Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚婉玉(Woan-Yuh Tarn)
dc.contributor.authorTing-An Linen
dc.contributor.author林庭安zh_TW
dc.date.accessioned2021-06-08T04:14:22Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-11
dc.identifier.citation1. Moore, M.J., From birth to death: the complex lives of eukaryotic mRNAs. Science, 2005. 309(5740): p. 1514-8.
2. de la Mata, M., et al., A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell, 2003. 12(2): p. 525-32.
3. Howe, K.J., C.M. Kane, and M. Ares, Jr., Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA, 2003. 9(8): p. 993-1006.
4. Cramer, P., D.A. Bushnell, and R.D. Kornberg, Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science, 2001. 292(5523): p. 1863-76.
5. McCracken, S., et al., 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev, 1997. 11(24): p. 3306-18.
6. McCracken, S., et al., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature, 1997. 385(6614): p. 357-61.
7. Hirose, Y. and J.L. Manley, RNA polymerase II is an essential mRNA polyadenylation factor. Nature, 1998. 395(6697): p. 93-6.
8. Yuryev, A., et al., The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A, 1996. 93(14): p. 6975-80.
9. Du, L. and S.L. Warren, A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing. J Cell Biol, 1997. 136(1): p. 5-18.
10. Palancade, B. and O. Bensaude, Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem, 2003. 270(19): p. 3859-70.
11. Park, N.J., D.C. Tsao, and H.G. Martinson, The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain. Mol Cell Biol, 2004. 24(10): p. 4092-103.
12. Ho, C.K. and S. Shuman, Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell, 1999. 3(3): p. 405-11.
13. Izaurralde, E., et al., A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell, 1994. 78(4): p. 657-68.
14. Krainer, A.R., et al., Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell, 1984. 36(4): p. 993-1005.
15. Flaherty, S.M., et al., Participation of the nuclear cap binding complex in pre-mRNA 3' processing. Proc Natl Acad Sci U S A, 1997. 94(22): p. 11893-8.
16. Gornemann, J., et al., Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell, 2005. 19(1): p. 53-63.
17. Wetterberg, I., et al., In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J, 2001. 20(10): p. 2564-74.
18. Daneholt, B., Assembly and transport of a premessenger RNP particle. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7012-7.
19. Custodio, N., et al., In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA, 2004. 10(4): p. 622-33.
20. Proudfoot, N., New perspectives on connecting messenger RNA 3' end formation to transcription. Curr Opin Cell Biol, 2004. 16(3): p. 272-8.
21. Kim, M., et al., The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature, 2004. 432(7016): p. 517-22.
22. West, S., N. Gromak, and N.J. Proudfoot, Human 5' --> 3' exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature, 2004. 432(7016): p. 522-5.
23. Licatalosi, D.D., et al., Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II. Mol Cell, 2002. 9(5): p. 1101-11.
24. Kim, M., et al., Transitions in RNA polymerase II elongation complexes at the 3' ends of genes. EMBO J, 2004. 23(2): p. 354-64.
25. Calvo, O. and J.L. Manley, The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription. EMBO J, 2005. 24(5): p. 1009-20.
26. Abruzzi, K.C., S. Lacadie, and M. Rosbash, Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J, 2004. 23(13): p. 2620-31.
27. Luo, M.J. and R. Reed, Splicing is required for rapid and efficient mRNA export in metazoans. Proc Natl Acad Sci U S A, 1999. 96(26): p. 14937-42.
28. Le Hir, H., et al., The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J, 2001. 20(17): p. 4987-97.
29. Zhou, Z., et al., The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature, 2000. 407(6802): p. 401-5.
30. Stutz, F., et al., REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA, 2000. 6(4): p. 638-50.
31. Katahira, J., et al., The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J, 1999. 18(9): p. 2593-609.
32. Jimeno, S., et al., The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J, 2002. 21(13): p. 3526-35.
33. Chavez, S., et al., A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J, 2000. 19(21): p. 5824-34.
34. Piruat, J.I. and A. Aguilera, A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J, 1998. 17(16): p. 4859-72.
35. Prado, F., J.I. Piruat, and A. Aguilera, Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. EMBO J, 1997. 16(10): p. 2826-35.
