., & Cohen, M. (2002). Simultaneous EEG and fMRI
47
of the alpha rhythm. Neuroreport, 13(18), 2487-2492.
Greicius, M., Krasnow, B., Reiss, A., & Menon, V. (2003). Functional connectivity in
the resting brain: a network analysis of the default mode hypothesis.
Proceedings of the National Academy of Sciences, 100(1), 253-258.
Greicius, M., Supekar, K., Menon, V., & Dougherty, R. (2008). Resting-state functional
connectivity reflects structural connectivity in the default mode network.
Cerebral cortex.
Honey, C., Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of
cerebral cortex shapes functional connectivity on multiple time scales.
Proceedings of the National Academy of Sciences, 104(24), 10240.
Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J., Meuli, R., et al. (2009).
Predicting human resting-state functional connectivity from structural
connectivity. Proceedings of the National Academy of Sciences, 106(6),
2035-2040.
Horovitz, S., Braun, A., Carr, W., Picchioni, D., Balkin, T., Fukunaga, M., et al. (2009).
Decoupling of the brain's default mode network during deep sleep. Proceedings
of the National Academy of Sciences, 106(27), 11376-11381.
Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature
Reviews Neuroscience, 2(3), 194-203.
Jan, J., & Wong, P. (1988). Behaviour of the alpha rhythm in electroencephalograms of
visually impaired children. Developmental Medicine & Child Neurology, 30(4),
444-450.
Jann, K., Dierks, T., Boesch, C., Kottlow, M., Strik, W., & Koenig, T. (2009). BOLD
correlates of EEG alpha phase-locking and the fMRI default mode network.
NeuroImage, 45(3), 903-916.
Johnston, J., Vaishnavi, S., Smyth, M., Zhang, D., He, B., Zempel, J., et al. (2008). Loss
of resting interhemispheric functional connectivity after complete section of the
corpus callosum. Journal of Neuroscience, 28(25), 6453-6458.
K. J. Friston, C. D. F., P. F. Liddle, R. S. J. Frackowiak. (1993). Functional connectivity:
the principle-component analysis of large (PET) data sets. J. Cerebral Blood
Flow Metab, 13, 5-14.
Kolb, B., & Whishaw, I. (2008). Fundamentals of human neuropsychology: Worth Pub.
Lerner, Y., Papo, D., Zhdanov, A., Belozersky, L., & Hendler, T. (2009). Eyes wide
shut: amygdala mediates eyes-closed effect on emotional experience with music.
4(7), e6230.
Logothetis, N. (2008). What we can do and what we cannot do with fMRI. Nature,
453(7197), 869-878.
Logothetis, N., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001).
Neurophysiological investigation of the basis of the fMRI signal. Nature,
412(6843), 150-157.
Lorincz, M., Kekesi, K., Juhasz, G., Crunelli, V., & Hughes, S. (2009). Temporal
framing of thalamic relay-mode firing by phasic inhibition during the alpha
rhythm. Neuron, 63(5), 683-696.
Marx, E., Deutschlander, A., Stephan, T., Dieterich, M., Wiesmann, M., & Brandt, T.
(2004). Eyes open and eyes closed as rest conditions: impact on brain activation
patterns. NeuroImage, 21(4), 1818-1824.
Marx, E., Stephan, T., Nolte, A., Deutschlander, A., Seelos, K., Dieterich, M., et al.
(2003). Eye closure in darkness animates sensory systems. NeuroImage, 19(3),
924-934.
48
Mason, M., Norton, M., Van Horn, J., Wegner, D., Grafton, S., & Macrae, C. (2007).
Wandering minds: the default network and stimulus-independent thought.
Science, 315(5810), 393.
Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houde, O., et al. (2001).
Cortical networks for working memory and executive functions sustain the
conscious resting state in man. Brain Research Bulletin, 54(3), 287-298.
McAvoy, M., Larson-Prior, L., Nolan, T., Vaishnavi, S., Raichle, M., & d'Avossa, G.
(2008). Resting states affect spontaneous BOLD oscillations in sensory and
paralimbic cortex. Journal of neurophysiology, 100(2), 922.
