請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22386完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏(Jyh-Horng Chen) | |
| dc.contributor.author | Tun Jao | en |
| dc.contributor.author | 饒敦 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:16:42Z | - |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient,
low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63-72. Alavi, A., & Reivich, M. (2002). Guest editorial: the conception of FDG-PET imaging. Arnott, S., Heywood, C., Kentridge, R., & Goodale, M. (2008). Voice recognition and the posterior cingulate: An fMRI study of prosopagnosia. Journal of Neuropsychology, 2(1), 269-286. Baehr, M., Frotscher, M., & Duus, P. (2005). Duus' topical diagnosis in neurology: anatomy, physiology, signs, symptoms: George Thieme Verlag. Beckmann, C., DeLuca, M., Devlin, J., & Smith, S. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001. Ben-Simon, E., Podlipsky, I., Arieli, A., Zhdanov, A., & Hendler, T. (2008). Never resting brain: simultaneous representation of two alpha related processes in humans. PLoS One, 3(12), e3984. Berger, H. (1929). Uber das Elektrenkephalogramm des Menchen. Archives fur Psychiatrie, 87, 527-570. Bertolo, H., Paiva, T., Pessoa, L., Mestre, T., Marques, R., & Santos, R. (2003). Visual dream content, graphical representation and EEG alpha activity in congenitally blind subjects. Cognitive Brain Research, 15(3), 277-284. Bianciardi, M., Fukunaga, M., van Gelderen, P., Horovitz, S., de Zwart, J., & Duyn, J. (2009). Modulation of spontaneous fMRI activity in human visual cortex by behavioral state. NeuroImage, 45(1), 160-168. Biswal, B., Yetkin, F., Haughton, V., & Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537-541. Brazis, P., Masdeu, J., & Biller, J. (2007). Localization in clinical neurology: Lippincott Williams & Wilkins. Buchsbaum, M., Kessler, R., King, A., Johnson, J., & Cappelletti, J. (1984). Simultaneous cerebral glucography with positron emission tomography and topographic electroencephalography. Progress in Brain Research, 62, 263-269. Calhoun, V., Adali, T., Pearlson, G., & Pekar, J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140-151. Christoff, K., Gordon, A., Smallwood, J., Smith, R., & Schooler, J. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences, 106(21), 8719. Colzato, L., Slagter, H., Spape, M., & Hommel, B. (2008). Blinks of the eye predict blinks of the mind. Neuropsychologia, 46(13), 3179-3183. Colzato, L., van den Wildenberg, W., van Wouwe, N., Pannebakker, M., & Hommel, B. (2009). Dopamine and inhibitory action control: evidence from spontaneous eye blink rates. Experimental brain research, 196(3), 467-474. Cordes, D., Haughton, V., Arfanakis, K., Carew, J., Turski, P., Moritz, C., et al. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in' resting-state' data. American Journal of Neuroradiology, 22(7), 1326. Cordes, D., Haughton, V., Carew, J., Arfanakis, K., & Maravilla, K. (2002). 46 Hierarchical clustering to measure connectivity in fMRI resting-state data. Magnetic resonance imaging, 20(4), 305-317. Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C., Smith, S., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848-13853. De Luca, M., Beckmann, C., De Stefano, N., Matthews, P., & Smith, S. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29(4), 1359-1367. Duus, P. (1998). Topical Diagnosis in Neurology. Stuttgart: Thieme. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 1(1), 54-75. Fair, D., Cohen, A., Dosenbach, N., Church, J., Miezin, F., Barch, D., et al. (2008). The maturing architecture of the brain's default network. Proceedings of the National Academy of Sciences, 105(10), 4028. Field, A. (2001). Meta-analysis of correlation coefficients: A Monte Carlo comparison of fixed-and random-effects methods. Psychological Methods, 6(2), 161-180. Fisch, B., & Spehlmann, R. (1999). Fisch and Spehlmann's EEG primer: basic principles of digital and analog EEG: Elsevier Science Health Science div. FitzGerald, M., & Folan-Curran, J. (2002). Clinical neuroanatomy and related neuroscience: WB Saunders Co. Fox, M., Corbetta, M., Snyder, A., Vincent, J., & Raichle, M. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103(26), 10046. Fox, M., & Raichle, M. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700-711. Fox, M., Snyder, A., Vincent, J., Corbetta, M., Van Essen, D., & Raichle, M. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673-9678. Fox, M., Snyder, A., Zacks, J., & Raichle, M. (2005). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. nature neuroscience, 9(1), 23-25. Franco, A., Ling, J., Caprihan, A., Calhoun, V., Jung, R., Heileman, G., et al. (2008). Multimodal and Multi-Tissue Measures of Connectivity Revealed by Joint Independent Component Analysis. IEEE journal of selected topics in signal processing, 2(6), 986-997. G Aguirre, M. D. E. (1999). Experimental design for brain fMRI. Functional MRI, 369-380. Gaab, N., Gabrieli, J., & Glover, G. (2008). Resting in peace or noise: Scanner background noise suppresses default-mode network. Human Brain Mapping, 29(7), 858-867. Gilden, D., Thornton, T., & Mallon, M. (1995). 1/f noise in human cognition. Science, 267(5205), 1837. Golanov, E., Yamamoto, S., & Reis, D. (1994). Spontaneous waves of cerebral blood flow associated with a pattern of electrocortical activity. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 266(1), 204. Goldman, R., Stern, J., Engel Jr, J., & Cohen, M. (2002). Simultaneous EEG and fMRI 47 of the alpha rhythm. Neuroreport, 13(18), 2487-2492. Greicius, M., Krasnow, B., Reiss, A., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253-258. Greicius, M., Supekar, K., Menon, V., & Dougherty, R. (2008). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral cortex. Honey, C., Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24), 10240. Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J., Meuli, R., et al. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106(6), 2035-2040. Horovitz, S., Braun, A., Carr, W., Picchioni, D., Balkin, T., Fukunaga, M., et al. (2009). Decoupling of the brain's default mode network during deep sleep. Proceedings of the National Academy of Sciences, 106(27), 11376-11381. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194-203. Jan, J., & Wong, P. (1988). Behaviour of the alpha rhythm in electroencephalograms of visually impaired children. Developmental Medicine & Child Neurology, 30(4), 444-450. Jann, K., Dierks, T., Boesch, C., Kottlow, M., Strik, W., & Koenig, T. (2009). BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage, 45(3), 903-916. Johnston, J., Vaishnavi, S., Smyth, M., Zhang, D., He, B., Zempel, J., et al. (2008). Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. Journal of Neuroscience, 28(25), 6453-6458. K. J. Friston, C. D. F., P. F. Liddle, R. S. J. Frackowiak. (1993). Functional connectivity: the principle-component analysis of large (PET) data sets. J. Cerebral Blood Flow Metab, 13, 5-14. Kolb, B., & Whishaw, I. (2008). Fundamentals of human neuropsychology: Worth Pub. Lerner, Y., Papo, D., Zhdanov, A., Belozersky, L., & Hendler, T. (2009). Eyes wide shut: amygdala mediates eyes-closed effect on emotional experience with music. 4(7), e6230. Logothetis, N. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869-878. Logothetis, N., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150-157. Lorincz, M., Kekesi, K., Juhasz, G., Crunelli, V., & Hughes, S. (2009). Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron, 63(5), 683-696. Marx, E., Deutschlander, A., Stephan, T., Dieterich, M., Wiesmann, M., & Brandt, T. (2004). Eyes open and eyes closed as rest conditions: impact on brain activation patterns. NeuroImage, 21(4), 1818-1824. Marx, E., Stephan, T., Nolte, A., Deutschlander, A., Seelos, K., Dieterich, M., et al. (2003). Eye closure in darkness animates sensory systems. NeuroImage, 19(3), 924-934. 48 Mason, M., Norton, M., Van Horn, J., Wegner, D., Grafton, S., & Macrae, C. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315(5810), 393. Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houde, O., et al. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54(3), 287-298. McAvoy, M., Larson-Prior, L., Nolan, T., Vaishnavi, S., Raichle, M., & d'Avossa, G. (2008). Resting states affect spontaneous BOLD oscillations in sensory and paralimbic cortex. Journal of neurophysiology, 100(2), 922. Nir, Y., Hasson, U., Levy, I., Yeshurun, Y., & Malach, R. (2006). Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. NeuroImage, 30(4), 1313-1324. Nobre, A., Sebestyen, G., Gitelman, D., Mesulam, M., Frackowiak, R., & Frith, C. (1997). Functional localization of the system for visuospatial attention using positron emission tomography. Brain, 120(3), 515. O'Connor, D., Fukui, M., Pinsk, M., & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. nature neuroscience, 5(11), 1203-1209. Olson, C., & Musil, S. (1992). Posterior cingulate cortex: sensory and oculomotor properties of single neurons in behaving cat. Cerebral cortex, 2(6), 485. Petersen, S., Fox, P., Posner, M., Mintum, M., & Raichle, M. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585-589. Raichle, M., MacLeod, A., Snyder, A., Powers, W., Gusnard, D., & Shulman, G. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676-682. Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180-190. SCHMIDTKE, K., & BUTTNER-ENNEVER, J. (1992). Nervous control of eyelid function: a review of clinical, experimental and pathological data. Brain, 115(1), 227. Schreckenberger, M., Lange-Asschenfeld, C., Lochmann, M., Mann, K., Siessmeier, T., Buchholz, H., et al. (2004). The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. NeuroImage, 22(2), 637-644. Seeley, W., Menon, V., Schatzberg, A., Keller, J., Glover, G., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349. Sherrington, C. (1941). Man on his Nature. The Journal of Nervous and Mental Disease, 94(6), 762. Singh, M., Patel, P., & Al-Dayeh, L. (1998). fMRI of brain activity during alpha rhythm. Paper presented at the International Society for Magnetic Resonance in Medicine 1998. Sridharan, D., Levitin, D., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105(34), 12569-12574. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging: Thieme. 49 Taylor, K., Seminowicz, D., & Davis, K. (2009). Two systems of resting state connectivity between the insula and cingulate cortex. Human Brain Mapping, 30(9), 2731-2745. Vern, B., Leheta, B., Juel, V., LaGuardia, J., Graupe, P., & Schuette, W. (1997). Interhemispheric synchrony of slow oscillations of cortical blood volume and cytochrome aa3 redox state in unanesthetized rabbits. Brain research, 775(1-2), 233-239. Vincent, J., Patel, G., Fox, M., Snyder, A., Baker, J., Van Essen, D., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 83-86. Wikipedia. (2010). Bootstrapping (statistics). en.wikipedia.org/wiki/Bootstrapping_(statistics). Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load. PLoS One, 4(5), e5743. Yang, H., Long, X., Yang, Y., Yan, H., Zhu, C., Zhou, X., et al. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage, 36(1), 144-152. Zeki, S., Watson, J., Lueck, C., Friston, K., Kennard, C., & Frackowiak, R. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3), 641. Zou, Q., Long, X., Zuo, X., Yan, C., Zhu, C., Yang, Y., et al. (2009). Functional connectivity between the thalamus and visual cortex under eyes closed and eyes open conditions: A resting-state fMRI study. Human Brain Mapping, 30(9), 3066-3078. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22386 | - |
| dc.description.abstract | 靜息態腦功能性磁振造影(Resting-state brain fMRI)在最近幾年受到神經 科學家廣泛的注意。與傳統功能性造影譬如以血液含氧程度為對比的功能性磁 振造影(Blood oxygenation level dependent – functional magnetic resonance imaging, BOLD-fMRI)大不相同的是,靜息態腦功能性造影並不需要額外的刺 激,就能夠取得大腦各個不同反應區域的共振連結,因此除了一般受試者外, 更有機會進一步應用在臨床患者身上。
眼睛開闔雖然是微小的動作,但是對大腦的覺醒,注意力,執行,各種感 覺系統,與預設模式網路都有相當程度的影響。但是過去的文獻比較沒有嚴格 考慮眼睛開闔時光線因素可能造成的影響。本研究針對二十一位右撇子健康受 試者,利用實驗設計觀察受試者在有光線與無光線的環境下,張眼與閉眼兩種 動作對大腦不同注意力網路,感覺網路,以及預設模式網路所產生的變化。 實驗結果顯示眼睛開闔與光線對大腦有不同的作用。在傳統血液動力的結 果分析上,光線對大腦造成前額葉與視覺相關皮質的活化,眼睛開闔則會活化 視丘與視覺相關皮質。至於在功能性連結上,則發現在眼睛閉合的狀態下,不 論有無光線因子的介入,大腦各種感覺網路以及注意力網路皆會產生高度的共 振,至於大腦預設模式網路則相對受較小的影響。 | zh_TW |
| dc.description.abstract | Resting-state brain functional Magnetic Resonance Imaging (rs-fMRI) has acquired intensive attention among neuroscientists in recent years. Compared with traditional blood oxygenation level dependent-fMRI (BOLD-fMRI), rs-fMRI can obtain oscillations—the functional connectivity—between different brain regions without stimulations or tasks.
Eyes-closed or eyes-open, though trivial, is critical for stimulus-induced brain activation patterns. However, the previous literature did not consider seriously the possible concurrent confounding effect of the light. In this rs-fMRI study, 21 healthy right-handed subjects were deprived of light for certain experimental sessions, and we aimed to investigate the pure effect of light/dark and eyes-open/closed especially upon attention, sensory and default mode networks of the human brain. Results suggested that light/dark and eyes-open/closed have different roles upon brain. Hemodynamically, light activated prefrontal and visual-associated cortexes; on the other hand, eyes-open activated thalamus and also the visual-associated cortexes. Concerning the functional connectivity, sensory networks including visual, auditory, and somatosensory networks and attention networks encompassing dorsal attention and salience networks were highly coherent during eyes-closed stage regardless of the light. However, the default mode network is relatively more robust to trivial stimuli like eyes-open or eyes-closed than sensory or attention networks are. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:16:42Z (GMT). No. of bitstreams: 1 ntu-99-R96945044-1.pdf: 3115480 bytes, checksum: 40a934df6d67fc9f456c162706593b97 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………….…………….i
致謝……………………………………………………….……………..ii 中文摘要…………………………………………………….…...…….iii Abstract……………………………………………………….………...iv Contents………………………………………………………….……....v List of Figures…………………………………………………….…....vii List of Tables……………………………………………………………ix 1. Introduction……………………………………………………...…..1 1.1. Research Background…………………………..…………...…..1 1.2. Eyes-Open and Eyes-Closed………………………………...…..2 1.2.1. Neuroanatomical Pathways…………………………..……..2 1.2.2. Literature Review: Impact of Eyes-Open/Closed on Brain...3 1.3. Light Input Through the Eyes……………………………...……4 1.3.1. Visual Pathways…………………………..…………...…....4 1.3.2. Awakefulness Induced by Light………………………..…..5 1.3.3. Literature review: Impact of Light or Dark on Brain………6 1.4. Spontaneous Fluctuations of Brain Activity Noted with fMRI…6 1.4.1. History of BOLD Linear Correlation……………………….6 1.4.2. Physiological Characteristics of BOLD Linear Correlation..8 1.4.3. Frequency Specification of Spontaneous Fluctuation……..10 1.4.4. The “Resting State”……………………………………..…11 1.4.5. Magnitude and Variability of BOLD Correlation…………12 1.4.6. Connectivity and Interaction between Networks……….....13 1.4.6.1. Task Negative Networks………………………...…14 1.4.6.2. Task Positive Networks…………………………….15 1.5. Motivation…………………………..…………...……………..17 1.6. Hypothesis…………………………..…………...………….....18 2. Materials and Methods…………………………………………….19 2.1. Subject Recruitment……………………………………………19 2.2. Experimental Design…………………………………………..19 2.2.1. Continuous Resting Sessions……………………...………20 2.2.2. Separated Resting Sessions……………………….……….20 2.3. Data Acquisition……………………………………………….22 2.4. Data Analysis…………………………………………………..22 2.4.1. Traditional BOLD Contrast Analysis……………………..23 2.4.2. Seed-Based BOLD Linear Correlation……………………24 2.4.3. Seed-Based Hierarchical Clusters…………………………26 2.4.4. Bootstrapping Validation of Results………………………27 3. Results………………………………………………………………28 3.1. Traditional BOLD Contrast Analysis………………………….28 3.1.1. Continuous Resting Sessions…………………………...…28 3.1.2. Separated Resting Sessions………………………………..28 3.2. Seed-Based BOLD Linear Correlation Analysis………………32 3.2.1. Within-Group Analysis……………………………………32 3.2.2. Between-Group Analysis………………………………….33 3.3. Seed-Based Hierarchical Clustering…………………………...33 3.4. Bootstrapping Validation of Results………………………...…34 4. Discussion…………………………………………………………...36 4.1. Comparison with Previous Literature: BOLD Contrast……….36 4.2. Comparison with Previous Literature: Connectivity…………..38 4.3. Physiological Implication of Two Different Results………..…40 4.4. Limitation of Sees-Based Analysis…………………………….41 5. Conclusion and Future Work…………………………………...…42 5.1. Conclusion……………………………………………………..42 5.2. Future Work……………………………………………………43 5.2.1. Feature Selection by Independent Component Analysis….43 5.2.2. Concurrent Task……………………………………...……44 5.2.3. Concurrent EEG Recording……………………………….44 Reference……………………………………………………………….45 Appendix: Figure………………………………………………………50 | |
| dc.language.iso | en | |
| dc.subject | 大腦預設模式網路 | zh_TW |
| dc.subject | 靜息態腦功能性造影 | zh_TW |
| dc.subject | 張眼 | zh_TW |
| dc.subject | 閉眼 | zh_TW |
| dc.subject | 感覺網路 | zh_TW |
| dc.subject | 注意力網路 | zh_TW |
| dc.subject | Eyes-open | en |
| dc.subject | Default mode network (DMN) | en |
| dc.subject | Attention networks | en |
| dc.subject | Sensory networks | en |
| dc.subject | Resting-state fMRI | en |
| dc.subject | Eyes-closed | en |
| dc.title | 眼睛開闔與光線對人類大腦感覺網路的影響: 靜息態功能性磁振造影之研究 | zh_TW |
| dc.title | Effect of Eyes-Open and Eyes-Closed with/without Light on Human Brian Sensory Networks: A Resting-State fMRI Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林發暄(Fa-Hsuan Lin),邱銘章(Ming-Jang Chiu),林慶波,廖漢文,陳建中,葉素玲 | |
| dc.subject.keyword | 靜息態腦功能性造影,張眼,閉眼,感覺網路,注意力網路,大腦預設模式網路, | zh_TW |
| dc.subject.keyword | Resting-state fMRI,Eyes-closed,Eyes-open,Sensory networks,Attention networks,Default mode network (DMN), | en |
| dc.relation.page | 81 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