36. Huertas, P. and A. Aguilera, Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell, 2003. 12(3): p. 711-21.
37. Svejstrup, J., Keeping RNA and DNA apart during transcription. Mol Cell, 2003. 12(3): p. 538-9.
38. Strasser, K., et al., TREX is a conserved complex coupling transcription with messenger RNA export. Nature, 2002. 417(6886): p. 304-8.
39. Hurt, E., et al., Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc Natl Acad Sci U S A, 2004. 101(7): p. 1858-62.
40. Zenklusen, D., et al., Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol Cell Biol, 2002. 22(23): p. 8241-53.
41. Rehwinkel, J., et al., Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol, 2004. 11(6): p. 558-66.
42. Zhou, Z., et al., Comprehensive proteomic analysis of the human spliceosome. Nature, 2002. 419(6903): p. 182-5.
43. Reed, R., Coupling transcription, splicing and mRNA export. Curr Opin Cell Biol, 2003. 15(3): p. 326-31.
44. Reed, R. and H. Cheng, TREX, SR proteins and export of mRNA. Curr Opin Cell Biol, 2005. 17(3): p. 269-73.
45. Cheng, H., et al., Human mRNA export machinery recruited to the 5' end of mRNA. Cell, 2006. 127(7): p. 1389-400.
46. Kopytova, D.V., et al., Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev, 2010. 24(1): p. 86-96.
47. Suganuma, T. and J.L. Workman, Crosstalk among Histone Modifications. Cell, 2008. 135(4): p. 604-7.
48. Shogren-Knaak, M., et al., Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 2006. 311(5762): p. 844-7.
49. Fischle, W., Y. Wang, and C.D. Allis, Histone and chromatin cross-talk. Curr Opin Cell Biol, 2003. 15(2): p. 172-83.
50. Wolffe, A.P. and J.C. Hansen, Nuclear visions: functional flexibility from structural instability. Cell, 2001. 104(5): p. 631-4.
51. Carruthers, L.M. and J.C. Hansen, The core histone N termini function independently of linker histones during chromatin condensation. J Biol Chem, 2000. 275(47): p. 37285-90.
52. Tse, C., et al., Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol, 1998. 18(8): p. 4629-38.
53. Lee, K.K. and J.L. Workman, Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol, 2007. 8(4): p. 284-95.
54. Kohler, A., et al., The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol Biol Cell, 2006. 17(10): p. 4228-36.
55. Govind, C.K., et al., Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol Cell, 2007. 25(1): p. 31-42.
56. Henry, K.W., et al., Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev, 2003. 17(21): p. 2648-63.
57. Sridhar, V.V., et al., Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature, 2007. 447(7145): p. 735-8.
58. Rodriguez-Navarro, S., et al., Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell, 2004. 116(1): p. 75-86.
59. Zhao, Y., et al., A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell, 2008. 29(1): p. 92-101.
60. Pijnappel, W.W. and H.T. Timmers, Dubbing SAGA unveils new epigenetic crosstalk. Mol Cell, 2008. 29(2): p. 152-4.
61. Maquat, L.E. and G.G. Carmichael, Quality control of mRNA function. Cell, 2001. 104(2): p. 173-6.
62. Mukherjee, D., et al., The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J, 2002. 21(1-2): p. 165-74.
63. Wang, Z. and M. Kiledjian, Functional link between the mammalian exosome and mRNA decapping. Cell, 2001. 107(6): p. 751-62.
64. Chen, C.Y., et al., AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell, 2001. 107(4): p. 451-64.
65. Anderson, J.S. and R.P. Parker, The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. EMBO J, 1998. 17(5): p. 1497-506.
66. Allmang, C., et al., The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev, 1999. 13(16): p. 2148-58.
67. Mitchell, P., et al., The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell, 1997. 91(4): p. 457-66.
68. Peng, W.T., et al., A panoramic view of yeast noncoding RNA processing. Cell, 2003. 113(7): p. 919-33.
69. Mitchell, P., et al., Rrp47p is an exosome-associated protein required for the 3' processing of stable RNAs. Mol Cell Biol, 2003. 23(19): p. 6982-92.
70. Araki, Y., et al., Ski7p G protein interacts with the exosome and the Ski complex for 3'-to-5' mRNA decay in yeast. EMBO J, 2001. 20(17): p. 4684-93.