Nir, Y., Hasson, U., Levy, I., Yeshurun, Y., & Malach, R. (2006). Widespread
functional connectivity and fMRI fluctuations in human visual cortex in the
absence of visual stimulation. NeuroImage, 30(4), 1313-1324.
Nobre, A., Sebestyen, G., Gitelman, D., Mesulam, M., Frackowiak, R., & Frith, C.
(1997). Functional localization of the system for visuospatial attention using
positron emission tomography. Brain, 120(3), 515.
O'Connor, D., Fukui, M., Pinsk, M., & Kastner, S. (2002). Attention modulates
responses in the human lateral geniculate nucleus. nature neuroscience, 5(11),
1203-1209.
Olson, C., & Musil, S. (1992). Posterior cingulate cortex: sensory and oculomotor
properties of single neurons in behaving cat. Cerebral cortex, 2(6), 485.
Petersen, S., Fox, P., Posner, M., Mintum, M., & Raichle, M. (1988). Positron emission
tomographic studies of the cortical anatomy of single-word processing. Nature,
331(6157), 585-589.
Raichle, M., MacLeod, A., Snyder, A., Powers, W., Gusnard, D., & Shulman, G. (2001).
A default mode of brain function. Proceedings of the National Academy of
Sciences, 98(2), 676-682.
Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4),
180-190.
SCHMIDTKE, K., & BUTTNER-ENNEVER, J. (1992). Nervous control of eyelid
function: a review of clinical, experimental and pathological data. Brain, 115(1),
227.
Schreckenberger, M., Lange-Asschenfeld, C., Lochmann, M., Mann, K., Siessmeier, T.,
Buchholz, H., et al. (2004). The thalamus as the generator and modulator of
EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in
humans. NeuroImage, 22(2), 637-644.
Seeley, W., Menon, V., Schatzberg, A., Keller, J., Glover, G., Kenna, H., et al. (2007).
Dissociable intrinsic connectivity networks for salience processing and
executive control. Journal of Neuroscience, 27(9), 2349.
Sherrington, C. (1941). Man on his Nature. The Journal of Nervous and Mental Disease,
94(6), 762.
Singh, M., Patel, P., & Al-Dayeh, L. (1998). fMRI of brain activity during alpha rhythm.
Paper presented at the International Society for Magnetic Resonance in
Medicine 1998.
Sridharan, D., Levitin, D., & Menon, V. (2008). A critical role for the right
fronto-insular cortex in switching between central-executive and default-mode
networks. Proceedings of the National Academy of Sciences, 105(34),
12569-12574.
Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain:
3-dimensional proportional system: an approach to cerebral imaging: Thieme.
49
Taylor, K., Seminowicz, D., & Davis, K. (2009). Two systems of resting state
connectivity between the insula and cingulate cortex. Human Brain Mapping,
30(9), 2731-2745.
Vern, B., Leheta, B., Juel, V., LaGuardia, J., Graupe, P., & Schuette, W. (1997).
Interhemispheric synchrony of slow oscillations of cortical blood volume and
cytochrome aa3 redox state in unanesthetized rabbits. Brain research, 775(1-2),
233-239.
Vincent, J., Patel, G., Fox, M., Snyder, A., Baker, J., Van Essen, D., et al. (2007).
Intrinsic functional architecture in the anaesthetized monkey brain. Nature,
447(7140), 83-86.
Wikipedia. (2010). Bootstrapping (statistics).
en.wikipedia.org/wiki/Bootstrapping_(statistics).
Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous Brain
Activity in the Default Mode Network Is Sensitive to Different Resting-State
Conditions with Limited Cognitive Load. PLoS One, 4(5), e5743.
Yang, H., Long, X., Yang, Y., Yan, H., Zhu, C., Zhou, X., et al. (2007). Amplitude of
low frequency fluctuation within visual areas revealed by resting-state functional
MRI. NeuroImage, 36(1), 144-152.
Zeki, S., Watson, J., Lueck, C., Friston, K., Kennard, C., & Frackowiak, R. (1991). A
direct demonstration of functional specialization in human visual cortex. Journal
of Neuroscience, 11(3), 641.
Zou, Q., Long, X., Zuo, X., Yan, C., Zhu, C., Yang, Y., et al. (2009). Functional
connectivity between the thalamus and visual cortex under eyes closed and eyes
open conditions: A resting-state fMRI study. Human Brain Mapping, 30(9),
3066-3078.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22386-
dc.description.abstract靜息態腦功能性磁振造影(Resting-state brain fMRI)在最近幾年受到神經 科學家廣泛的注意。與傳統功能性造影譬如以血液含氧程度為對比的功能性磁 振造影(Blood oxygenation level dependent – functional magnetic resonance imaging, BOLD-fMRI)大不相同的是,靜息態腦功能性造影並不需要額外的刺 激,就能夠取得大腦各個不同反應區域的共振連結,因此除了一般受試者外, 更有機會進一步應用在臨床患者身上。
眼睛開闔雖然是微小的動作,但是對大腦的覺醒,注意力,執行,各種感 覺系統,與預設模式網路都有相當程度的影響。但是過去的文獻比較沒有嚴格 考慮眼睛開闔時光線因素可能造成的影響。本研究針對二十一位右撇子健康受 試者,利用實驗設計觀察受試者在有光線與無光線的環境下,張眼與閉眼兩種 動作對大腦不同注意力網路,感覺網路,以及預設模式網路所產生的變化。
實驗結果顯示眼睛開闔與光線對大腦有不同的作用。在傳統血液動力的結 果分析上,光線對大腦造成前額葉與視覺相關皮質的活化,眼睛開闔則會活化 視丘與視覺相關皮質。至於在功能性連結上,則發現在眼睛閉合的狀態下,不 論有無光線因子的介入,大腦各種感覺網路以及注意力網路皆會產生高度的共 振,至於大腦預設模式網路則相對受較小的影響。
zh_TW
dc.description.abstractResting-state brain functional Magnetic Resonance Imaging (rs-fMRI) has acquired intensive attention among neuroscientists in recent years. Compared with traditional blood oxygenation level dependent-fMRI (BOLD-fMRI), rs-fMRI can obtain oscillations—the functional connectivity—between different brain regions without stimulations or tasks.
Eyes-closed or eyes-open, though trivial, is critical for stimulus-induced brain activation patterns. However, the previous literature did not consider seriously the possible concurrent confounding effect of the light. In this rs-fMRI study, 21 healthy right-handed subjects were deprived of light for certain experimental sessions, and we aimed to investigate the pure effect of light/dark and eyes-open/closed especially upon attention, sensory and default mode networks of the human brain.
Results suggested that light/dark and eyes-open/closed have different roles upon brain. Hemodynamically, light activated prefrontal and visual-associated cortexes; on the other hand, eyes-open activated thalamus and also the visual-associated cortexes. Concerning the functional connectivity, sensory networks including visual, auditory, and somatosensory networks and attention networks encompassing dorsal attention and salience networks were highly coherent during eyes-closed stage regardless of the light. However, the default mode network is relatively more robust to trivial stimuli like eyes-open or eyes-closed than sensory or attention networks are.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:16:42Z (GMT). No. of bitstreams: 1
ntu-99-R96945044-1.pdf: 3115480 bytes, checksum: 40a934df6d67fc9f456c162706593b97 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書………………………………………….…………….i
致謝……………………………………………………….……………..ii
中文摘要…………………………………………………….…...…….iii
Abstract……………………………………………………….………...iv
Contents………………………………………………………….……....v
List of Figures…………………………………………………….…....vii
List of Tables……………………………………………………………ix
1. Introduction……………………………………………………...…..1
1.1. Research Background…………………………..…………...…..1
1.2. Eyes-Open and Eyes-Closed………………………………...…..2
1.2.1. Neuroanatomical Pathways…………………………..……..2
1.2.2. Literature Review: Impact of Eyes-Open/Closed on Brain...3
1.3. Light Input Through the Eyes……………………………...……4
1.3.1. Visual Pathways…………………………..…………...…....4
1.3.2. Awakefulness Induced by Light………………………..…..5
1.3.3. Literature review: Impact of Light or Dark on Brain………6
1.4. Spontaneous Fluctuations of Brain Activity Noted with fMRI…6
1.4.1. History of BOLD Linear Correlation……………………….6
1.4.2. Physiological Characteristics of BOLD Linear Correlation..8
1.4.3. Frequency Specification of Spontaneous Fluctuation……..10
1.4.4. The “Resting State”……………………………………..…11
1.4.5. Magnitude and Variability of BOLD Correlation…………12
1.4.6. Connectivity and Interaction between Networks……….....13
1.4.6.1. Task Negative Networks………………………...…14
1.4.6.2. Task Positive Networks…………………………….15
1.5. Motivation…………………………..…………...……………..17
1.6. Hypothesis…………………………..…………...………….....18
2. Materials and Methods…………………………………………….19
2.1. Subject Recruitment……………………………………………19
2.2. Experimental Design…………………………………………..19
2.2.1. Continuous Resting Sessions……………………...………20
2.2.2. Separated Resting Sessions……………………….……….20
2.3. Data Acquisition……………………………………………….22
2.4. Data Analysis…………………………………………………..22
2.4.1. Traditional BOLD Contrast Analysis……………………..23
2.4.2. Seed-Based BOLD Linear Correlation……………………24
2.4.3. Seed-Based Hierarchical Clusters…………………………26
2.4.4. Bootstrapping Validation of Results………………………27
3. Results………………………………………………………………28
3.1. Traditional BOLD Contrast Analysis………………………….28
3.1.1. Continuous Resting Sessions…………………………...…28
3.1.2. Separated Resting Sessions………………………………..28
3.2. Seed-Based BOLD Linear Correlation Analysis………………32
3.2.1. Within-Group Analysis……………………………………32
3.2.2. Between-Group Analysis………………………………….33
3.3. Seed-Based Hierarchical Clustering…………………………...33
3.4. Bootstrapping Validation of Results………………………...…34
4. Discussion…………………………………………………………...36
4.1. Comparison with Previous Literature: BOLD Contrast……….36
4.2. Comparison with Previous Literature: Connectivity…………..38
4.3. Physiological Implication of Two Different Results………..…40
4.4. Limitation of Sees-Based Analysis…………………………….41
5. Conclusion and Future Work…………………………………...…42
5.1. Conclusion……………………………………………………..42
5.2. Future Work……………………………………………………43
5.2.1. Feature Selection by Independent Component Analysis….43
5.2.2. Concurrent Task……………………………………...……44
5.2.3. Concurrent EEG Recording……………………………….44
Reference……………………………………………………………….45
Appendix: Figure………………………………………………………50
dc.language.isoen
dc.subject大腦預設模式網路zh_TW
dc.subject靜息態腦功能性造影zh_TW
dc.subject張眼zh_TW
dc.subject閉眼zh_TW
dc.subject感覺網路zh_TW
dc.subject注意力網路zh_TW
dc.subjectEyes-openen
dc.subjectDefault mode network (DMN)en
dc.subjectAttention networksen
dc.subjectSensory networksen
dc.subjectResting-state fMRIen
dc.subjectEyes-closeden
dc.title眼睛開闔與光線對人類大腦感覺網路的影響: 靜息態功能性磁振造影之研究zh_TW
dc.titleEffect of Eyes-Open and Eyes-Closed with/without Light on Human Brian Sensory Networks: A Resting-State fMRI Studyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林發暄(Fa-Hsuan Lin),邱銘章(Ming-Jang Chiu),林慶波,廖漢文,陳建中,葉素玲
dc.subject.keyword靜息態腦功能性造影,張眼,閉眼,感覺網路,注意力網路,大腦預設模式網路,zh_TW
dc.subject.keywordResting-state fMRI,Eyes-closed,Eyes-open,Sensory networks,Attention networks,Default mode network (DMN),en
dc.relation.page81
dc.rights.note未授權
dc.date.accepted2010-08-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved