請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22329
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何國川(Kuo-Chuan Ho) | |
dc.contributor.author | Chia-Yu Lin | en |
dc.contributor.author | 林家裕 | zh_TW |
dc.date.accessioned | 2021-06-08T04:15:38Z | - |
dc.date.copyright | 2010-08-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-06 | |
dc.identifier.citation | 1. E. Hosono, S. Fujihara, I. Honna, and H. S. Zhou, The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells, Advanced Materials, 17 (2005) 2091-2094.
2. K. Kakiuchi, E. Hosono, T. Kimura, H. Imai, and S. Fujihara, Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions, Journal of Sol-Gel Science and Technology, 39 (2006) 63-72. 3. N. Yamazoe, G. Sakai, and K. Shimanoe, Oxide semiconductor gas sensors, Catalysis Surveys from Asia, 7 (2003) 63-75. 4. N. Barsan and U. Weimar, Conduction model of metal oxide gas sensors, Journal of Electroceramics, 7 (2001) 143-167. 5. K. D. Schierbaum, U. Weimar, W. Gopel, and R. Kowalkowski, Conductance, work function and catalytic activity of SnO2-based gas sensors, Sensors and Actuators B-Chemical, 3 (1991) 205-214. 6. W. Gopel and K. D. Schierbaum, SnO2 sensors - current status and future-prospects, Sensors and Actuators B-Chemical, 26 (1995) 1-12. 7. B. Oregan and M. Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (1991) 737-740. 8. M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344. 9. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode, Applied Physics Letters, 90 (2007) 263501. 10. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. D. Yang, ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells, Journal of Physical Chemistry B, 110 (2006) 22652-22663. 11. Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, and H. Imai, Characteristics of high efficiency dye-sensitized solar cells, Journal of Physical Chemistry B, 110 (2006) 25210-25221. 12. U. Jeong, X. W. Teng, Y. Wang, H. Yang, and Y. N. Xia, Superparamagnetic colloids: Controlled synthesis and niche applications, Advanced Materials, 19 (2007) 33-60. 13. A. Sanchez, S. Abbet, U. Heiz, W. D. Schneider, H. Hakkinen, R. N. Barnett, and U. Landman, When gold is not noble: Nanoscale gold catalysts, Journal of Physical Chemistry A, 103 (1999) 9573-9578. 14. Y. G. Sun and Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298 (2002) 2176-2179. 15. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nanorice: A hybrid plasmonic nanostructure, Nano Letters, 6 (2006) 827-832. 16. P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, Controlled growth of ZnO nanowires and their optical properties, Advanced Functional Materials, 12 (2002) 323-331. 17. G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications. 2004, London: Imperial College Press. 18. S. M. Moghimi, A. C. Hunter, and J. C. Murray, Long-circulating and target-specific nanoparticles: Theory to practice, Pharmacological Reviews, 53 (2001) 283-318. 19. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine, Journal of Physics D-Applied Physics, 36 (2003) R167-R181. 20. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotechnology, 22 (2004) 969-976. 21. A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26 (2005) 3995-4021. 22. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 292 (2001) 1897-1899. 23. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Advanced Materials, 15 (2003) 464-466. 24. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Nanobelts of semiconducting oxides, Science, 291 (2001) 1947-1949. 25. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Applied Physics Letters, 83 (2003) 1689-1691. 26. P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, and Z. L. Wang, Conversion of zinc oxide nanobelts into superlattice-structured nanohelices, Science, 309 (2005) 1700-1704. 27. S. Baruah and J. Dutta, Hydrothermal growth of ZnO nanostructures, Science and Technology of Advanced Materials, 10 (2009) 28. S. C. Minne, S. R. Manalis, and C. F. Quate, Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators, Applied Physics Letters, 67 (1995) 3918-3920. 29. A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures, Talanta, 78 (2009) 284-289. 30. J. F. Zang, C. M. Li, X. Q. Cui, J. X. Wang, X. W. Sun, H. Dong, and C. Q. Sun, Tailoring zinc oxide nanowires for high performance amperometric glucose sensor, Electroanalysis, 19 (2007) 1008-1014. 31. E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Applied Physics Letters, 82 (2003) 3901-3903. 32. T. Dittrich, E. A. Lebedev, and J. Weidmann, Electron drift mobility in porous TiO2 (anatase) (vol 165, pg R5, 1998), Physica Status Solidi A-Applied Research, 167 (1998) R9-R9. 33. J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition, Advanced Materials, 16 (2004) 1661-1664. 34. B. D. Yao, Y. F. Chan, and N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation, Applied Physics Letters, 81 (2002) 757-759. 35. S. Peulon and D. Lincot, Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions, Journal of the Electrochemical Society, 145 (1998) 864-874. 36. S. Peulon and D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Advanced Materials, 8 (1996) 166-170. 37. E. Hosono, S. Fujihara, T. Kimura, and H. Imai, Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films, Journal of Colloid and Interface Science, 272 (2004) 391-398. 38. K. Govender, D. S. Boyle, P. B. Kenway, and P. O'Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, Journal of Materials Chemistry, 14 (2004) 2575-2591. 39. M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, The kinetics of the hydrothermal growth of ZnO nanostructures, Thin Solid Films, 515 (2007) 8679-8683. 40. M. Byrczek, M. Malewicz, G. Halek, and H. Teterycz, The Influence of the Chemical Compounds on the Zinc Oxide Nanostructures Growth in Chemical Bath Deposition, Acta Physica Polonica A, 116 (2009) S111-S113. 41. R. Chander and A. K. Raychaudhuri, Growth of aligned arrays of ZnO nanorods by low temperature solution method on Si surface, Journal of Materials Science, 41 (2006) 3623-3630. 42. L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. D. Yang, Solution-grown zinc oxide nanowires, Inorganic Chemistry, 45 (2006) 7535-7543. 43. P. Hari, M. Baumer, W. D. Tennyson, and L. A. Bumm, ZnO nanorod growth by chemical bath method, Journal of Non-Crystalline Solids, 354 (2008) 2843-2848. 44. H. Imai, S. Iwai, and S. Yamabi, Phosphate-mediated ZnO nanosheets with a mosaic structure, Chemistry Letters, 33 (2004) 768-769. 45. J. Yahiro, T. Kawano, and H. Imai, Nanometric morphological variation of zinc oxide crystals using organic molecules with carboxy and sulfonic groups, Journal of Colloid and Interface Science, 310 (2007) 302-311. 46. C. H. Yoder, N. R. Gotlieb, and A. L. Rowand, The relative stability of stoichiometrically related natural and synthetic double salts, American Mineralogist, 95 (2010) 47-51. 47. A. Hulanicki, S. Glab, and F. Ingman, Chemical sensors definitions and classification, Pure and Applied Chemistry, 63 (1991) 1247-1250. 48. L. A. Currie, Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC recommendations 1995), Pure and Applied Chemistry, 67 (1995) 1699-1723. 49. D. MacDougall and W. B. Crummett, Guidelines for data acquisition and data quality evaluation in environmental chemistry, Analytical Chemistry, 52 (1980) 2242-2249. 50. G. D. Christian, Analytical chemistry. 6th ed. ed. 2004, New York: John Wiley & Sons. 51. K. S. Booksh and B. R. Kowalski, Theory of analytical-chemistry, Analytical Chemistry, 66 (1994) A782-A791. 52. J. G. Calvert, Glossary of atmospheric chemistry terms - (recommendations 1990), Pure and Applied Chemistry, 62 (1990) 2167-2219. 53. D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, Electrochemical biosensors: Recommended definitions and classification - (Technical Report), Pure and Applied Chemistry, 71 (1999) 2333-2348. 54. L. A. Currie and G. Svehla, Nomenclature for the presentation of results of chemical-analysis, Pure and Applied Chemistry, 66 (1994) 595-608. 55. A. P. F. Turner, Biochemistry - Biosensors sense and sensitivity, Science, 290 (2000) 1315-1317. 56. J. Wang, L. Y. Wang, Y. Sun, X. N. Zhu, H. Y. Xu, N. Bi, H. Q. Zhang, Y. B. Cao, X. H. Wang, and D. Q. Song, Preparation of Core/Shell Fe3O4/Au Nanocomposite and Its Application to Surface Plasmon Resonance Biosensor, Acta Chimica Sinica, 68 263-268. 57. A. J. Thiel, A. G. Frutos, C. E. Jordan, R. M. Corn, and L. M. Smith, In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces, Analytical Chemistry, 69 (1997) 4948-4956. 58. Q. Xiao, S. Huang, Y. S. Ge, Z. K. He, Y. Liu, and J. G. Liang, A Novel Fluorescent Silver Ion Biosensor Based on Nucleic Acid Molecular 'Light Switch', Journal of Fluorescence, 20 (2010) 541-549. 59. R. Ruppert, E. Hoffmann, and W. Sebald, Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity, European Journal of Biochemistry, 237 (1996) 295-302. 60. A. J. Haes and R. P. Van Duyne, A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, Journal of the American Chemical Society, 124 (2002) 10596-10604. 61. D. A. Mann, M. Kanai, D. J. Maly, and L. L. Kiessling, Probing low affinity and multivalent interactions with surface plasmon resonance: Ligands for concanavalin A, Journal of the American Chemical Society, 120 (1998) 10575-10582. 62. B. A. Gregg and A. Heller, Cross-linked redox gels containing glucose-oxidase for amperometric biosensor applications, Analytical Chemistry, 62 (1990) 258-263. 63. Y. Xiao, H. X. Ju, and H. Y. Chen, Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode, Analytical Biochemistry, 278 (2000) 22-28. 64. J. B. Jia, B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li, and S. J. Dong, A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network, Analytical Chemistry, 74 (2002) 2217-2223. 65. X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, and J. F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes, Electrochemistry Communications, 5 (2003) 408-411. 66. S. Tauriainen, M. Karp, W. Chang, and M. Virta, Luminescent bacterial sensor for cadmium and lead, Biosensors & Bioelectronics, 13 (1998) 931-938. 67. S. F. D'Souza, Microbial biosensors, Biosensors & Bioelectronics, 16 (2001) 337-353. 68. T. M. Nagiev, M. T. Abbasova, S. M. Baba-zade, S. A. Kuliev, E. B. Stepanova, and L. M. Agamamedova, An attempt to create stable biomimetic sensors for express analysis of hydrogen peroxide in water solutions, Applied Biochemistry and Biotechnology, 88 (2000) 275-284. 69. T. A. Sergeyeva, O. A. Slinchenko, L. A. Gorbach, V. F. Matyushov, O. O. Brovko, S. A. Piletsky, L. M. Sergeeva, and G. V. Elska, Catalytic molecularly imprinted polymer membranes: Development of the biomimetic sensor for phenols detection, Analytica Chimica Acta, 659 (2010) 274-279. 70. Q. W. Li, G. A. Luo, J. Feng, Q. Zhou, L. Zhang, and Y. F. Zhu, Amperometric detection of glucose with glucose oxidase absorbed on porous nanocrystalline TiO2 film, Electroanalysis, 13 (2001) 413-416. 71. Y. F. Li, Z. M. Liu, Y. L. Liu, Y. H. Yang, G. L. Shen, and R. Q. Yu, A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles, Analytical Biochemistry, 349 (2006) 33-40. 72. S. S. Rosatto, L. T. Kubota, and G. D. Neto, Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilising on silica-titanium, Analytica Chimica Acta, 390 (1999) 65-72. 73. E. A. Beliayeva, V. A. Bogdanovskaya, N. L. Eremeev, and N. F. Kazanskaya, The use of stimuli-sensitive gels as membrane carriers for biocatalysts in order to reduce the analytical cycle of a biosensor, Biotekhnologiya, 0 (1999) 76-81. 74. J. Rubio-Retama, E. Lopez-Cabarcos, and B. Lopez-Ruiz, High stability amperometric biosensor based on enzyme entrapment in microgels, Talanta, 68 (2005) 99-107. 75. W. W. Yang, Y. C. Li, Y. Bai, and C. Q. Sun, Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film, Sensors and Actuators B-Chemical, 115 (2006) 42-48. 76. Y. T. Kong, M. Boopathi, and Y. B. Shim, Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode, Biosensors & Bioelectronics, 19 (2003) 227-232. 77. Y. H. Lin, F. Lu, Y. Tu, and Z. F. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles, Nano Letters, 4 (2004) 191-195. 78. S. S. Razola, S. Pochet, K. Grosfils, and J. M. Kauffmann, Amperometric determination of choline released from rat submandibular gland acinar cells using a choline oxidase biosensor, Biosensors & Bioelectronics, 18 (2003) 185-191. 79. A. Akkaya, C. Altug, N. K. Pazarlioglu, and E. Dinckaya, Determination of 5-Aminosalicylic Acid by Catalase-Peroxidase Based Biosensor, Electroanalysis, 21 (2009) 1805-1810. 80. Z. Q. Zhang, S. Q. Xia, D. Leonard, N. Jaffrezic-Renault, J. Zhang, F. Bessueille, Y. Goepfert, X. J. Wang, L. Chen, Z. L. Zhu, J. F. Zhao, M. G. Almeida, and C. M. Silveira, A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane, Biosensors & Bioelectronics, 24 (2009) 1574-1579. 81. M. C. Morenobondi, O. S. Wolfbeis, M. J. P. Leiner, and B. P. H. Schaffar, Oxygen optrode for use in a fiberoptic glucose biosensor, Analytical Chemistry, 62 (1990) 2377-2380. 82. M. M. F. Choi, Progress in enzyme-based biosensors using optical transducers, Microchimica Acta, 148 (2004) 107-132. 83. S. A. Kumar and S. M. Chen, Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications, Analytical Letters, 41 (2008) 141-158. 84. Z. H. Dai, S. Q. Liu, H. X. Ju, and H. Y. Chen, Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix, Biosensors & Bioelectronics, 19 (2004) 861-867. 85. H. Endo, J. H. Hao, M. Maita, T. Hayashi, H. F. Ren, and K. Hibi, Use of an optical biosensor with a silicone-immobilized enzyme to determine plasma total cholesterol concentrations in fish, Fisheries Science, 75 (2009) 1329-1336. 86. J. V. de Melo, S. Cosnier, C. Mousty, C. Martelet, and N. Jaffrezic-Renault, Urea biosensors based on immobilization of urease into two oppositely charged clays (Laponite and Zn-Al layered double hydroxides), Analytical Chemistry, 74 (2002) 4037-4043. 87. X. B. Lu, H. J. Zhang, Y. W. Ni, Q. Zhang, and J. P. Chen, Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors, Biosensors & Bioelectronics, 24 (2008) 93-98. 88. X. L. Zhu, I. Yuri, X. Gan, I. Suzuki, and G. X. Li, Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation, Biosensors & Bioelectronics, 22 (2007) 1600-1604. 89. F. F. Zhang, X. L. Wang, S. Y. Ai, Z. D. Sun, Q. Wan, Z. Q. Zhu, Y. Z. Xian, L. T. Jin, and K. Yamamoto, Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor, Analytica Chimica Acta, 519 (2004) 155-160. 90. S. G. Ansari, R. Wahab, Z. A. Ansari, Y. S. Kim, G. Khang, A. Al-Hajry, and H. S. Shin, Effect of nanostructure on the urea sensing properties of sol-gel synthesized ZnO, Sensors and Actuators B-Chemical, 137 (2009) 566-573. 91. Y. W. Zhang, Y. Zhang, H. Wang, B. Yan, G. L. Shen, and R. Q. Yu, An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles, Journal of Electroanalytical Chemistry, 627 (2009) 9-14. 92. T. Kong, Y. Chen, Y. P. Ye, K. Zhang, Z. X. Wang, and X. P. Wang, An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes, Sensors and Actuators B-Chemical, 138 (2009) 344-350. 93. A. Umar, M. M. Rahman, M. Vaseem, and Y. B. Hahn, Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles, Electrochemistry Communications, 11 (2009) 118-121. 94. X. H. Wang, Y. L. Yao, J. Zhang, Z. Q. Zhu, and J. Z. Zhu, Uric acid detection using quartz crystal microbalance coated with uricase immobilized on ZnO nanotetrapods, Sensors and Materials, 20 (2008) 111-121. 95. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, A new detector for gaseous components using semiconductive thin films, Analytical Chemistry, 34 (1962) 1502-1503. 96. M. Takata, D. Tsubone, and H. Yanagida, Dependence of electrical-conductivity of ZnO on degree of sintering, Journal of the American Ceramic Society, 59 (1976) 4-8. 97. S. Samson and C. G. Fonstad, Defect structure and electronic donor levels in stannic oxide crystals, Journal of Applied Physics, 44 (1973) 4618-4621. 98. Z. M. Jarzebski and J. P. Marton, Physical-properties of SnO2 materials .1. preparation and defect structure, Journal of the Electrochemical Society, 123 (1976) C199-C205. 99. J. Maier and W. Gopel, Investigations of the bulk defect chemistry of polycrystalline tin(iv) oxide, Journal of Solid State Chemistry, 72 (1988) 293-302. 100. P. B. Weisz, Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis, Journal of Chemical Physics, 21 (1953) 1531-1538. 101. N. Barsan and U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, Journal of Physics-Condensed Matter, 15 (2003) R813-R839. 102. M. J. Madou and S. R. Morrison, Chemical sensing with sold sate devices. 1989, New York: Academic Press. 103. S. Lenaerts, M. Honore, G. Huyberechts, J. Roggen, and G. Maes, In-situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen oxygen mixtures at temperatures up to 720-K, Sensors and Actuators B-Chemical, 19 (1994) 478-482. 104. G. S. Devi, S. Manorama, and V. J. Rao, Gas sensitivity of SnO2/CuO heterocontacts, Journal of the Electrochemical Society, 142 (1995) 2754-2757. 105. T. Pagnier, M. Boulova, A. Galerie, A. Gaskov, and G. Lucazeau, Reactivity of SnO2-CuO nanocrystalline materials with H2S: a coupled electrical and Raman spectroscopic study, Sensors and Actuators B-Chemical, 71 (2000) 134-139. 106. B. B. Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Materials Chemistry and Physics, 64 (2000) 62-65. 107. P. P. Sahay, Zinc oxide thin film gas sensor for detection of acetone, Journal of Materials Science, 40 (2005) 4383-4385. 108. L. J. Bie, X. N. Yan, J. Yin, Y. Q. Duan, and Z. H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol, Sensors and Actuators B-Chemical, 126 (2007) 604-608. 109. B. Baruwati, D. K. Kumar, and S. V. Manorama, Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH, Sensors and Actuators B-Chemical, 119 (2006) 676-682. 110. S. Basu and A. Dutta, Room-temperature hydrogen sensors based on ZnO, Materials Chemistry and Physics, 47 (1997) 93-96. 111. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing, Ieee Sensors Journal, 7 (2007) 919-924. 112. M. Bender, E. Gagaoudakis, E. Douloufakis, E. Natsakou, N. Katsarakis, V. Cimalla, G. Kiriakidis, E. Fortunato, P. Nunes, A. Marques, and R. Martins, Production and characterization of zinc oxide thin films for room temperature ozone sensing, Thin Solid Films, 418 (2002) 45-50. 113. H. W. Ryu, B. S. Park, S. A. Akbar, W. S. Lee, K. J. Hong, Y. J. Seo, D. C. Shin, J. S. Park, and G. P. Choi, ZnO sol-gel derived porous film for CO gas sensing, Sensors and Actuators B-Chemical, 96 (2003) 717-722. 114. C. Baratto, G. Sberveglieri, A. Onischuk, B. Caruso, and S. di Stasio, Low temperature selective NO2 sensors by nanostructured fibres of ZnO, Sensors and Actuators B-Chemical, 100 (2004) 261-265. 115. Y. S. Zhang, K. Yu, D. S. Jiang, Z. Q. Zhu, H. R. Geng, and L. Q. Luo, Zinc oxide nanorod and nanowire for humidity sensor, Applied Surface Science, 242 (2005) 212-217. 116. J. J. Delaunay, N. Kakoiyama, and I. Yamada, Fabrication of three-dimensional network of ZnO tetratpods and its response to ethanol, Materials Chemistry and Physics, 104 (2007) 141-145. 117. T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, and I. C. Chen, ZnO nanotube ethanol gas sensors, Journal of the Electrochemical Society, 155 (2008) K152-K155. 118. G. S. Devi, V. B. Subrahmanyam, S. C. Gadkari, and S. K. Gupta, NH3 gas sensing properties of nanocrystalline ZnO based thick films, Analytica Chimica Acta, 568 (2006) 41-46. 119. D. Calestani, M. Zha, R. Mosca, A. Zappettini, M. C. Carotta, V. Di Natale, and L. Zanotti, Growth of ZnO tetrapods for nanostructure-based gas sensors, Sensors and Actuators B-Chemical, 144 (2010) 472-478. 120. J. Q. Xu, Y. Zhang, Y. P. Chen, Q. Xiang, Q. Y. Pan, and L. Y. Shi, Uniform ZnO nanorods can be used to improve the response of ZnO gas sensor, Materials Science and Engineering B-Advanced Functional Solid-State Materials, 150 (2008) 55-60. 121. S. K. Gupta, A. Joshi, and M. Kaur, Development of gas sensors using ZnO nanostructures, Journal of Chemical Sciences, 122 ( 2010) 57-62. 122. E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, and S. H. Jeong, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation, Sensors and Actuators B-Chemical, 141 (2009) 239-243. 123. Y. Zeng, T. Zhang, M. X. Yuan, M. H. Kang, G. Y. Lu, R. Wang, H. T. Fan, Y. He, and H. B. Yang, Growth and selective acetone detection based on ZnO nanorod arrays, Sensors and Actuators B-Chemical, 143 (2009) 93-98. 124. T. Krishnakumar, R. Jayaprakash, N. Pinna, N. Donato, A. Bonavita, G. Micali, and G. Neri, CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route, Sensors and Actuators B-Chemical, 143 (2009) 198-204. 125. Y. Z. Lv, C. R. Li, L. Guo, F. C. Wang, Y. Xu, and X. F. Chu, Triethylamine gas sensor based on ZnO nanorods prepared by a simple solution route, Sensors and Actuators B-Chemical, 141 (2009) 85-88. 126. M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology a-Chemistry, 168 (2004) 235-235. 127. K. Tennakone, J. Bandara, P. K. M. Bandaranayake, G. R. A. Kumara, and A. Konno, Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2, Japanese Journal of Applied Physics Part 2-Letters, 40 (2001) L732-L734. 128. A. Kay and M. Gratzel, Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide, Chemistry of Materials, 14 (2002) 2930-2935. 129. D. N. Srivastava, S. Chappel, O. Palchik, A. Zaban, and A. Gadanken, Sonochemical synthesis of mesoporous tin oxide, Langmuir, 18 (2002) 4160-4164. 130. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Solar Energy Materials and Solar Cells, 64 (2000) 115-134. 131. M. D. Wei, Z. M. Qi, M. Ichihara, and H. S. Zhou, Synthesis of single-crystal niobium pentoxide nanobelts, Acta Materialia, 56 (2008) 2488-2494. 132. R. Sharma, R. S. Mane, S. K. Min, and S. H. Han, Optimization of growth of In2O3 nano-spheres thin films by electrodeposition for dye-sensitized solar cells, Journal of Alloys and Compounds, 479 (2009) 840-843. 133. A. Kitiyanan, S. Ngamsinlapasathian, S. Pavasupree, and S. Yoshikawa, The preparation and characterization of nanostructured TiO2-ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells, Journal of Solid State Chemistry, 178 (2005) 1044-1048. 134. R. Katoh, A. Furube, M. Murai, Y. Tamaki, K. Hara, and M. Tachiya, Effect of excitation wavelength on electron injection efficiency in dye-sensitized nanocrystalline TiO2 and ZrO2 films, Comptes Rendus Chimie, 9 (2006) 639-644. 135. C. K. Xu, P. Shin, L. L. Cao, and D. Gao, Preferential Growth of Long ZnO Nanowire Array and Its Application in Dye-Sensitized Solar Cells, Journal of Physical Chemistry C, 114 125-129. 136. K. Westermark, H. Rensmo, H. Siegbahn, K. Keis, A. Hagfeldt, L. Ojamae, and P. Persson, PES studies of Ru(dcbpyH(2))(2)(NCS)(2) adsorption on nanostructured ZnO for solar cell applications, Journal of Physical Chemistry B, 106 (2002) 10102-10107. 137. J. Bandara and H. C. Weerasinghe, Enhancement of photovoltage of dye-sensitized solid-state solar cells by introducing high-band-gap oxide layers, Solar Energy Materials and Solar Cells, 88 (2005) 341-350. 138. A. B. Kashyout, M. Soliman, M. El Gamal, and M. Fathy, Preparation and characterization of nano particles ZnO films for dye-sensitized solar cells, Materials Chemistry and Physics, 90 (2005) 230-233. 139. Z. G. Chen, Y. W. Tang, L. S. Zhang, and L. J. Luo, Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells, Electrochimica Acta, 51 (2006) 5870-5875. 140. C. L. Olson, Influence of cation on charge recombination in dye-sensitized TiO2 electrodes, Journal of Physical Chemistry B, 110 (2006) 9619-9626. 141. L. Y. Zeng, S. Y. Dai, W. W. Xu, and K. J. Wang, Dye-sensitized solar cells based on ZnO films, Plasma Science & Technology, 8 (2006) 172-175. 142. T. P. Chou, Q. F. Zhang, G. E. Fryxell, and G. Z. Cao, Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency, Advanced Materials, 19 (2007) 2588-2592. 143. X. Z. Liu, Y. H. Luo, H. Li, Y. Z. Fan, Z. X. Yu, Y. Lin, L. Q. Chen, and Q. B. Meng, Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells, Chemical Communications, (2007) 2847-2849. 144. D. I. Suh, S. Y. Lee, T. H. Kim, J. M. Chun, E. K. Suh, O. B. Yang, and S. K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires, Chemical Physics Letters, 442 (2007) 348-353. 145. A. E. Suliman, Y. W. Tang, and L. Xu, Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 91 (2007) 1658-1662. 146. A. J. Cheng, Y. H. Tzeng, Y. Zhou, M. Park, T. H. Wu, C. Shannon, D. Wang, and W. W. Lee, Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication, Applied Physics Letters, 92 (2008) 092113. 147. T. W. Hamann, A. B. E. Martinson, J. W. Elam, M. J. Pellin, and J. T. Hupp, Aerogel templated ZnO dye-sensitized solar cells, Advanced Materials, 20 (2008) 1560-1564.. 148. Y. F. Hsu, Y. Y. Xi, C. T. Yip, A. B. Djurisic, and W. K. Chan, Dye-sensitized solar cells using ZnO tetrapods, Journal of Applied Physics, 103 (2008) 083114. 149. C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw, and D. L. Kwong, High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode, Applied Physics Letters, 92 (2008) 143101. 150. K. Kakiuchi, M. Saito, and S. Fujihara, Fabrication of ZnO films consisting of densely accumulated mesoporous nanosheets and their dye-sensitized solar cell performance, Thin Solid Films, 516 (2008) 2026-2030. 151. C. H. Ku, H. H. Yang, G. R. Chen, and J. J. Wu, Wet-chemical route to ZnO nanowire-layered basic zinc acetate/ZnO nanoparticle composite film, Crystal Growth & Design, 8 (2008) 283-290. 152. R. S. Mane, W. J. Lee, C. D. Lokhande, B. W. Cho, and S. H. Han, Controlled repeated chemical growth of ZnO films for dye-sensitized solar cells, Current Applied Physics, 8 (2008) 549-553. 153. A. R. Rao and V. Dutta, Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles, Nanotechnology, 19 (2008) 445712. 154. M. Saito and S. Fujihara, Large photocurrent generation in dye-sensitized ZnO solar cells, Energy & Environmental Science, 1 (2008) 280-283. 155. Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, Polydisperse aggregates of ZnO nanocrystallites: A method for energy-conversion-efficiency enhancement in dye-sensitized solar cells, Advanced Functional Materials, 18 (2008) 1654-1660. 156. Q. F. Zhang, T. R. Chou, B. Russo, S. A. Jenekhe, and G. Z. Cao, Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells, Angewandte Chemie-International Edition, 47 (2008) 2402-2406. 157. R. R. Bacsa, J. Dexpert-Ghys, M. Verelst, A. Falqui, B. Machado, W. S. Bacsa, P. Chen, S. M. Zakeeruddin, M. Graetzel, and P. Serp, Synthesis and Structure-Property Correlation in Shape-Controlled ZnO Nanoparticles Prepared by Chemical Vapor Synthesis and their Application in Dye-Sensitized Solar Cells, Advanced Functional Materials, 19 (2009) 875-886. 158. A. B. F. Martinson, M. S. Goes, F. Fabregat-Santiago, J. Bisquert, M. J. Pellin, and J. T. Hupp, Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics, Journal of Physical Chemistry A, 113 (2009) 4015-4021. 159. H. M. Nguyen, R. S. Mane, T. Ganesh, S. H. Han, and N. Kim, Aggregation-Free ZnO Nanocrystals Coupled HMP-2 Dye of Higher Extinction Coefficient for Enhancing Energy Conversion Efficiency, Journal of Physical Chemistry C, 113 (2009) 9206-9209. 160. Z. L. S. Seow, A. S. W. Wong, V. Thavasi, R. Jose, S. Ramakrishna, and G. W. Ho, Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells, Nanotechnology, 20 (2009) 045604. 161. A. Umar, Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications, Nanoscale Research Letters, 4 (2009) 1004-1008. 162. A. Umar, A. Al-Hajry, Y. B. Hahn, and D. H. Kim, Rapid synthesis and dye-sensitized solar cel | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22329 | - |
dc.description.abstract | 本論文主要目的是要探討具奈米結構氧化鋅修飾電極在化學感測器以及染料敏化太陽能電池的應用。在化學感測器方面,針對具不同長寬比之氧化鋅奈米柱於一氧化氮氣體感測器之應先作探討。氧化鋅奈米柱係由化學水浴沉積法製備,並且藉由調整化學水浴沉積法反應次數控制氧化鋅奈米柱之長寬比。由於具有較高的比表面積,氧化鋅奈米柱對一氧化氮的氣敏性較氧化鋅薄膜高。然而,氧化鋅奈米柱之長寬比有最適值;由於氧化鋅奈米柱的長寬比及氧化鋅奈米柱數目隨著反應次數的增加,一氧化氮之擴散至氧化鋅奈米柱之路徑及阻力也隨之增加,因此部分氧化鋅奈米柱表面積沒有被利用到。在最佳條件下,氧化鋅奈米柱在240度下之增測下限可達2 ppb。另一方面,氧化鋅可當作氧化銦微結構之微修飾物。氧化鋅在氧化銦-氧化鋅複合膜之含量可藉由調整在共沉澱步驟之Zn2+/In3+莫耳比來控制。由結果得知,當Zn2+/In3+莫耳比為0.33時,氧化銦-氧化鋅複合膜對一氧化氮在溫度低於200度的氣敏性大為提高。氣敏性的提高主要歸因於氧化銦奈米顆粒之晶粒由32.3降低至15.4 nm。然而,當Zn2+/In3+莫耳比高於0.33時,氧化銦晶粒大小提高且微結構受到改變。因此,複合膜對一氧化氮之氣敏性降低。在最佳條件下,複合膜在工作溫度150度下的偵測下限可至12 ppb。此外,複合膜對一氧化碳不具氣敏性。另一方面,氧化鋅薄膜也可當作二氧化鈦導電媒介,以增進二氧化鈦對一氧化氮的感測性能;雖然單純二氧化鈦對一氧化氮的氣敏性極小,但TiO2NP/ZnO 雙層膜對一氧化氮的氣敏性大為提高。此外,氣敏性的提升與退火時間有很大的關聯;當退火時間由半小時提高到兩小時時,最大氣敏性可提高大約6.2倍。TiO2/ZnO 雙層膜修飾電極之偵測下限可達 8.8 ppb,並且,相對於單純氧化鋅膜,TiO2/ZnO雙層膜修飾電極對二氧化氮及一氧化碳有較好的選擇性。除了電阻式氣體感測應用之外,氧化鋅在電化學感測器應用上也是個良好的材料。在紫外光照射下,銀離子將化被還原且以奈米粒子的形式沉積於氧化鋅表面上。因此,若結合氧化鋅奈米柱表面積可控制性的優點,銀奈米粒子的大小及分布皆可輕易地調整。實驗結果顯示,固定在氧化鋅奈米柱表面的銀奈米粒子對過氧化氫的還原具有很好的電催化性。藉由對銀奈米粒子沉積條件最佳化,此複合膜在操作電位為-0.55 (vs. Ag/AgCl/sat’d KCl)下,偵測下限、靈敏度及反應時間(t95)分別可達0.9 mM、152.1 mA M-1 cm-2及30~40 s。此外,維生素C及尿酸對複合膜感測過氧化氫的干擾極小。
另一方面,我們也可利用化學水浴沉積法製備氧化鋅奈米片修飾電極;首先藉由化學水浴沉積法在FTO電極上沉積聚層狀鋅耐酸鹽氫氧化物,接著再藉由在300度下的 退火程序,將層狀鋅耐酸鹽氫氧化物轉換成氧化鋅奈米片。在最佳化條件下,以氧化鋅奈米片修飾電極當工作電極之染料敏化太陽能電池效率可達6.06%,遠高於以氧化鋅奈米顆粒修飾電極當工作電極之染料敏化太陽能電池之效率(2.92%)。以氧化鋅奈米片修飾電極當工作電極之染料敏化太陽能電池具有較高的光轉換效率主要來自於(i)電子在氧化鋅奈米片具有較高的有效擴散係數(2.15 × 10-2 cm2 s-1 vs. 0.87 × 10-2 cm2 s-1)及(ii)氧化鋅奈米片修飾電極具有高的染料吸附量(2.66 × 10-7 mole cm-2 vs.1.99 × 10-7 mole cm-2)。此外,若利用電泳法將二氧化鈦奈米顆粒沉積在氧化鋅奈米片膜上,染料敏化太陽能電池之效能可再進一步提高(Jsc=19.53 mA cm-2, Voc= 576 mV, FF=0.628, and efficiency=7.07%)。太陽能電池性能提高之原因來自於二氧化鈦奈米粒子所提供的額外表面積,使得染料吸附量提高所造成。 | zh_TW |
dc.description.abstract | The main purpose of this dissertation is to discuss the applications of nanostructured ZnO modified electrodes in chemical sensors and dye-sensitized solar cells (DSSCs).
In the aspect of chemical sensors, ZnO nanorods (ZnONR) were first applied to the detection of NO gas. ZnONR with various aspect ratios (AR) were synthesized using chemical bath deposition (CBD) method; the AR was controlled by adjusting the number of the CBD growth cycle. As compared with ZnO thin film, ZnONR showed higher sensing response to NO gas, which can be attributed to the higher surface-area-to-volume ratio of ZnONR. However, there is an optimal AR value for ZnONR. It is likely that higher density and higher aspect ratio of ZnONR prevent NO gas from penetrating into the ZnONR zone, thus leaving some dead zone. Under optimal conditions, the limit of detection (LOD) for the ZnONR based NO gas sensor achieved about 2 ppb at the working temperature of 240 oC. On the other hand, ZnO has been also found as an effective micro-structure modifier for In2O3 film. In order to control the amount of ZnO incorporated into In2O3 film, the molar ratio (r) of Zn2+/In3+ during the co-precipitation step was adjusted. It was found that with optimal r value (r=0.33), the sensor responses at temperatures lower than 200 oC were significantly improved. The enhancement in sensor response could be ascribed to the reduced grain size, from 32.3 to 15.4 nm, of In2O3 nanoparticles (In2O3NP). However, as the r value was further increased, an increase in the grain size of In2O3NP along with the change of the microstructure was noticed. As a resut, the sensing response of the composite film decreased. Under optimal conditions, the LOD for the In2O3-ZnO composite based NO gas sensor achieved 8.8 ppb at the working temperature of 150 oC. In addition, the In2O3-ZnO composite film showed no response to CO gas. ZnO can also be used as a current conducting medium to improve the sensor performance of TiO2 based NO gas sensor. Although the response of the TiO2-nanoparticles’ layer itself towards NO gas was minute, the TiO2NP/ZnO double-layer film showed significant enhanced response. Besides, the enhancement in the sensor response is strongly related to the annealing time; the maximum response to NO was enhanced about 6.2 times as the annealing time was increased from 30 min to 2 hr. With the high sensitivity, the limit of detection (S/N=3) for TiO2/ZnO/Al2O3 electrode can be achieved at 8.8 ppb. The double-layer also showed improved selectivities with respect to NO2 and CO. In addition to the chemiresistive gas sensor, ZnO is also an excellent material for electrochemical sensor application. It has been found that the Ag+ ions can be photochemically reduced and deposited onto the surface of ZnO in the form of AgNP under UV irradiation. Taking advantages of controllable surface area of ZnONR, the distribution and loading amount of AgNP can be easily tailored. Our results showed that the immobilized AgNP exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide. By optimizing the conditions for the photo-deposition conditions ofAgNP, the amperometric determination of H2O2 at -0.55 V (vs. Ag/AgCl/sat’d KCl) gave a limit of detection of 0.9 µM (S/N=3) and a sensitivity of 152.1 mA M-1 cm-2 up to 0.983 mM, with a response time ( t95) of 30 ~ 40 s. The interfering effects from ascorbic acid (AA) and uric acid (UA) were minute. In the DSSC application, the ZnO nanosheets (ZnONS) photoanode was prepared by the direct growth of the layered hydroxide zinc carbonate (LHZC) onto the FTO substrate using CBD methods followed by the pyrolytic transformation of LHZC into ZnONS at 300 oC. Under optimal conditions, the conversion efficiency of ZnONS based DSSC achieved 6.06 % under 100 mW cm-2 illumination, which is much higher than that of ZnO nanoparticles (ZnONP) based DSSCs (2.92%). The better performance of ZnONS based DSSCs can be attributed to the (i) higher effective electron diffusion coefficient of ZnONS (2.15×10-2 cm2 s-1 ) than that of ZnONP (0.87 × 10-2 cm2 s-1), and (ii) higher dye loading on ZnONS (2.66× 10-7 mole cm-2) than that on ZnONP (1.99 × 10-7 mole cm-2). In addition, the performance of ZnONS based DSSC was further improved by depositing a layer of TiO2NP (d~14 nm) using EPD method. Although the effective electron diffusion coefficient (1.81 × 10-2 cm2 s-1) decreased in the TiO2NP/ZnONS hybrid photoande, an enhancement in cell performance (Jsc=19.53 mA cm-2, Voc= 576 mV, FF=0.628, and efficiency=7.07%) was obtained. The enhancement in cell performance can be ascribed to the increased dye loading, which is resulted from an increase in the surface area. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:15:38Z (GMT). No. of bitstreams: 1 ntu-99-D94524006-1.pdf: 6613526 bytes, checksum: b2af954c5659c0ba111d498d6a22f7ed (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 VIII
Abstract X 摘要 XII List of Tables XIV List of Figures XVI Nomenclatures XXVI Abbreviations XXVI English symbols XXVII Greek symbols XXIX Chapter 1 Introduction 1 1.1 Synthesis of ZnO nanostructures via CBD 2 1.2 Applications of nanostructured ZnO 7 1.2.1 Chemical sensors 8 1.2.1.1 Biosensors 11 1.2.1.2 Chemiresistor-type gas sensors 14 1.2.1.2.1 Working principle of a solid-state gas sensor 14 1.2.1.2.2 Nanostructured ZnO based gas sensors 20 1.2.2 Dye-sensitized solar cells (DSSCs) 21 1.2.2.1 Working principle of DSSCs 22 1.2.2.2 Nanostructured ZnO based DSSCs 24 1.3 Motivation and scope of the dissertation 33 Chapter 2 Experimental 36 2.1 Experimental parts for “Chemiresistive NO gas sensor based on zinc oxide nanorods” (Chapter 3) 36 2.1.1 Preparation of ZnO thin film and ZnONR modified electrodes 36 2.1.2 Gas sensing experiment 37 2.1.3 Characterization of ZnONR 39 2.2 Experimental parts for “Fabrication of NOx gas sensors using In2O3-ZnO composites” (Chapter 4) 40 2.2.1 Preparation of In2O3-ZnO films 40 2.2.2 Gas sensing experiment 40 2.2.3 Characterization of In2O3-ZnO films 41 2.3 Experimental parts for “Using a ZnO under-layer film for improving the sensing performance of TiO2NP based NO gas sensor” (Chapter 5) 43 2.3.1 Preparation of ZnOfilm/glass, ZnOfilm/Al2O3, TiO2NP /Al2O3, and TiO2NP/ZnOfilm/Al2O3 electrodes 43 2.3.2 Gas sensing experiment 43 2.4 Experimental parts for “Electrode Modified with a Composite Film of ZnO Nanorods and Ag Nanoparticles as a Sensor for Hydrogen Peroxide” (Chapter 6) 45 2.4.1 Preparation of AgNP/ZnONR modified electrode 45 2.4.2 Apparatus 47 2.4.3 Preparation of AgNP/ZnONR modified electrode 47 2.4.4 Amperometric detection of H2O2 48 2.5 Experimental methods for “Highly efficient metal-free dye-sensitized solar cells based on TiO2 nanoparticles/ZnO nanosheets hybrid photoanodes” (Chapter 7) 49 2.5.1 Preparation of ZnONP, ZnONS, and TiO2NP/ZnONS electrodes 49 2.5.2 Assembly of DSSCs 49 2.5.3 Instruments and measurements 50 2.6 Experimental parts for “Using a PEDOT:PSS modified electrode for detecting nitric oxide” (Appendix A) 52 2.6.1 Preparation of the PEDOT:PSS thick film 52 2.6.2 Gas sensing experiment 52 2.7 Experimental parts for “Detection of nitrite using poly(3,4-ethylenedioxythiophene)/metal phthalocyanine/ multi-wall carbon nanotubes-modified SPCEs” (Appendix B) 54 2.7.1. Chemicals and Instruments 54 2.7.2 Preparation of MPc, FePc/MWCNT, and PEDOT /FePc/MWCNT- modified SPCEs 54 2.7.3 Amperometric Detection of Nitrite 55 Chapter 3 Chemiresistive NO gas sensor based on zinc oxide nanorods 57 3.1 Brief introduction 57 3.2 Results and discussion 58 3.2.1 Characterization of ZnONR 58 3.2.2 Gas sensing Characteristics 63 Chapter 4 Fabrication of NOx gas sensors using In2O3-ZnO composite films 68 4.1 Brief introduction 68 4.2 Results and discussion 68 4.2.1 Characterization of In2O3 or In2O3-ZnO films 68 4.2.2 Gas sensing characteristics 72 4.2.3 Possible sensing mechanisms 75 4.2.4 NOx sensing and interference 77 Chapter 5 Using a ZnO under-layer film for improving the sensing performance of TiO2 based NO gas sensor 81 5.1 Brief introduction 81 5.2 Results and discussion 82 5.2.1 Effect of the substrate 82 5.2.2 Effect of TiO2 layer 83 5.2.3 Gas characteristic of TiO2NP/ZnO double-layer film 89 Chapter 6 Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide 91 6.1 Brief introduction 91 6.2 Results and discussion 93 6.2.1 Characterization of AgNP/ZnONR 93 6.2.2 Sensing behavior of AgNP/ZnONR for H2O2 95 6.2.3 Cyclic voltametric detection of H2O2 103 6.2.4 Amperometric detection of H2O2 and the pertinent calibration curve 105 Chapter 7 Highly efficient metal-free dye-sensitized solar cell based on ZnO nanosheets/TiO2 nanoparticles hybrid photoanode 110 7.1 Brief introduction 110 7.2 Results and discussion 112 7.2.1 Characterization of LHZC and ZnONS films 112 7.2.2 DSSC application 118 Chapter 8 Conclusions and suggestions 127 8.1 Chemiresistive NO gas sensor based on zinc oxide nanorods 127 8.2 Fabrication of NOx gas sensors using In2O3-ZnO composite 127 8.3 Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide 128 8.4 Highly efficient metal-free dye-sensitized solar cells based on TiO2 nanoparticles/ZnO nanosheets hybrid photoanodes 129 8.5 Suggestions 129 Chapter 9 References 132 Appendix A Using a PEDOT:PSS modified electrode for detecting nitric oxide 164 A.1 Brief introduction 164 A.2 Results and discussion 166 A.2.1 Temperature effect 166 A.2.2 Thickness effect 168 A.2.3 Gas sensing characteristic of the PEDOT:PSS film 170 A.3 Summary 175 A.4 References 176 Appendix B Detection of nitrite using poly(3,4-ethylenedioxythiophene) /metal phthalocyanine/multi-wall carbon nanotubes-modified SPCEs 178 B.1 Brief introduction 178 B.2 Results and discussion 181 B.2.1 Electro-oxidation Behavior of Nitrite at the MPc-modified SPCEs 181 B.2.2 Electro-oxidation Behavior of Nitrite at the FePc/MWCNT- and PEDOT/FePc/MWCNT- modified SPCEs 186 B.2.3 Amperometric Detection of Nitrite 192 B.2.4 The real sample analysis 195 B.3 Summary 197 B.4 References 198 Appendix C Curriculum Vitae 204 | |
dc.language.iso | en | |
dc.title | 具奈米結構氧化鋅之合成、鑑定及在化學感測器及染料敏化太陽能電池之應用 | zh_TW |
dc.title | Nanostructured Zinc Oxides: Synthesis, Characterization, and Applications in Chemical Sensors and Dye-sensitized Solar Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 周澤川,林啟萬,許梅娟,楊明長,戴子安,吳嘉文 | |
dc.subject.keyword | 化學感測器,染料敏化太陽能電池,電化學感測器,氣體感測器,氧化鋅, | zh_TW |
dc.subject.keyword | Chemical sensors,Dye-sensitized solar cells,Electrochemical sensors,Gas sensors,Zinc oxide, | en |
dc.relation.page | 213 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 6.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。