71. van Hoof, A., et al., Function of the ski4p (Csl4p) and Ski7p proteins in 3'-to-5' degradation of mRNA. Mol Cell Biol, 2000. 20(21): p. 8230-43.
72. Burkard, K.T. and J.S. Butler, A nuclear 3'-5' exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol, 2000. 20(2): p. 604-16.
73. Yavuzer, U., et al., DNA end-independent activation of DNA-PK mediated via association with the DNA-binding protein C1D. Genes Dev, 1998. 12(14): p. 2188-99.
74. Wyers, F., et al., Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell, 2005. 121(5): p. 725-37.
75. Vanacova, S., et al., A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol, 2005. 3(6): p. e189.
76. LaCava, J., et al., RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell, 2005. 121(5): p. 713-24.
77. Kadaba, S., et al., Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev, 2004. 18(11): p. 1227-40.
78. Torchet, C., et al., Processing of 3'-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell, 2002. 9(6): p. 1285-96.
79. Hilleren, P., et al., Quality control of mRNA 3'-end processing is linked to the nuclear exosome. Nature, 2001. 413(6855): p. 538-42.
80. Grosshans, H., et al., Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export. J Cell Biol, 2001. 153(4): p. 745-62.
81. Bousquet-Antonelli, C., C. Presutti, and D. Tollervey, Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell, 2000. 102(6): p. 765-75.
82. Allmang, C., et al., Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res, 2000. 28(8): p. 1684-91.
83. van Hoof, A., P. Lennertz, and R. Parker, Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol, 2000. 20(2): p. 441-52.
84. Zanchin, N.I. and D.S. Goldfarb, The exosome subunit Rrp43p is required for the efficient maturation of 5.8S, 18S and 25S rRNA. Nucleic Acids Res, 1999. 27(5): p. 1283-8.
85. Allmang, C., et al., Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J, 1999. 18(19): p. 5399-410.
86. de la Cruz, J., et al., Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J, 1998. 17(4): p. 1128-40.
87. Hieronymus, H., M.C. Yu, and P.A. Silver, Genome-wide mRNA surveillance is coupled to mRNA export. Genes Dev, 2004. 18(21): p. 2652-62.
88. Andrulis, E.D., et al., The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature, 2002. 420(6917): p. 837-41.
89. Dez, C., J. Houseley, and D. Tollervey, Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO J, 2006. 25(7): p. 1534-46.
90. Miller, J.H., et al., Genetic studies of the lac repressor. IX. Generation of altered proteins by the suppression of nonsence mutations. J Mol Biol, 1979. 131(2): p. 191-222.
91. Brogna, S., Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3' end processing of the corresponding pre-mRNA. RNA, 1999. 5(4): p. 562-73.
92. Hodgkin, J., et al., A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics, 1989. 123(2): p. 301-13.
93. Maquat, L.E., et al., Unstable beta-globin mRNA in mRNA-deficient beta o thalassemia. Cell, 1981. 27(3 Pt 2): p. 543-53.
94. van Hoof, A. and P.J. Green, Premature nonsense codons decrease the stability of phytohemagglutinin mRNA in a position-dependent manner. Plant J, 1996. 10(3): p. 415-24.
95. Isken, O. and L.E. Maquat, Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev, 2007. 21(15): p. 1833-56.
96. Frischmeyer, P.A., et al., An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science, 2002. 295(5563): p. 2258-61.
97. van Hoof, A., et al., Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science, 2002. 295(5563): p. 2262-4.
98. Tran, H., et al., Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol Cell, 2004. 13(1): p. 101-11.
99. Gherzi, R., et al., A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell, 2004. 14(5): p. 571-83.
100. Tollervey, D., Molecular biology: RNA lost in translation. Nature, 2006. 440(7083): p. 425-6.
101. Doma, M.K. and R. Parker, Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature, 2006. 440(7083): p. 561-4.
102. Orban, T.I. and E. Izaurralde, Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA, 2005. 11(4): p. 459-69.
103. Olsen, P.H. and V. Ambros, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 1999. 216(2): p. 671-80.
104. Seggerson, K., L. Tang, and E.G. Moss, Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol, 2002. 243(2): p. 215-25.
105. Wu, L., J. Fan, and J.G. Belasco, MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A, 2006. 103(11): p. 4034-9.
106. Giraldez, A.J., et al., Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 2006. 312(5770): p. 75-9.
107. Eulalio, A., et al., Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev, 2007. 21(20): p. 2558-70.
108. Bagga, S., et al., Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 2005. 122(4): p. 553-63.
109. Behm-Ansmant, I., et al., mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev, 2006. 20(14): p. 1885-98.
110. Lim, L.P., et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005. 433(7027): p. 769-73.
111. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5.
112. Bartel, D.P. and C.Z. Chen, Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet, 2004. 5(5): p. 396-400.
113. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
114. Lai, M.C., Y.H. Lee, and W.Y. Tarn, The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell, 2008. 19(9): p. 3847-58.
115. Ito, M., et al., Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell, 1999. 3(3): p. 361-70.
116. Merz, C., et al., Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA, 2007. 13(1): p. 116-28.
117. Lee, K.M., W. Hsu Ia, and W.Y. Tarn, TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation. Nucleic Acids Res, 2010. 38(10): p. 3340-50.
118. Hsu Ia, W., et al., Phosphorylation of Y14 modulates its interaction with proteins involved in mRNA metabolism and influences its methylation. J Biol Chem, 2005. 280(41): p. 34507-12.
119. Lykke-Andersen, J., M.D. Shu, and J.A. Steitz, Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell, 2000. 103(7): p. 1121-31.
120. Kaneko, S., et al., The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3' processing and transcription termination. Genes Dev, 2007. 21(14): p. 1779-89.
121. Hirose, T., M.D. Shu, and J.A. Steitz, Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A, 2004. 101(52): p. 17976-81.
122. Takagaki, Y., L.C. Ryner, and J.L. Manley, Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell, 1988. 52(5): p. 731-42.
123. Egloff, S. and S. Murphy, Cracking the RNA polymerase II CTD code. Trends Genet, 2008. 24(6): p. 280-8.
124. Keryer-Bibens, C., C. Barreau, and H.B. Osborne, Tethering of proteins to RNAs by bacteriophage proteins. Biol Cell, 2008. 100(2): p. 125-38.
125. Behm-Ansmant, I. and E. Izaurralde, Quality control of gene expression: a stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev, 2006. 20(4): p. 391-8.
126. Bracken, C.P., et al., Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res, 2008. 68(18): p. 7621-8.
127. Saguez, C., J.R. Olesen, and T.H. Jensen, Formation of export-competent mRNP: escaping nuclear destruction. Curr Opin Cell Biol, 2005. 17(3): p. 287-93.
128. Houseley, J. and D. Tollervey, The many pathways of RNA degradation. Cell, 2009. 136(4): p. 763-76.
129. Shiomi, T., et al., Human dis3p, which binds to either GTP- or GDP-Ran, complements Saccharomyces cerevisiae dis3. J Biochem, 1998. 123(5): p. 883-90.
130. Edmonds, M., A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol, 2002. 71: p. 285-389.
131. Dreyfus, M. and P. Regnier, The poly(A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell, 2002. 111(5): p. 611-3.
132. Kushner, S.R., mRNA decay in prokaryotes and eukaryotes: different approaches to a similar problem. IUBMB Life, 2004. 56(10): p. 585-94.
133. Lee, Y.J. and B.A. Glaunsinger, Aberrant herpesvirus-induced polyadenylation correlates with cellular messenger RNA destruction. PLoS Biol, 2009. 7(5): p. e1000107.
134. Eckner, R., W. Ellmeier, and M.L. Birnstiel, Mature mRNA 3' end formation stimulates RNA export from the nucleus. EMBO J, 1991. 10(11): p. 3513-22.
135. Qu, X., et al., Assembly of an export-competent mRNP is needed for efficient release of the 3'-end processing complex after polyadenylation. Mol Cell Biol, 2009. 29(19): p. 5327-38.
136. Jensen, T.H., et al., A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription. Mol Cell, 2001. 7(4): p. 887-98.
137. Hilleren, P. and R. Parker, Defects in the mRNA export factors Rat7p, Gle1p, Mex67p, and Rat8p cause hyperadenylation during 3'-end formation of nascent transcripts. RNA, 2001. 7(5): p. 753-64.
138. Seila, A.C., et al., Divergent transcription from active promoters. Science, 2008. 322(5909): p. 1849-51.
139. Preker, P., et al., RNA exosome depletion reveals transcription upstream of active human promoters. Science, 2008. 322(5909): p. 1851-4.
140. He, Y., et al., The antisense transcriptomes of human cells. Science, 2008. 322(5909): p. 1855-7.
141. Core, L.J., J.J. Waterfall, and J.T. Lis, Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 2008. 322(5909): p. 1845-8.
142. Parker, R. and H. Song, The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol, 2004. 11(2): p. 121-7.
143. Newbury, S.F., Control of mRNA stability in eukaryotes. Biochem Soc Trans, 2006. 34(Pt 1): p. 30-4.
144. Gatfield, D. and E. Izaurralde, Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature, 2004. 429(6991): p. 575-8.
145. Gazzani, S., et al., A link between mRNA turnover and RNA interference in Arabidopsis. Science, 2004. 306(5698): p. 1046-8.
146. Hsu, C.L. and A. Stevens, Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure. Mol Cell Biol, 1993. 13(8): p. 4826-35.
147. Muhlrad, D., C.J. Decker, and R. Parker, Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev, 1994. 8(7): p. 855-66.
148. Muhlrad, D. and R. Parker, Premature translational termination triggers mRNA decapping. Nature, 1994. 370(6490): p. 578-81.
149. Johnson, A.W. and R.D. Kolodner, Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol Cell Biol, 1995. 15(5): p. 2719-27.
150. Petfalski, E., et al., Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol Cell Biol, 1998. 18(3): p. 1181-9.
151. Qu, L.H., et al., Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol Cell Biol, 1999. 19(2): p. 1144-58.
152. Teixeira, A., et al., Autocatalytic RNA cleavage in the human beta-globin pre-mRNA promotes transcription termination. Nature, 2004. 432(7016): p. 526-30.
153. Jimeno-Gonzalez, S., et al., The yeast 5'-3' exonuclease Rat1p functions during transcription elongation by RNA polymerase II. Mol Cell, 2010. 37(4): p. 580-7.
154. Cougot, N., S. Babajko, and B. Seraphin, Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol, 2004. 165(1): p. 31-40.
155. Andrei, M.A., et al., A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA, 2005. 11(5): p. 717-27.
156. Muhlrad, D. and R. Parker, The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. EMBO J, 2005. 24(5): p. 1033-45.
157. Barbee, S.A., et al., Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron, 2006. 52(6): p. 997-1009.
158. Ferraiuolo, M.A., et al., A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J Cell Biol, 2005. 170(6): p. 913-24.
159. Sheth, U. and R. Parker, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science, 2003. 300(5620): p. 805-8.
160. Teixeira, D., et al., Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA, 2005. 11(4): p. 371-82.
161. Brengues, M., D. Teixeira, and R. Parker, Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science, 2005. 310(5747): p. 486-9.
162. Anderson, P. and N. Kedersha, RNA granules. J Cell Biol, 2006. 172(6): p. 803-8.
163. Wilczynska, A., et al., The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci, 2005. 118(Pt 5): p. 981-92.
164. Maquat, L.E., Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol, 2004. 5(2): p. 89-99.
165. Eulalio, A., et al., P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol, 2007. 27(11): p. 3970-81.
166. Chu, C.Y. and T.M. Rana, Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol, 2006. 4(7): p. e210.
167. Stoecklin, G., T. Mayo, and P. Anderson, ARE-mRNA degradation requires the 5'-3' decay pathway. EMBO Rep, 2006. 7(1): p. 72-7.
168. Stalder, L. and O. Muhlemann, Processing bodies are not required for mammalian nonsense-mediated mRNA decay. RNA, 2009. 15(7): p. 1265-73.
169. Bushati, N. and S.M. Cohen, microRNA functions. Annu Rev Cell Dev Biol, 2007. 23: p. 175-205.
170. Kloosterman, W.P. and R.H. Plasterk, The diverse functions of microRNAs in animal development and disease. Dev Cell, 2006. 11(4): p. 441-50.
171. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69.
172. Chang, T.C. and J.T. Mendell, microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet, 2007. 8: p. 215-39.
173. Krutzfeldt, J. and M. Stoffel, MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab, 2006. 4(1): p. 9-12.
174. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956): p. 415-9.
175. Denli, A.M., et al., Processing of primary microRNAs by the Microprocessor complex. Nature, 2004. 432(7014): p. 231-5.
176. Gregory, R.I., et al., The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004. 432(7014): p. 235-40.
177. Han, J., et al., The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004. 18(24): p. 3016-27.
178. Landthaler, M., A. Yalcin, and T. Tuschl, The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol, 2004. 14(23): p. 2162-7.
179. Rana, T.M., Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol, 2007. 8(1): p. 23-36.
180. Sontheimer, E.J., Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol, 2005. 6(2): p. 127-38.
181. Du, T. and P.D. Zamore, microPrimer: the biogenesis and function of microRNA. Development, 2005. 132(21): p. 4645-52.
182. Kim, V.N. and J.W. Nam, Genomics of microRNA. Trends Genet, 2006. 22(3): p. 165-73.
183. Filipowicz, W., et al., Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol, 2005. 15(3): p. 331-41.
184. Gregory, R.I., et al., Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005. 123(4): p. 631-40.
185. Carmell, M.A., et al., The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 2002. 16(21): p. 2733-42.
186. Lingel, A. and M. Sattler, Novel modes of protein-RNA recognition in the RNAi pathway. Curr Opin Struct Biol, 2005. 15(1): p. 107-15.
187. Liu, J., et al., Argonaute2 is the catalytic engine of mammalian RNAi. Science, 2004. 305(5689): p. 1437-41.
188. Meister, G., et al., Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell, 2004. 15(2): p. 185-97.
189. Jones-Rhoades, M.W., D.P. Bartel, and B. Bartel, MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 2006. 57: p. 19-53.
190. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes Dev, 2004. 18(5): p. 504-11.
191. Brennecke, J., et al., Principles of microRNA-target recognition. PLoS Biol, 2005. 3(3): p. e85.
192. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
193. Grimson, A., et al., MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 2007. 27(1): p. 91-105.
194. Nielsen, C.B., et al., Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA, 2007. 13(11): p. 1894-910.
195. Kiriakidou, M., et al., An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell, 2007. 129(6): p. 1141-51.
196. Maroney, P.A., et al., Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol, 2006. 13(12): p. 1102-7.
197. Nottrott, S., M.J. Simard, and J.D. Richter, Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol, 2006. 13(12): p. 1108-14.
198. Petersen, C.P., et al., Short RNAs repress translation after initiation in mammalian cells. Mol Cell, 2006. 21(4): p. 533-42.
199. Zamore, P.D., et al., RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000. 101(1): p. 25-33.
200. Llave, C., et al., Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002. 297(5589): p. 2053-6.
201. Yekta, S., I.H. Shih, and D.P. Bartel, MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004. 304(5670): p. 594-6.
202. Morlando, M., et al., Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol, 2008. 15(9): p. 902-9.
203. Kim, Y.K. and V.N. Kim, Processing of intronic microRNAs. EMBO J, 2007. 26(3): p. 775-83.
204. Dye, M.J.,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22249-
dc.description.abstractTRAP150起初被發現為轉錄活化複合體TRAP/Mediator的一個次單位。此外,TRAP150亦被發現為剪接體的其中一員,說明其可能在訊息核醣核酸剪接中扮演特定的角色。我們先前的研究指出,TRAP150可與其他剪接分子共同位於細胞核內的核斑點中,並活化剪接的過程。TRAP150可與完成剪接的訊息核醣核酸結合,並與數個外顯子接合複合體的組成蛋白及參與訊息核醣核酸運送出核的受器TAP有直接的交互作用。意料外地,當TRAP150被約束在先驅訊息核醣核酸的三端非轉譯區上時,可促進細胞核內此訊息核醣核酸的降解。我們試圖對TRAP150所引發的訊息核醣核酸的降解機制有更深入的了解。我們發現到不論TRAP150被指派到訊息核醣核酸五端的非轉譯區或是內含子上都能有促進訊息核醣核酸降解的效果,並且此作用似乎不依賴轉譯,顯示這並非典型的無意義誘導訊息核醣核酸降解的機制。另外,染色質免疫沉澱的實驗結果指出TRAP150座落在基因上的各個區域。由於它可與一些轉錄複合體的組成蛋白或參與訊息核醣核酸修飾的分子進行結合,因此,TRAP150可能會協調細胞核內核醣核酸處理過程的不同步驟,並使被異常加工的核醣核酸被降解。但TRAP150對於核內訊息核醣核酸修飾的確切作用仍需進一步的研究。zh_TW
dc.description.abstractTRAP150 has been identified as a subunit of the transcription regulatory complex TRAP/Mediator, and also a component of the spliceosome. TRAP150 contains an arginine/serine-rich domain and has sequence similarity with the cell death-promoting transcriptional repressor BCLAF1. My colleagues found that TRAP150 colocalizes with splicing factors in nuclear speckles and activates splicing in vivo. TRAP 150 remains associated with the spliced mRNA after splicing, and accordingly, it interacts with the integral exon-junction complex. Unexpectedly, when tethered to the 3’end of a precursor mRNA, TRAP150 can trigger mRNA degradation in the nucleus. However, unlike nonsense-mediated decay, TRAP150-mediated mRNA decay is irrespective of the presence of upstream stop codon and occurs in the nucleus. I attempted to understand more about the mechanism underlying TRAP150-mediated mRNA degradation. I found that TRAP150 induced mRNA degradation no matter whether it was tethered to the 5’-UTR, coding region, or intron, even for the mRNA lacking long open reading frames. Chromatin-immunoprecipitation showed that TRAP150 localized throughout the gene. Because TRAP150 interacted with several transcriptional complex and RNA processing factors, it may function in coordinating different steps of nuclear mRNA processing and perhaps target aberrantly processed mRNAs for degradation. How TRAP150 exactly acts in nuclear mRNA processing needs further studies.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:14:22Z (GMT). No. of bitstreams: 1
ntu-99-R97448006-1.pdf: 1774185 bytes, checksum: 0dd18e4bd7fd1cfa3e219286f9ad9e7b (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Chapter I: characterization of TRAP150 in mRNA degradation 1
1. INTRODUCTION 2
1.1. Co-transcriptional mRNP assembly and pre-mRNA processing 3
1.2. The TREX complex in mRNP biogenesis 7
1.3. The SAGA complex in epigenetic crosstalk 9
1.4. RNA-quality control 12
1.4.1. RNA-quality control by the exosome 13
1.4.2. Qulity control of nuclear RNAs 14
1.4.3. Qulity control of cytoplasmic RNAs 15
2. MATERIALS & METHODS 18
2.1. Plasmids 18
2.2. Cell culture and transfection 19
2.3. Chromatin immunoprecipitation 19
2.4. Immunoprecipitation and RT-PCR 22
2.5. NMD assays and northern blotting 24
2.6. In vitro polyadenylation and 3’end processing assay 24
3. RESULTS 27
3.1. TRAP150 is present throughout the genes 27
3.2. TRAP150 associates with pol II and transcriptional complex 28
3.3. TRAP150 induces mRNA decay in the tethering assay 29
3.4. In vitro polyadenylation and 3’end-processing assay in the presence of tethered TRAP150 31
4. DISCUSSIONS 34
4.1. Role of TRAP150 in mRNA decay 34
4.2. TRAP150 is a dual function modular protein 41
Chapter II: studying the role of Xrn2 in P body biogenesis 43
Abstract 44
1. INTRODUCTION 45
1.1. XRNs: the 5’→3’ exoribonucleases with important functions in RNA metabolism and RNA interference 45
1.2. P bodies and the control of mRNA translation and degradation 46
1.3. Post-transcriptional regulation by microRNAs 49
2. RESULTS 52
2.1. Knockdown of XRN2 results in the disappearance of P-bodies 52
2.2. Pursuance of the possible participation of Xrn2 in miRNA biogenesis 52
3. DISCUSSIONS 54
References 58
Figures 71
dc.language.isoen
dc.subject核醣核酸降解zh_TW
dc.subjectmRNA degradationen
dc.subjectTRAP150en
dc.titleTRAP150於mRNA降解的特性分析zh_TW
dc.titleCharacterization of the role of TRAP150 in mRNA degradationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李芳仁(Fang-Jen Lee),阮麗蓉(Li-Jung Juan)
dc.subject.keyword核醣核酸降解,zh_TW
dc.subject.keywordTRAP150,mRNA degradation,en
dc.relation.page85
dc.rights.note未授權
dc.date.accepted2010-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved