請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22373
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳文章(Wen-Chang Chen) | |
dc.contributor.author | Dian-Han Li | en |
dc.contributor.author | 李典翰 | zh_TW |
dc.date.accessioned | 2021-06-08T04:16:26Z | - |
dc.date.copyright | 2010-08-06 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-03 | |
dc.identifier.citation | Chapter 1 references
1. Hadjichristidis, N.; Pispas, S.; Floudas, G. A. “Block Copolymers: Synthesis Strategies, Physical Properties, and Applications”, John Wiley & Sons, Inc., 2003. 2. Hamley, I. W., Ed. “Developments in Block Copolymer Science and Technology”, John Wiley & Sons, LTD 2004. 3. Pitsikalis, M.; Pispas, S.; Mays, J. W. Hadjichristidis, N. Advances in Polymer Science 1998, 135, 1. 4. Lodge, T. P. Macromol. Chem. Phys. 2003, 204, 265. 5. Bucknall, D. G.; Anderson, H. L. Science 2003, 302, 1904. 6. Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796. 7. Ruokolainen, J.; ten Brink, G.; Ikkala, O. Adv. Mater. 1999, 11, 9, 777. 8. Ruokolainen, J.; Saariaho, M.; Ikkala, O.; ten Brink, G.; Thomas, E. L.; Torkkeli, M.; Serimaa, R. Macromolecules 1999, 32, 1152. 9. Zhang, L.; Eisenberg, A. Science 1995, 268, 1728. 10. Liu, C.; Hillmyer, M. A.; Lodge, T. P. Langmuir 2008, 24, 12001. 11. Szwarc, M. Nature 1956, 178, 1168. 12. Hadjichristidis, N. ; Iatrou, H. ; Pispas, S. ; Pitsikalis, M. J. Polym. Sci. Part A : Polym. Chem. 2000, 38, 3211. 13. Hsieh, H. L.; Quirk, R. P. “Anionic Polymerization: Principles and Practical Applications ”, Marcel Dekker Inc., 1996. 14. Morton, M. “Anionic Polymerization: Principles and Practice ”, Academic Press, New York, 1983. 15. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Chem. Rev. 2001, 101, 3747. 16. Lee, H. J.; Lee, K.; Choi, N. J. Polym. Sci. Part A : Polym. Chem. 2005, 43, 870. 17. Tsitsilianis, C. ; Voulgaris, D. Macromol. Chem. Phys. 1997, 198, 997. 18. Ishizu, K.; Uchida, S. Polymer 1994, 35, 4712. 19. Teyssie, P.; Fayt, R.; Jacobs, C.; Jerome, R.; Varshney, S. K. Polym. Prepr. 1991, 32(1), 299. 20. Bauer, B. J.; Fetters, L. J. Rubber Chem. Technol. 1978, 51, 406. 21. Bywater, S. Adv. Polym. Sci. 1979, 30, 90. 22. Worsfold, D. J. Macromolecules 1970, 3, 514. 23. Nandan, B.; Lee, C. H.; Chen, H. L. ; Chen, W. C. Macromolecules 2006, 39, 4460. 24. Nandan, B.; Lee, C. H.; Chen, H. L. ; Chen, W. C. Macromolecules 2005, 38, 10117. 25. Lin, C. H.; Chen, W. C.; Chen, H. L. Macromol. Chem. Phys. 2008, 209, 2348. 26. Rodriguez-Hernandez, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S. Prog. Polym. Sci. 2005, 30, 691. 27. Zhang, L.; Eisenberg, A. Macromolecules 1996, 29, 8805. 28. Voulgaris, D.; Tsitsilianis, C.; Grayer, V.; Esselink, F. J.; Hadziioannou, G. Polymer 1999, 40, 5879. 29. Hamley, I. W. “Block Copolymers in solution”, John Wiley & Sons, LTD 2005. 30. Riess, G.; Dumas, Ph.; Hurtrez, G. “Block Copolymer micelles and assemblies”, MML52 series 5, London: Citus Books, 2000 31. Lee, M.; Cho, B. K.; Zin, W. C. Chem. Rev. 2001, 101, 3869. 32. Osaheni, J. A.; Jenekhe, S. A. J. Am. Chem. Soc. 1995, 117, 7389. 33. Braun, D. Mater. Today 2002, 5, 32. 34. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; dos Santos, D. A.; Bredas, J. L.; Logdlund, M; Salaneck, W. R. Nature, 1999, 397, 121. 35. Brabec, C. J.; Dyakonov, V.; Parisi, J.; Sariciftci, N. S. “Organic Photovoltaics Concepts and Realization”, Springer-Verlag: London, 2003. 36. (a) Balamurugan, S. S.; Bantchev, G. B.; Yang, Y.; McCarley, R. L. Angew. Chem. Int. Ed. 2005, 44, 4872. (b) de Cuendias, A.; Le Hellaye, M.; Lecommandoux, S.; Cloutet, E.; Cramail, H. J. Mater. Chem. 2005, 15, 3264. (c) Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Angew. Chem. Int. Ed. 2003, 42, 772. 37. (a) Olsen, B. D.; Alcazar, D.; Krikorian, V.; Toney, M. F.; Thomas, E. L.; Segalman, R. A. Macromolecules 2008, 41, 58. (b) Olsen, B. D.; Segalman, R. A. Macromolecules 2007, 40, 6922. (c) Olsen, B. D.; Segalman, R. A. Macromolecules 2005, 38, 10127. (d) Mori, T.; Watanabe, T.; Minagawa, K.; Tanaka, M. J. Polym. Sci. Pol. Chem. 2005, 43, 1569. (e) Li, K.; Wang, Q. Macromolecules 2004, 37, 1172. (f) Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R. Macromolecules 2007, 40, 6990. (g) Sary, N.; Mezzenga, R.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J. Macromolecules 2007, 40, 3277. 38. (a) Chen, X. L.; Jenekhe, S. A. Langmuir 1999, 15, 8007. (b) Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903. 39. (a) Lu, S.; Fan, Q. L.; Liu, S. Y.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 9875. (b) Lu, S.; Fan, Q. L.; Chua, S. J.; Huang, W. Macromolecules 2003, 36, 304. (c) Lu, S.; Liu, T.; Ke, L.; Ma, D. G.; Chua, S. J.; Huang, W. Macromolecules 2005, 38, 8494. (d) Marsitzky, D.; Klapper, M.; Mullen, K. Macromolecules 1999, 32, 8685. (e) Surin, M. ; Marsitzky, D.; Grimsdale, A. C.; Mullen, K.; Lazzaroni, R.; Leclere, P. Adv. Func. Mater. 2004, 14, 708. (f) Chochos, C. L.; Tsolakis, P. K.; Gregoriou, V. G.; Kallitis, J. K. Macromolecules 2004, 37, 2502. (g) Kong, X.; Jenekhe, S. A. Macromolecules 2004, 37, 8180. (h) Rubatat, L.; Kong, X.; Jenekhe, S. A.; Ruokolainen, J.; Hojeij, M.; Mezzenga, R. Macromolecules 2008, 41, 1846. 40. (a) Tung, Y. C.; Wu, W. C.; Chen, W. C. Macromol. Rapid Commun. 2006, 27, 1838. (b) Wu, W. C.; Tian, Y.; Chen, C. Y.; Lee, C. S. Sheng, Y. J.; Chen, W. C.; Jen, A.-K. Y. Langmuir, 2007, 23, 2805 (c) Lin, S. T.; Tung, Y. C.; Chen, W. C. J. Mater. Chem. 2008, 18, 3985. (d) Lin, C. H.; Tung, Y. C.; Ruokolainen, J; Mezzenga, R.; Chen, W. C. Macromolecules 2008, 41, 8759 (e) Kuo, C. C.; Tung, Y. C.; Lin, C. H.; Chen, W. C. Macromol. Rapid Commun. 2008, 29, 1711. (f) Lin, S. T.; Fuchise, K.; Chen, Y.; Sakai, R.; Satoh, T.; Kakuchi, T.; Chen, W. C. Soft Matter, 2009, 5, 3761. (g) Tung, Y. C.; Chen, W. C. React. Funct. Polym. 2009, 69, 507. 41. Lehn, J.-M. Science 2002, 295, 2400. 42. Klok, H.-A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217. 43. Olsen, B. D.; Segalman, R. A. Material Science and Engineering R 2008, 62, 37. 44. Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903. 45. Huo, H.; Li, K.; Wang, Q.; Wu, C. Macromolecules 2007, 40, 6692. 46. de Cuendias, A.; Ibarboure, E.; Lecommandoux, S.; Cloutet, E.; Cramail, H. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 4602. 47. Nawa, K.; Imae, I.; Noma, N.; Shirota, Y. Macromolecules 1995, 28, 723 48. Imae, I.; Nawa, K.; Ohsedo, Y.; Noma, N.; Shirota, Y. Macromolecules 1997, 30, 380 49. Ohsedo, Y.; Imae, I.; Shirota, Y. J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 2471. 50. Shirota, Y.; Jeon, I. R.; Noma, N. Synth. Met. 1993, 55, 803 51. Mastrorilli, P.; Nobile, C. F.; Grisorio, R.; Rizzutti, A.; Suranna, G. P.; Acierno, D.; Amendola, E.; Iannelli, P. Macromolecules 2004, 37, 4488. 52. Schenning, A. P. H. J.; Fransen, M.; van Duren, J. K. J.; van Hal, P. A.; Janssen, R. A. J.; Meijer, E. W. Macromol. Rapid Commun. 2002, 23, 271. 53. Hayakawa, T.; Horiuchi, S. Angew. Chem., Int. Ed. 2003, 42, 2285. Chapter 2 references 1. Amphiphilic Block Copolymers: Self-Assembly and Applications; Alexzndridis, P., Lindman, B., Eds.; Elsevier: Amsterdam, 2000. 2. (a) Zhang, L.; Eisenberg, A. J. Am. Chem. Soc. 1996, 118, 3168. (b) Zhang, L.; Eisenberg, A. Science 1995, 268, 1728. (c) Zhang, L.; Shen, H.; Eisenberg, A. Macromolecules 1997, 30, 1001. (d) Yu, Y.; Zhang, L.; Eisenberg, A. Macromolecules 1998, 31, 1144. 3. Solvents and Self-Organization of Polymers; Webber, S. E., Munk, P., Tuzar, Z., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. 4. Moffitt, M.; Khougaz, K.; Eisenberg, A. Acc. Chem. Res. 1996, 29, 95. 5. Gohy, J.-F.; Creutz, S.; Garcia, M.; Mahltig, B.; Stamm, M.; Jerome, R. Macromolecules 2000, 33, 6378. 6. Guegan, P.; Cernohous, J. J.; Khandpur, A. K.; Hoye, T. R.; Macosko, C. W. Macromolecules 1996, 29, 4605. 7. (a) Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903. (b) Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372. (c) Chen, X. L.; Jenekhe, S. A. Langmuir 1999, 15, 8007. (d) Chen, X. L.; Jenekhe, S. A. Macromolecules 2000, 33, 4610. 8. (a) Wang, H.; Wang, H. H.; Urban, V. S.; Littrell, K. C.; Thiyagarajan, P.; Yu, L. J. Am. Chem. Soc. 2000, 122, 6855. (b) Marsitzky, D.; Klapper, M.; Mullen, K. Macromolecules 1999, 32, 8685. (c) Tsitsilianis, C.; Voyiatzis, G. A.; Kallitsis, J. K. Macromol. Rapid Commun. 2000, 21, 1130. (d) Francke, V.; Rader, H. J.; Geerts, Y.; Mu‥ llen, K. Macromol. Rapid Commun. 1998, 19, 275. (e) Rosselli, S.; Ramminger, A.-D.; Wagner, T.; Silier, B.; Wiegand, S.; Haussler, W.; Lieser, G.; Scheumann, V.; Hoger, S. Angew. Chem., Int. Ed. 2001, 40, 3138. (f) Liu, J.; Sheina, E.; Kowalewski, T.; McCullough, R. D. Angew. Chem., Int. Ed. 2002, 41, 329. 9. Huo, H.; Li, K.; Wang, Q.; Wu, C. Macromolecules 2007, 40, 18, 6692. 10. Lin, C. H.; Tung, Y. C.; Ruokolainen, J.; Mezzenga, R.; Chen, W. C. Macromolecules 2008, 41, 22, 8759. 11. (a) Matsushita, Y.; Takasu, T.; Yagi, K.; Tomioka, K.; Noda, I. Polymer 1994, 35, 2862. (b) Uchida, S.; Ichimura, A.; Ishizu, K. Polymer 1999, 40, 1019. 12. (a) Heise, A.; Hedrick, J. L.; Frank, C. W.; Miller, R. D. J. Am. Chem. Soc. 1999, 121, 8647. (b) Whittaker, M. R.; Monteiro, M. J. Langmuir 2006, 22, 9746. (c) Whittaker, M. R.; Urbani, C. N.; Monteiro, M. J. Langmuir 2007, 23, 7887. 13. Spivak, D.; Gilmore, M. A.; Shea, K. J. J . Am. Chem. Soc. 1997, 119, 4388. 14. Tung, Y. C.; Wu, W. C.; Chen, W. C. Macromol. Rapid Commun. 2006, 27, 1838. 15. Marsitzky, D.; Klapper, M.; Mullen, K. Macromolecules 1999, 32, 8685. 16. Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. J. Am. Chem. Soc. 2007, 129, 11036. 17. (a) Lin, C. H.; Chen, W. C.; Chen, H. L. Macromol. Chem. Phys. 2008, 209, 2348. (b) Chiang, W. S.; Lin, C. H.; Nandan, B.; Yeh, C. L.; Rahman, M. H.; Chen, W. C.; Chen, H. L. Macromolecules 2008, 41, 8138. 18. Youk, J. H.; Park, M. K.; Locklin, J.; Advincula, R.; Yang, J.; Mays, J. Langmuir 2002, 18, 7, 2455. 19. Brandrup, J.; Immergut, E. H. Polymer Handbook. 3rd ed. New York: Wiley Interscience; 1989. 20. Zhang, W.; Shi, L.; Gao, L.; An, Y.; Li, G.; Wu, K.; Liu, Z. Macromolecules 2005, 38, 899. 21. (a) Paneva, D.; Mespouille, L.; Bougard, F.; Manolova, N.; Degee, P.; Rashkov, I.; Dubois, P. Macromol. Rapid Commun. 2007, 28, 1361. (b) Lu, C.; Guo, S.; Liu, L.; Zhang, Y.; Li, Z.; Gu, J. J. Polym. Sci. Pol. Chem. 2006, 44, 3406. 22. Zhang, L.; Eisenberg, A. Macromolecules 1999, 32, 2239 23. Shen, H.; Zhang, L.; Eisenberg, A. J. Phys. Chem. B 1997, 101, 4697 24. (a) Erhardt, R.; Boker, A.; Zettl, H.; Kaya, H.; Pyckhout- Hintzen, W.; Krausch, G.; Abetz, V.; Muller, A. H. E. Macromolecules 2001, 34, 1069. (b) Yuan, X.; Jiang, M.; Zhao, H.; Wang, M.; Zhao, Y.; Wu, C. Langmuir 2001, 17, 6122. (c) Terreau, O.; Luo, L.; Eisenberg, A. Langmuir 2003, 19, 5601. 25. (a) Li, K.; Wang, Q. Macromolecules 2004, 37, 1172-1174. (b) Li, K.; Guo, L.; Liang, Z.; Thiyagarajan, P.; Wang, Q. J. Polym. Sci.,Part A: Polym. Chem. 2005, 43, 6007-6019. (c) Sary, N.; Mezzenga, R.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J. Macromolecules 2007, 40, 3277-3286. 26. (a) Li, K.; Wang, Q. Chem. Commun. 2005, 4786. (b) de Cuendias, A.; Le Hellaye, M.; Lecommandoux, S.; Cloutet, E.; Cramail, H. J. Mater. Chem. 2005, 15, 3264. (c) Li, K.; Guo, L.; Liang, Z.; Thiyagarajan, P.; Wang, Q. J. Polym. Sci. Pol. Chem. 2005, 43, 6007. 27. Lin, S. T.; Tung, Y. C.; Chen, W. C. J. Mater. Chem. 2008, 18, 3985. 28. Kim, J. Pure Appl. Chem, 2002, 74, 2031. Chapter 3 references 1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539. 2. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402–428. 3. Liu, M. S.; Niu, Y. H.; Luo, J.; Chen, B.; Kim, T. D.; Bardecker, J.; Jen, A. K. Y. J. Macromol. Sci., Part C: Polym. Rev. 2006, 46, 7. 4. Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C.-W.; Ho, P. K.-H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194. 5. Lin, M. M.; Bao, Z. Chem. Mater. 2004, 16, 4824. 6. Allard, S.; Foster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem., Int. Ed. 2008, 47, 4070. 7. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. 8. Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789. 9. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. 10. Lin, Q. D.; Liaw, D. J.; Zhu, C.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Prog. Polym. Sci. 2008, 33, 917. 11. Ebisawa, A.; Kanbe, E.; Shirai, S.; Shinkai, M. Organic electroluminescent devices with good durability for displays. Jpn. Kokai Tokkyo Koho 2004. 12. Inoue, T.; Ito, M.; Ikeda, H.; Iwakuma, T.; Hosokawa, C. Coordination metal compound, material for organic electroluminescence device, material for luminescent coating formation and organic electroluminescence device. PCT Int. Appl., 2005. 13. Fujita, T.; Organic electroluminescent devices comprising polymer hosts and conjugated oligomers as luminescent dopants. U.S. Pat. Appl. Publ., 2008. 14. Neher, D. Macromol. Rapid Commun. 2001, 22, 1365. 15. Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477. 16. Lin, W. J.; Chen, W. C.; Wu, W. C.; Niu, Y. H.; Jen, A. K. Y. Macromolecules 2004, 37, 2335. 17. Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695. 18. Kuo, C. C.; Lin, C. H.; Chen,W.C. Macromolecules 2007, 40, 6959. 19. Liu, Q.; Qu, Y.; Geng, Y.;Wang, F. Macromolecules 2008, 41, 5964. 20. Tang, S.; Liu, M.; Lu, P.; Cheng, G.; Zeng, M.; Xie, Z.; Xu, H.; Wang, H.; Yang, B.; Ma, Y.; Yan, D. Org. Electron. 2008, 9, 241. 21. Jiang, H. J.; Wang, H. Y.; Feng, J. C.; Wang, C. M.; Fan, Q. L.; Wei, W.; Huang, W. J. Polym. Sci. Polym. Chem. 2006, 44, 4346. 22. Chi, C.; Wegner, G. Macromol. Rapid Commun. 2005, 26, 1532. 23. Geng, Y.; Trajkovska, A.; Katsis, D.; Ou, J. J.; Culligan, S. W.; Chen, S. H. J. Am. Chem. Soc. 2002, 124, 8337. 24. Boiteau, L.; Moroni, M.; Hilberer, A.; Werts, M.; de Boer, B.; Hadziioannou, G. Macromolecules 2002, 35, 1543. 25. Behl, M.; Zentel, R. Macromol. Chem. Phys. 2004, 205, 1633. 26. Melucci, M.; Barbarella, G.; Zambianchi, M.; Benzi, M.; Biscarini, F.; Cavalline, M.; Bongini, A.; Fabbroni, S.; Mazzeo, M.; Anni, M.; Gigli, G. Macromolecules 2004, 37, 5692. 27. Tian, Y.; Chen, C. Y.; Haller, M. A.; Tucker, N. M.; Ka, J. W.; Luo, J.; Huang, S.; Jen, A. K. Y. Macromolecules 2007, 40, 97. 28. Lee, K. W.; Lin, H. C. J. Polym. Sci. Polym. Chem. 2007, 45, 4564. 29. Suzuki, M.; Tokito, S.; Sato, F.; Igarashi, T.; Kondo, K.; Koyama, T.; Yamaguchi, T. Appl. Phys. Lett. 2005, 86, 103507. 30. Deng, L.; Furuta, P. T.; Garon, S.; Li, J.; Kavulak, D.; Thompson, M. E.; Frechet, J. M. J. Chem. Mater. 2006, 18, 386. 31. Sommer, M.; Lindner, S. M.; Thelakkat, M. Adv. Funct. Mater. 2007, 17, 1493. 32. Ma, B.; Kim, B. J.; Deng, L.; Poulsen, D. A.; Thompson, M. E.; Frechet, J. M. J. Macromolecules 2007, 40, 8156. 33. Yeh, K. M.; Chen, Y. J. Polym. Sci. Polym. Chem. 2007, 45, 2259. 34. Hayakawa, T.; Horiuchi, S. Angew. Chem., Int. Ed. 2003, 42, 2285. 35. Lindner, S. M.; Hutter, S.; Chiche, A.; Thelakkat, M.; Krausch, G. Angew. Chem., Int. Ed. 2006, 45, 3364. 36. Jenekhe, S. A.; Alam, M. M.; Zhu, Y.; Jiang, S.; Shevade, A. V. Adv. Mater. 2007, 19, 536. 37. Barik, S.; Valiyaveettil, S. Macromolecules 2008, 41, 6376. 38. Tao, Y.; Ma, B.; Selgalman Macromolecules 2008, 41, 7152. 39. Sugiyama, K.; Hirao, A.; Hsu, J. C.; Tung, Y. C.; Chen, W. C.; Macromolecules 2009, 42, 4053. 40. Li, C.; Hsu, J. C.; Sugiyama, K.; Hirao, A.; Chen, W. C.; Mezzenga, R. Macromolecules 2009, 42, 5793. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22373 | - |
dc.description.abstract | 共軛硬桿-柔軟嵌段共聚物因其自組裝的特性可運用於奈米電子元件或多功能元件上而廣受注目。目前為止硬桿-柔軟雙嵌段共聚物的自組裝行為多著重於線性雙嵌段及三嵌段共聚物。先前本實驗室已經發表多種硬桿-柔軟嵌段共聚物的合成,型態與性質之研究,其中包含聚芴-聚乙烯吡啶硬桿-柔軟嵌段共聚物。然而諸如星狀嵌段或是側鏈硬桿等不同分子結構對於此類嵌段共聚物的影響之相關研究至今仍未趨完善。故本論文之研究目標著眼於合成二種不同結構芴系硬桿-柔軟嵌段共聚物,包括星狀嵌段共聚物及側鏈芴系雙嵌段共聚物,並探討不同高分子結構與其微結構型態對於光電性質之影響。
在第一部份(第二章),首先結合鈴木偶合反應及活性陰離子聚合法製備硬桿-柔軟聚芴-聚乙烯吡啶雙嵌段活性鏈;接著加入二甲基丙烯酸乙二醇酯使其交相聯接成硬桿-柔軟聚芴-聚乙烯吡啶星狀嵌段共聚物。我們利用動態光散射儀及原子力顯微鏡分析此二種不同結構共聚物於不同體積比的四氫呋喃/甲醇混合溶液下之聚集型態,佐以紫外可見光光譜儀及光激發螢光光譜探討其微結構對於光電性質的影響。由實驗結果得知,於不同體積比的四氫呋喃/甲醇混合溶液下雙嵌段共聚物在甲醇漸增時其微結構由球形微胞轉變成膜泡,然而具對稱結構的星狀嵌段共聚物在甲醇漸增時卻維持微胞結構。此外,對於雙嵌段共聚物而言,隨著甲醇於四氫呋喃/甲醇混合液中的含量增加促使聚芴鍊段產生H形態聚集,導致其在吸收及光激發螢光光譜產生藍移;然而星狀嵌段共聚物在增加甲醇含量時其吸收光譜並無位移但光激發螢光光譜卻紅移,意指星狀嵌段共聚物具有不同於雙嵌段共聚物的聚集。而星狀嵌段共聚物的光量子效率相對於雙嵌段共聚物而言更是嚴重地被抑制。此外,雙嵌段及星狀嵌段共聚物的薄膜因聚芴鏈段的分子間交互作用力導致光激發螢光光譜紅移。 在第二部份(第三章),我們結合原子轉移自由基聚合法及鈴木偶合反應製備具不同鏈段長的側鏈芴系聚乙烯吡啶-聚芴苯乙烯雙嵌段共聚物。此法的優點在於可製備具高分子量的聚芴苯乙烯嵌段,並有多樣的柔軟鏈段可選擇做為第二嵌段。經由改變嵌段長度可使聚乙烯吡啶-聚芴苯乙烯共聚物具有不同的光物理性質。當聚乙烯吡啶的莫耳分率增加時,吸收光譜會藍移,這可能是長鏈段的聚乙烯吡啶會抑制芴官能基的次序使得有效共軛長度減短所致。而且具有長聚芴苯乙烯嵌段的共聚物因其具有高含量的芴官能基與不同共軛長度分佈從而使光激發螢光光譜較為寬廣。 綜觀上述研究,不同的高分子結構會導致芴系硬桿-柔軟嵌段共聚物具有不同的微相分離型態並明顯轉換其光物理性質。 | zh_TW |
dc.description.abstract | Conjugated rod-coil block copolymers have attracted extensive research activity because of their self-assemblied characteristics for nanoelectronic or multifunctional device applications. Up to now, most studies of the self-assembly of rod-coil block copolymers are focused on linear diblock and triblock copolymers. Previously, our laboratories have explored the synthesis, morphologies, and properties of several conjugated rod-coil block copolymers, including polyfluorene/poly(vinylpyridine) rod-coil block copolymers. However, the effects of molecular architecture on such block copolymers have not been fully explored yet, such as star block structures or side-chain rod grafting. In this study, we explore the synthesis, morphologies and properties of two fluorine based rod-coil block copolymers, including star-shaped polyfluorene-b-poly(2-vinylpyridine) (PF-b-P2VP)n and poly(2-vinyl pyridine) -b-poly(styrene-fluorene) (PStFl-b-P2VP).
In 1st part (Chapter 2), rod-coil PF-b-P2VP diblock copolymers containing conjugated poly[2,7-(9,9-dihexylfluorene)] (PF) and coil-like poly(2-vinylpyridine) (P2VP) were first synthesized by combining Suzuki coupling reaction and living anionic polymerization. Then, (PF-b-P2VP)n star-block copolymers were prepared by adding coupling reagent EGDMA to cross-link living anionic PF-b-P2VP arms together. The main architectural difference between diblock and star-block copolymers resulted in a significant variation on their morphologies and photophysical properties. The experimental results showed that PF-b-P2VP diblock copolymers varied from spherical micelles to vesicles with increasing methanol content in THF/methanol mixtures. However, (PF-b-P2VP)n star-block copolymers with a symmetric architecture maintained spherical micelles as the methanol content increased. The effects of micellar morphologies on photophysical properties were investigated by optical absorption and photoluminescence (PL). For PF-b-P2VP diblock copolymers, the increase of the methanol content induced a blue shift in both absorption and emission spectra, suggesting an “H-type” aggregation. However, (PF-b-P2VP)n star-block exhibited no shift in absorption but a red shift in emission spectra by increasing the methanol content, reflecting a different type aggregation against diblock analogue. The quantum efficiencies of (PF-b-P2VP)n star-block copolymers quenched more seriously than diblock ones as increasing the methanol content in THF/methanol mixtures. Besides, the existence of interchain interactions for PF blocks inducing a red shift of emission spectra in thin films for both diblock and star-block copolymers. In 2nd part (Chapter 3), the combination of atom transfer radical polymerization (ATRP) and Suzuki coupling reaction was used to synthesize P2VP-b-P(St-Fl) diblock copolymers. The advantage of this method is that we can prepare block copolymers with higher molecular weight of P(St-Fl) and choose a variety of coil segment as second block. Side chain fluorene-based P2VP-b-P(St-Fl) diblock copolymers showed a significant variation on photophysical properties through adjusting the block length. As the molar ratio of P2VP (coil) block increased, the optical absorption peak had a blue shift. It indicated that the incorporation of long P2VP block inhibited the aggregation of the fluorene moieties and reduced the effective conjugated length of P(St-Fl). Both P2VP79-b-P(St-Fl)347 and P2VP140-b-P(St-Fl)138 had high fluorene moieties content and different conjugated length distribution, which led to broader photoluminescence spectra than P2VP140-b-P(St-Fl)15. The aforementioned results suggest that various morphologies can be efficiently manipulated by polymer architecture and lead to significantly tuning on the phtophysical properties. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:16:26Z (GMT). No. of bitstreams: 1 ntu-99-R97549016-1.pdf: 4671683 bytes, checksum: a90afba668a1f4583acba04261693a71 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Abstract i
中文摘要 iii Contnets v Table Captions vii Scheme Captions viii Figure Captions ix Chapter 1 Introduction 1 1-1 An Overview of Amphiphilic Block Copolymers 1 1-2 Synthesis of Amphiphilic Block Copolymers by Living Anionic Polymerization 7 1-2-1 General Characteristics of Living Anionic Polymerization 7 1-2-2 Synthesis of Star-block Copolymers 9 1-3 Preparation and Characterization of Micelles 12 1-4 Supramolecular Structures from Rod-coil Block Copolymers 13 1-4-1 General Aspects of Rod-coil Block Copolymers 13 1-4-2 Chemical Structures of Π-conjugated Systems 14 1-4-3 Polyfluorene-based Rod-coil Block Copolymers 15 1-4-4 Self-Assembly Aspectss of Π-conjugated Systems 16 1-4-5 Self-assembly of Π-conjugated Based Rod-coil Block Copolymers In Dilute Solution 18 1-5 Self-Assembly of Side-chain Based Copolymers 24 1-6 Research Objects 26 1-7 References 27 Chapter 2 Synthesis, Morphologies and Photophysical Properties of Poly[2,7-(9,9-dihexylfluorene)]-block- poly(2-vinylpyridine) Rod-coil Diblock and Star-block Copolymers 32 2-1 Introduction 32 2-2 Experimental Sections 33 2-2-1 Materials 33 2-2-2 Synthesis 34 2-2-3 Preparation of Diblock and Star-block Copolymers Aggregates in Dilute Solutions 37 2-2-4 Characterization 37 2-3 Results and Discussions 39 2-3-1 Chemical Structure Characterization 39 2-3-2 Solvent-Induced Morphological Trasition of the Aggregates 41 2-3-3 Photophysical Properties 44 2-4 Conclusions 47 2-5 References 48 Chapter 3 Synthesis, Characterizations and Photophysical Properties of Side Chain Fluorene-based P2VP-b-P(St-Fl) Diblock Copolymers 70 3-1 Introduction 70 3-2 Experimental Sections 71 3-2-1 Materials 71 3-2-2 Synthesis 72 3-2-3 Characterization 75 3-3 Results and Discussions 75 3-3-1 Chemical Structure Characterization 75 3-3-2 Photophysical Properties 77 3-4 Conclusions 78 3-5 References 79 Chapter 4 Conclusions 90 | |
dc.language.iso | en | |
dc.title | 不同分子結構芴系硬桿-柔軟嵌段共聚物:合成、型態與光物理性質之研究 | zh_TW |
dc.title | Fluorene Based Rod-Coil Block Copolymers with Different Molecular Architectures: Syntheses, Morphologies and Photophysical Properties | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 童世煌(Shih-Huang Tung),陳信龍(Hsin-Lung Chen) | |
dc.subject.keyword | 聚芴,星狀嵌段共聚物,分子結構, | zh_TW |
dc.subject.keyword | polyfluorene,star-block copolymer,molecular architecture, | en |
dc.relation.page | 92 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-08-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。