請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22286
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美(His-Mei Lai) | |
dc.contributor.author | Yu-Kuan Lee | en |
dc.contributor.author | 李昱寬 | zh_TW |
dc.date.accessioned | 2021-06-08T04:14:56Z | - |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-09 | |
dc.identifier.citation | 張馨云。2007。酸水解法製備多醣奈米結晶粒子之研究。國立台灣大學生物資源暨農學院農業化學系碩士論文。
鍾依林。2003。澱粉膜製作技術及MRI探討其在模式系統中水分阻隔性質之研究。國立台灣大學生物資源暨農學院農業化學系碩士論文。 ASTM, American Society for Testing Methods. 2005. Standard test methods for water vapor transmission of materials. E 96/E 96M - 05. In: Annual book of American Society for Testing and Materials, Philadelphia, PA: ASTM. Angles, M. N., Dufresne A. 2000. Plasticized starch/tunicin whiskers nanocomposites. 1. structural analysis. Macromolecules, 33: 8344-8353. Angles, M. N., Dufresne A. 2001. Plasticized starch/tunicin whiskers nanocomposites. 2. mechanical behavior. Macromolecules, 34: 2921-2931. Araki, J., Wada, M., Kuga, S., Okano, T. 1998. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and surfaces, A 142: 75-82. Averous L. 2004. Biodegradable multiphase systems based on plasticized starch: a review. Journal of Macromolecular Science Part C-Polymer Reviews, C44, 231-247. Baldwin, E. A. 1994. Edible coatings for fresh fruits and vegetables: past, present and future. In: Edible Coatings and Films to Improve Food Quality. pp 25-64. Bail, P. L., H. Bizot, H., Ollivon, M., Keller, G., Bourgaux, C., Buleon, A. 1999. Monitoring the crystallization of amylose-lipid complexes during maize starch melting by synchrotron X-ray diffraction. Biopolymers, 50: 99-110. Bertuzzi, M. A., Vidaurre, E. F. C., Armada, M., Gottifredi, J. C. 2007. Water vapor permeability of edible starch based films. Journal of Food Engineering, 80: 972-978. Bistline, R. G., J, R., Noble, W. R., Smith, F. D., Linfield, W. M. 1977. Cosulfation of fatty acid alkanolamides and molecular weight alcohols. Journal of the American Oil Chemists’ Society, 54: 371-374. Candanedo, S. B., Roman, M., Gray, D. G. 2005. Effect of reaction condictions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6: 1048-1054. Cao, X., Chen, Y., Chang, P. R., Stumborg, M., Huneault, M. A. 2008. Green composites reinforced with hemp nanocrystals in plasticized starch. Journal of Applied Polymer Science, 109: 3804-3810. Chen, C. H., Kuo, W. S., Lai, L. S. 2010. Water barrier and physical properties of starch/decolorized hsian-tsao leaf gum films: Impact of surfactant lamination. Food Hydrocolloids, 24: 200–207. Colla, E., Sobral, P. J. A., Menegalli, F. C. 2006. Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties. Journal of Agricultural and Food Chemistry, 54: 6645-6653. Cuq, B., Gontard, N., Guilbert, S. 1998. Proteins as agricultural polymers for packaging production. Cereal Chemistry, 75: 1-9. Dean, K., Yu, L., Wu, D.Y. 2007. Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Composites Science and Technology, 67: 413-421. Debeaufort, F., Quezada-Gallo, J. A., Voilley, A. 1988. Edible films and coatings: Tomorrow's packagings: A review. Critical Reviews in Food Science and Nutrition, 38: 299-313. Garcia, M., Martino, M. N., Zaritzky, N. E. 2000. Microstructural characterization of plasticized starch-based films. Starch/Starke, 52: 118-124. Gennadios, A., Hanna, M. A., Kurth, L. B. 1997. Application of edible coatings on meats, poultry and seafoods: a review. Lebensmittel-Wissenschaft and Technologie, 30: 337-350. Graaf, R. A.,Karmanb A. P., Janssenb L. P. B. M. 2003. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing. Starch/Starke, 55: 80-86. Guilbert, S., Gontard, N., Gorris, L. G. M. 1996. Prolongation of the shelf life of perishable food products using biodegradable films and coatings. Lebensmittel-Wissenschaft and Technologie, 29: 10-17. Han, J. H. 2000. Antimicrobial food packaging. Food Technology, 54: 56-65. Heux, L., Chauve, G., Bononi, C. 2000. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir, 16: 8210-8212. Hulleman, S. H. D., Janssen, F. H. P., Feii, H. 1998. The role of water during plasticization of native starches. Polymer, 39: 2043-2048. Kale, K., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., Singh, S. P. 2007. Compostability of bioplastic packaging materials: an overview. Macromolecular Bioscience. 7: 255-277. Kester, J.J., Fennema, O.R. 1986. Edible films and coatings: a review. Food Technology, 40: 47-59. Kirwan, M. J., and Strawbridge, J. W. 2003. Plastics in food packaging. Food Packaging Technology, 174-240. Knill, C. J., Kennedy, J. F. 2005. Starch: Commercial Sources and Derived Products. In: Polysaccharides: structural diversity and functional versatility. pp 605-642. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O. 1993. Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8: 1185-1189. Krochta, J. M., and De Mulder-Johnston, C. 1997. Edible and biodegradable polymer films: Challenges and opportunities. Food Technology, 51: 61-74. Lagaron, J. M., Catala, R., Gavara, R. 2004. Structural characteristics defining high barrier properties in polymeric materials. Materials Science and Technology, 20: 1-7. Lourdin, D., Coignard, L., Bizot, H., Colonna, P. 1997. Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polymer, 38: 5401-5406. Lu, Y., Weng, L., Cao, X. 2005. Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromolecular Bioscience, 5: 1101-1107. Ma, X. F., Yu, J. G., He, K., Wang, N. 2007. The effects of different plasticizers on the properties of thermoplastic starch as solid plymer electrolytes. Macromolecular Materials and Engineering, 292: 503-510. Moreno, E., Cordobilla, R., Calvet, T., Cuevas-Diarte, M.A., Gbabode, G., Negrier, P., Mondieig, D., Oonk, H. A. J. 2007. Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid. New Journal of Chemistry, 31: 947-957. Myllarinen, P., Partanen, R., Seppala, Jukka, Forssell, P. 2002. Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydrate Polymers, 50: 355-361. Narayan, R. 2001. Drivers for biodegradable/compostable plastics and role of composting and waste management and sustainable agriculture; report paper. Orbit Journal, 1, 1-9. Phan The, D., Debeaufort, F., Luu, D., Voilley, A. 2008. Moisture barrier, wetting and mechanical properties of shellac/agar or shellac/cassava starch bilayer bio-membrane for food applications. Journal of Membrane Science, 325: 277-283. Phan The, D., Debeaufort, F., Voilley, A., Luu, D. 2009. Influence of hydrocolloid nature on the structure and functional properties of emulsified edible films. Food Hydrocolloids, 23: 691-699. Pushpadass, H. A., Marx, D. B., Wehling, R. L., Hanna, M. A. 2009. Extrusion and characterization of starch films. Cereal Chemistryt, 86: 44-51. Ray, S. S., Bousmina, M. 2005. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50: 962-1079. Ray, S. S., Okamoto, M. 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28: 1539-1641. Rhim, J. W., Ng, P. K., W. 2007. Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47: 411-433. Russell, P. L. 1988. Gelatinisation of starches of different amylose/amylopectin content. A study of differential scanning calorimetry. Journal of Cereal Science, 6: 133-145. Sanders, H. L. 1958. Fatty acid alkylolamides. Journal of the American Oil Chemists’ Society, 35: 548-551. Shogren, R. L. 1992. Effect of moisture content on the melting and subsequent physical aging of corn starch. Carbohydrate Polymers, 19: 83-90. Soest, J. J. G., Benes, K., Wit, D., Vliegenthart, J. F. G. 1996. The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer, 37: 3543-3552. Sorrentino, A., Gorrasi, G., Vittoria, V. 2007. Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18: 84-95. Stading, M., Rindlav-Westling, A., Gatenholm, P. 2001. Humidity-induced structural transitions in amylose and amylopectin films. Carbohydrate Polymers, 45: 209-217. Thuwall, M., Boldizar, A., Rigdahl, M. 2006. Extrusion processing of high amylose potato starch material. Carbohydrate Polymers, 65: 441-446. Thunwall M., Kuthanova, V., Boldizar, A., Rigdahl, M. 2008. Film blowing of thermoplastic starch. Carbohydrate Polymers, 71: 583-590. Tsiapouris, A., Linke, L. 2000. Water vapor sorption determination of starch based porous packaging materials. Starch/Starke, 52: 53-57. Wang, Y., Sun, Z. and Liu, W. 2003. Biodegradable materials from starch-grafted polymers. International Application, WO/2003/074604, PCT/US03/05661. Wong, D. W. S., Camirand W. M., Pavlath A. E. 1994. Development of edible coatings for minimally processed fruits and vegetables. In: Edible Coatings and Films to Improve Food Quality. pp 65–88. Whistler, R. L., Bemiller, J. N. 1997. Carbohydrate chemistry for food scientists. Minnesota: American Association of Cereal Chemists, Inc. pp 119-151. Yu, L., Christie, G. 2005. Microstructure and mechanical properties of orientated thermoplastic starches. Journal of Materials Science, 40: 111-116. Zullo, R., Iannace, S. 2009. The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydrate Polymers, 77: 376-383. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22286 | - |
dc.description.abstract | 天然的生物高分子相較於合成高分子具有生物可分解性、可再生性及可食性。然而,生物高分子膜由於機械性質及水汽阻隔性較差,在工業應用上受到嚴重的限制。在本試驗中希望藉由添加纖維素奈米結晶粒子(cellulose nanocrystal, CNC)及硬脂酸(stearic acid, SA)以改善玉米澱粉膜的水汽敏感性以及機械性質。以濾紙為原料經酸水解所製得的CNC可提升膜的機械強度及降低膜在高相對濕度(97% RH)下的吸水量,但對於膜的水汽通透性則無顯著影響。1-胺基-2-丙醇(1-amino-2-propanol, AP)在澱粉膜中可作為塑化劑,並提高膜的水汽通透性,且即便添加至8%亦未對膜截面的微細結構產生影響。在澱粉膜中添加SA及AP可製備出不同形態的AP/SA-澱粉膜,表面平滑、乾爽的均質膜可藉由添加SA(10%)/ AP(2-5%)、SA(20%)/AP(3-7%)、SA(30%)/AP(4-9%)及SA(40%)/ AP(5-9%)之比例而獲得。在AP/SA-澱粉膜的X-ray繞射圖譜中發現新的繞射峰,推測可能是由SA及AP所形成之鹽類產生。AP/SA-澱粉膜的SEM截面呈現層狀結構,此結構隨SA的添加量與AP/SA莫耳比值不同而有所改變,進而影響膜的機械性質及水汽通透性。在高SA添加量(40%)及AP/SA莫耳比值(1.01)之AP/SA-澱粉膜有較佳的水汽通透性,但膜變得硬脆。添加CNC (5、15及25%)於AP/SA-澱粉膜成膜溶液中形成之AP/SA/CNC-澱粉膜,對水汽通透性影響不顯著,且由於AP/SA/CNC-澱粉膜的結構因AP及SA的交互作用而改變,干擾CNC與澱粉基質之相容性,致使添加CNC以改善AP/SA/CNC-澱粉膜機械強度之效果不顯著。 | zh_TW |
dc.description.abstract | Natural biopolymers have advantages, including biodegradable and renewable as well as edible, over synthetic polymers. However, relatively poor mechanical and water vapor barrier properties of biopolymer films limit their applications in industry. In this study, cellulose nanocrystals (CNC) and stearic acid (SA) were introduced into corn starch film to improve its mechanical properties and water sensitivity. Adding CNC, which obtained by hydrolyzing filter paper, did improve the mechanical properties and decrease the water adsorption at high relative humidity (97% RH) of starch composite film, although its water vapor permeability (WVP) did not significantly change. Adding 1-amino-2-propanol (AP), a plasticizer, would increase the WVP of starch film, but no significant differences in the microstructure of film cross section could be investigated even adding up to 8%. Adding SA and AP into starch film resulted in different morphologies of AP/SA-film depending on the amounts of AP and SA additions. The smooth, dry homogenous films could be obtained by introducing SA(10%)/AP(2-5%), SA(20%)/AP(3-7%), SA(30%)/AP(4-9%), and SA(40%)/AP(5-9%). A new X-ray diffraction pattern could be the evidence of the salt formed from SA and AP in starch composite film. The lamellar structure on the cross section of AP/SA-starch film was observed by using a scanning electron microscopy. In addition, the structure changes of cross section on AP/SA-starch film, depending on the amount of SA added and the AP/SA molar ratio, would affect the mechanical properties and WVP of film. High amount of SA (40%) and AP/SA molar ratio (1.01) in AP/SA-starch film had better WVP, but caused film brittle. The WVP of AP/SA/CNC-starch films, made by adding CNC (5%, 15%, and 25%) into AP/SA-starch film forming solution, were insignificantly different. The compatibility of CNC and starch molecules was disturbed due to the interaction of AP and SA which modified the microstructure of AP/SA/CNC-starch film. This might be the reason why the proposed improvement on the mechanical properties by introducing the CNC on the starch film could not be approached. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:14:56Z (GMT). No. of bitstreams: 1 ntu-99-R97623029-1.pdf: 4086791 bytes, checksum: 5b07623277b651f567772ff538f166f6 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書 -------------------------- i
誌謝 ------------------------------- ii 中文摘要 ----------------------------- iii 英文摘要 ----------------------------- iv 目錄 ------------------------------- v 表目錄 ------------------------------ viii 圖目錄 ------------------------------ ix 第一章、 前言 --------------------------- 1 第二章、 文獻整理 ------------------------- 2 一、 生物可分解高分子 --------------------- 2 二、 澱粉基質生物可分解材料 ------------------ 4 (一)澱粉基材之製作技術 ----------------- 5 (二)塑化劑及水對澱粉基材之影響 ------------- 6 三、 澱粉基質複合材料 --------------------- 7 (一)澱粉-奈米複合材料 ----------------- 8 (二)澱粉-天然疏水性物質複合材料 ------------ 9 第三章、 材料與方法 ------------------------ 12 一、 材料 -------------------------- 12 二、 方法 -------------------------- 12 (一)纖維素奈米結晶粒子(CNC)之製備 ----------- 12 (二)CNC-澱粉膜之製備 ----------------- 12 (三)AP/SA-澱粉膜之製備 ---------------- 15 (四)AP/SA/CNC-澱粉膜之製備 --------------- 15 三、 CNC之性質檢測 ---------------------- 18 (一)穿透式電子顯微鏡觀察 ---------------- 18 (二)粒徑分佈測定 -------------------- 18 (三)X-ray繞射分析 -------------------- 18 四、 澱粉膜之性質檢測 --------------------- 18 (一)厚度測定 ---------------------- 18 (二)X-ray繞射分析 -------------------- 18 (三)掃描式電子顯微鏡觀察 ---------------- 19 (四)等溫吸濕曲線測定 ------------------ 19 (五)水汽通透性測定 ------------------- 19 (六)機械性質測定 -------------------- 20 五、 統計分析 ------------------------- 20 第四章、 結果與討論 ------------------------ 21 一、 纖維素奈米結晶粒子之性質測定 -------------- 21 二、 CNC-澱粉膜之性質測定 ------------------- 23 (一)CNC-澱粉膜之顯微結構 --------------- 23 (二)X-ray繞射圖譜 -------------------- 24 (三)等溫吸濕曲線及水汽通透性 -------------- 25 (四)機械性質 ---------------------- 27 (五)結論 ------------------------ 30 三、 AP/SA-澱粉膜之製備與性質測定 --------------- 31 (一)AP/SA-澱粉膜之製備 ---------------- 31 (二)X-ray繞射圖譜 -------------------- 34 (三)AP/SA-澱粉膜之顯微結構 --------------- 38 (四)水汽通透性 --------------------- 40 (五)機械性質----------------------- 42 (六)結論 ------------------------ 43 四、 AP/SA/CNC-澱粉膜之製備與性質測定 ------------- 44 (一)AP/SA/CNC-澱粉膜之製備 --------------- 44 (二)X-ray繞射圖譜 -------------------- 46 (三)AP/SA/CNC-澱粉膜之顯微結構 ------------ 47 (四)水汽通透性 --------------------- 48 (五)機械性質 ---------------------- 48 (六)結論 ------------------------ 50 第五章、 結論 --------------------------- 51 第六章、 參考文獻 ------------------------- 52 附錄、縮寫表 --------------------------- 57 | |
dc.language.iso | zh-TW | |
dc.title | 添加硬脂酸與纖維素奈米結晶粒子對澱粉膜性質之影響 | zh_TW |
dc.title | Effects of Stearic Acid and Cellulose Nanocrystal on the Properties of Starch Film | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李敏雄,張永和,賴麗旭,呂廷章 | |
dc.subject.keyword | 澱粉膜,纖維素奈米結晶粒子,硬脂酸,1-胺基-2-丙醇,水汽通透性, | zh_TW |
dc.subject.keyword | starch film,cellulose naocrystal,stearic acid,1-amino-2-propanol,water vapor permeability, | en |
dc.relation.page | 57 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-08-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。